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How to Manage Data to Enhance Their Potential for 
Synthesis, Preservation, Sharing, and Reuse—A Great Lakes 
Case Study

ABSTRACT: Proper data management (applying coordinated 
standards and structures to data collection, maintenance, re-
trieval, and documentation) is essential for complex projects to 
ensure data accuracy and accessibility. In this article, we used 
a recent project evaluating changes in Lake Whitefish (Core-
gonus clupeaformis) growth, condition, and recruitment in the 
Great Lakes as a case study to illustrate how thoughtful data 
management approaches can enhance and improve research. 
Data management best practices described include dedicating 
personnel to data curation, setting data standards, building a 
relational database, managing data updates, checking for and 
trapping errors, extracting data, documenting data sets, and 
coordinating with project collaborators. The data management 
actions taken ultimately resulted in a rich body of scientific 
publication and a robust database available for future studies. 
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Cómo manejar datos para incrementar 
el potencial para su síntesis, preserva-
ción, intercambio y reutilización –los 
Grandes Lagos como caso de estudio
RESUMEN: en proyectos complejos, un manejo ap-
ropiado de datos (aplicación coordinada de estándares y 
estructuras a recolección, mantenimiento, recuperación y 
documentación) resulta esencial para asegurar la precisión 
y accesibilidad de los mismos. En la presente contribu-
ción se utiliza un proyecto de evaluación de los cambios 
en el crecimiento, condición y reclutamiento del coregono 
en los Grandes Lagos, como caso de estudio para ilustrar 
cómo un manejo adecuado de datos puede incrementar y 
mejorar la investigación. Las mejores prácticas en cuanto 
a manejo de datos incluyen: dedicar personal a la curación 
de datos, fijar estándares en los datos, construcción de una 
base de datos relacional, manejo de actualización de datos, 
revisión y filtro de errores en los datos, extracción de datos, 
documentación de bases de datos y coordinación con co-
laboradores del proyecto. Las acciones de manejo de datos 
que se tomaron resultaron en la producción de un cuerpo 
importante de publicaciones y en una base de datos robusta, 
disponible para investigaciones futuras. Los recursos inver-
tidos en el manejo de datos permitieron que este proyecto 
sirviera de modelo para tomar los primeros pasos hacia el 
objetivo común de compartir, documentar y preservar datos 
que son recolectados y reportados durante el proceso de una 
investigación científica.

FEATURE

Investing in data management allowed this project to serve as a 
model for taking the first steps toward a common goal of shar-
ing, documenting, and preserving data that are collected and 
reported during the scientific research process. 

CONTEMPORARY FISHERIES RESEARCH 
NEEDS THOUGHTFUL DATA MANAGE-
MENT PRACTICES

Data are the infrastructure of science, and modern scientific 
architecture has become increasingly complex. This trajectory 
can be partly explained by the preference of granting agencies 
toward projects that address broad-scale research questions; 
partly by advances in computing and communications technol-
ogy that allow the scientific community to work with larger 
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data sets that transcend conventional spatial, temporal, and 
disciplinary boundaries (Lélé and Norgaard 2005; Wake 2008; 
Carpenter et al. 2009); and partly by advances in computing 
that have allowed data-intensive science (Newman et al. 2003) 
and modeling projects that rely on previously collected data to 
increase in frequency and magnitude (Kelling et al. 2009; Borg-
man 2010). 

Any research project with multiple objectives or one that 
combines the expertise of multiple principal investigators—or 
even one that simply combines data from multiple institutions—
will have the capacity to generate immense quantities of varied 
information, require the assimilation of previously acquired 
data, or both. This raises a variety of logistical complexities 
with regard to quality control, security, and accessibility of data 
and, as such, these projects can benefit greatly from formal data 
management strategies for entry, update, storage, validation, ac-
cess, annotation, provenance (i.e., information regarding the or-
igins, identification, ownership and structure of a data set), and 
archiving (McDonald et al. 2007; Brunt and Michener 2009; 
Kelling et al. 2009). Recognizing this, many funding agencies 
now require that all prospective grantees address data manage-
ment as part of the project application (National Institutes of 
Health 2003; U.S. Fish and Wildlife Service 2006; National 
Oceanic and Atmospheric Administration [NOAA] 2010; Na-
tional Science Foundation 2010).

Unfortunately, modern ecological data management prac-
tices have not evolved as quickly as their data sets (Katz et al. 
2007; McDonald et al. 2007; Barnas and Katz 2010; Hook et 
al. 2010). Data management is an often underrecognized and 
underutilized tool (Michener and Jones 2011). The majority 
of scientists still manage data through spreadsheet entry, indi-
vidualized post-entry error checking and manual grouping, or 
extraction of data for analysis (Porter and Ramsey 2002; Borg-
man et al. 2007; Nelson 2009) A recent survey of ecologists 
found that they felt that their own institutions lacked planning, 
technology, and funding for data management in the short term 
(during the project) and long term (post-project) and did not 
adequately provide training in data management (Tenopir et al. 
2011). Heterogeneity in the practices and quality of data man-
agement limits data reuse, data sharing, and data integration and 
does not facilitate standardization of data collection methods or 
support economic efficiency given current fiscal climates. 

A fundamental disconnect occurs between the broadly 
based, complex, interdisciplinary, and collaborative projects 
requiring data that are accessible, electronic, decipherable, er-
ror-free, and reusable and the heterogeneous and idiosyncratic 
data sets that are routinely being generated from the thousands 
of fisheries researchers collecting data in the course of their 
work. Fisheries managers and scientists must embrace the need 
to recognize data management as a critical step toward organiz-
ing their discipline and resolving this tension.

THE STATES OF FISHERIES DATA 
MANAGEMENT AND PEER-REVIEWED 
LITERATURE

Scientific data collection and compilation can occur at dif-
fering spatial scales, and the larger the scale, the more necessary 
it is to commit resources to data collection and management. 
Some examples of larger scale regional fisheries database ef-
forts include FishMAP, a Great Lakes fish migration passage 
and knowledge database; GLATOS Web, a Great Lakes acous-
tic telemetry database; the Multistate Aquatic Resources In-
formation System (MARIS); the National Fish Habitat Action 
Plan; the Pacific Northwest Salmon Habitat Restoration Project 
Tracking Database; StreamNet, which compiles and dissemi-
nates fish data from state, tribal, and federal agencies in the 
Pacific Northwest; and the Fisheries Information Networks 
(FINs), which are regional, cooperative, state, and federal data 
integration and management programs for the Pacific Region 
(PACFIN), the Atlantic Region (Atlantic Coastal Cooperative 
Statistics Program [ACCSP]), the Gulf of Mexico (GulfFIN), 
and Alaska (AKFIN; e.g., Beard et al. 1998; Katz et al. 2007; 
MARIS 2008; McLaughlin et al. 2010; Wang et al. 2011). In 
addition, there are regional fisheries databases housed at NOAA 
Fisheries Service Science Centers, which have long histories 
of managing data (NOAA 2011). At a smaller scale than these 
regional efforts, there are the data management endeavors of 
individual state agencies, coordinating groups of multi-affili-
ated fisheries researchers, university fisheries research teams, 
and the many individual projects that require the construction 
of databases during the course of their research (e.g., Watson 
and Kura 2006; Katz et al. 2007; Heidorn 2008; Frimpong and 
Angermeier 2009).

The current state of “how to manage fisheries-specific 
databases” in the peer-reviewed literature can be summarized 
as follows: the regional efforts listed above have multiple per-
sonnel dedicated to behind-the-scenes data management, using 
very sophisticated practices, but detailed descriptions of their 
specific efforts have not been documented in the peer-reviewed 
fisheries literature (e.g., K. Barnas, Pacific Northwest Salmon 
Habitat Restoration Project Tracking Database; D. Donald-
son, GulfFIN; D. Infante, National Fish Habitat Action Plan; 
W. Kinney, StreamNet; C. Kruger, GLATOS Web; A. Loftus, 
MARIS; E. Martino, ACCSP; R. McLaughlin, FishMAP, per-
sonal communication). There are also countless textbooks on 
the structural mechanics of database design (Hernandez 2003; 
Pratt and Adamski 2007; Ling Liu and Özsu 2009), which tend 
to ignore the specialized needs of the scientific field. Finally, 
there are specific fisheries projects that required construction 
of a database for which the results of the findings have been 
published, but details of the data management plans have not 
(Watson and Kura 2006; Katz et al. 2007; Frimpong and An-
germeier 2009; Whiteed et al. 2012). Very few generalized de-
scriptions detailing both the technical and practical aspects of 
managing data generated by typical collaborative research proj-
ects are available to fisheries professionals to use as a resource 
(McLaughlin et al. 2001; Baker and Stocks 2007).
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For individuals or teams of fisheries scientists collecting 
data independent from regional database efforts, formal data 
management guidance is not readily available as a resource, 
yet project-specific data management plans are increasingly re-
quired as a prerequisite for research grant applications. There-
fore, the purpose of this article is to provide a synthesis of data 
management best practices for the typical fisheries investiga-
tor to serve as kind of a broad proxy for grant application and 
research plans while underscoring the added value that can be 
accrued by using these best practices. These best practices sup-
port data integrity throughout the project and position data to 
be reusable by future users by ensuring that they are accessible, 
electronic, decipherable, and error-free.

We used a recent collaboration among federal, state, and 
university fisheries researchers as a case study to highlight how 
data management works. Although data management practices 
are generally masked during the publication process, the authors 
feel that they are a fundamentally important part of scientific 
inquiry and communication and therefore should be subject to 
the same rigorous evaluations and discussions in the primary lit-
erature as other scientific methods. Not all fisheries projects will 
require all of the steps described subsequently, but we hope that 
this article serves as a guide for researchers asking themselves 
at the start of a new endeavor, “To what extent and how should 
data management be implemented for this project?”

Lake Whitefish CASE STUDY 
BACKGROUND

In 2004, two teams of scientists from Purdue University 
and Fisheries and Oceans–Canada independently submitted 
pre-proposals to the Great Lakes Fishery Trust requesting grant 
money to study Lake Whitefish (Coregonus clupeaformis) re-
cruitment dynamics in the Great Lakes (Sutton et al. 2007). 
In a rare occurrence, the reviewers felt that the projects were 
similar enough to suggest that the two teams collaborate (M. 
Coscarelli, personal communication). Recognizing that choos-
ing not to collaborate meant competing as two similar projects 
vying for a limited pool of money, the groups merged, submit-
ted a full proposal for one project that addressed two different 
sets of potential Lake Whitefish recruitment impediments, and 
received funding for 3 years, where yearly funding depended 
on the success of the collaboration. The researchers convened 
as a group to discuss issues associated with data management 
(Table 1). The result of that discussion was agreement that the 
expanded project and conditional nature of the funding required 
implementing formal data management practices and a decision 
was made to allocate project resources to obtain a dedicated data 
curator as a permanent member of the research team.

DATA MANAGEMENT BEST PRACTICES

Selecting a Data Curator

A data curator is responsible for the technical and practical 
aspects of data management throughout a research project—al-
though for large, complex projects, data curation is often done 

by a team of individuals, which may include subject-matter ex-
perts, data users, information technology staff, computer pro-
grammers, and a metadata librarian (Lord et al. 2004; Cragin et 
al. 2008; Akmon et al. 2011). A curator’s major responsibilities 
are to incorporate, organize, document, and retrieve data that 
they curate (Heidorn 2008; Witt 2009; Witt et al. 2009). The 
curator adds value to the research project by checking, verify-
ing, and correcting data sets, as well as by providing software 
tools for data access, manipulation, and assimilation of any 
previously collected data, if required (Research Information 
Network [RIN] 2008; Cragin et al. 2010). Data curators apply 
rigorous procedures to ensure that the data sets they manage 
meet quality standards in relation to the structure and format of 
the data themselves (examples given in the following sections), 
ultimately contributing value by making data more discover-
able and easier to access for potential reuse. A dedicated cura-
tor combines the benefits of expertise available to researchers 
in disciplines with centralized data repositories with the agility 
and advantages of localized data storage and management (RIN 
2008). Though formal training in database design and manage-
ment is ideal, a data curator need not be a professional database 
developer or computer programmer; he or she can simply be 
someone who has experience and is comfortable managing data. 
Our data curator was a postdoctoral researcher with experience 
managing modest-sized (<1 million records) databases obtained 
during past research projects. 

Establishing Data Requirements

Before any Lake Whitefish project data collection occurred, 
our curator’s job was to determine what data were going to be 

TABLE 1. Discussion items that help identify the data management 
needs for a collaborative research project. 

Given that we want to store all project data together, does a single member 
of the research team have the skill set and time to manage data for the 
entire project? Do we know someone reliable but outside of the research 
team who could curate the data?

How much data will we be collecting? What is the maximum size of our 
data set? 

Once we have collected data, will housing them require multiple tables? 
Can we use “flat file” (single data table) organization or do we need a re-
lational database? 

How complicated will data entry be? How many different people will be 
entering data, at how many different locations? The more complex data 
entry, the greater the probability of errors and the more dedicated error 
oversight required.

If multiple PIs are working on separate parts of the project, how important 
is it that their data be able to interact? Do the PIs need to combine data 
to answer research questions? If so, properly defining relationships among 
data is critical.

Does our grantor require data management or data sharing as part of our 
grant stipulations? Will our data be shared beyond the PIs? 

If we need to use a relational database, how much will it change through 
time? How many researchers will need to access identical data simultane-
ously but separately? Will version control be critical to ensure that everyone 
is accessing the same data?

Are our data unique and can they be reproduced? Will we want to draw 
from these data sets for future studies? Is it worth the investment to pre-
serve our data?
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collected and by whom and who would be responsible for post-
collection processing of data (Hernandez 2003; Pratt and Adam-
ski 2007; Ling Liu and Özsu 2009). Three universities, two U.S. 
natural resources agencies, three Canadian government agen-
cies, one tribal resource agency, and various commercial fishing 
operators worked together to collect data at 13 sites across lakes 
Michigan, Superior, and Erie from 2004 to 2006 (Figure 1). 
Adult, juvenile, and larval Lake Whitefish were sampled using 
gill and trap nets, beach seines, and plankton nets, respectively. 
Sampling effort parameters (e.g., date and location) and envi-
ronmental data (e.g., water temperature) were collected during 
each sampling event. Biological data (e.g., length and weight) 
were collected on each life stage of the Lake Whitefish and their 
prey. Subsequent laboratory analyses resulted in the generation 
of further biological and physiological data (e.g., food hab-
its, proximate body composition, and fatty acid composition). 
These collections resulted in a data set with more than 250,000 
records. To ensure that data collection was standardized, our 
curator held initial meetings with individual project collabora-
tors and collective meetings with the research group. During 
the individual meetings, the curator asked the collaborators the 
following questions: 

•	 How are data defined; what formats will these data 
take (e.g., numbers, pictures, acoustic records, physi-
cal specimens, etc.); what are the units of measure-
ment associated with numerical data; which data are 
textual? What information about data collection will 
be archived (e.g., sampling effort data such as weather, 
collection gear, sampling crew names, etc.)? How 
many records will be generated seasonally and over 
the entire project?

•	 How will data be captured or created (e.g., research 
vessel, fish tagging, moored buoy, online surveys, 
etc.)?

•	 What are the spatial and temporal coverage of data col-
lections? 

•	 Once data are collected, will they be postprocessed? 
If so, where will they be sent and what processes will 
occur? 

•	 What are the timelines for data collection and post-
processing? Are data being collected all at once or 
throughout a season? Are data being generated and 
recorded continually or in batches?

•	 How soon after processing or collection will data be 
sent to the curator for input into a database and how 
soon after input will data be needed for analysis? Will 
data be transferred all at once or in batches? 

•	 How do data relate to other data (e.g., will a sampling 
event be related to multiple fish caught during that 
event, or will multiple stomach contents be related 
back to an individual fish)? 

An initial meeting with the entire research team allowed 
for the development and documentation of a predefined set of 
standards for coding categorical data, such as sampling loca-
tions and Linnaean names of fish and invertebrate species (we 
recommend using standard Integrated Taxonomic Information 
System codes) and to determine how spatial and environmental 

Figure 1. Schematic of the complexity involved in collecting and processing data for a Great Lakes Fishery Trust–funded Lake Whitefish project (Sutton 
et al. 2007). Lines indicate data exchange between entities. Solid lines represent data exchange between collector and processor. Dashed lines rep-
resent data exchange between a collector or processor and the data curator. N.B., schematic organizes data collectors in rows for formatting reasons 
and does not imply any type of hierarchy.
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data would be captured and classed. For example, collaborators 
agreed to standardize classification of all nets as trap, gill, seine, 
or plankton. These initial meetings helped the collaborators to 
improve their understanding about the scope of the project and 
facilitated standardizing field sampling methods. Although it 
seems intuitive that collaborative projects would function this 
way (i.e., with or without a dedicated curator), the lack of a 
dedicated person accountable for bringing data management is-
sues to the group and forcing standardization at the onset of the 
project often results in a situation whereby issues, sometimes 
uncorrectable, are overlooked until much later in the research 
process, increasing the time required to identify and correct er-
rors (McLaughlin et al. 2001; Wallis et al. 2008).

Creating and Populating the Database

After becoming familiar with project data and collabora-
tors’ collection procedures, a data model was created. The data 
model and associated entity relationship diagrams identified all 
attributes (i.e., data elements) in each table and defined how 
tables related to each other through key fields. Our model called 
for seven primary data tables and 11 lookup tables (Figure 2, 
Table 2). After the data model was created, we developed a 
means for data storage (i.e., relational database) using Microsoft 
Office Access software.  (Special note on spatial data: There are 
two options when working with spatial data: (1) using an aspa-
tial, tabular, relational database where records have a unique 
identifier, which can be linked to geocoordinates in a second, 
separate spatial database; or (2) working exclusively within a 
single spatially enabled database [supports spatial data types]. 
In the second case, each individual record’s spatial geometry 
is stored as an attribute and the database is integrated with the 

spatial software. We used the first option and stored only the 
latitude and longitude of our sampling events, importing those 
spatial attributes into ArcGIS when we needed to make maps or 
wanted to do specialized spatial analyses.)

Although we used Microsoft Access to develop our data-
base, many relational database management software programs 
(RDBMSs) are available to researchers (Table 3).When select-
ing an RDBMS, researchers should consider the advantages and 
disadvantages of the price, required operating system, compat-
ibility with other software programs, user accessibility, level of 
technical expertise, anticipated upgrade costs (time and money), 
and constraints imposed by the quantity of data to be managed. 

Most scientists use spreadsheet software to store their data 
(e.g., Excel), rather than an RDBMS (Borgman et al. 2006). 
Though both spreadsheets and RDBMSs organize data in rows 
(in data storage language these are called “records”) and col-
umns (“fields”), spreadsheets store data in individual tables as 
“flat files,” meaning that tables are not linked, whereas RD-
BMSs store data across multiple, interrelated tables, with the 
expectation that the user will primarily want to work with data 
across multiple tables simultaneously. Storing data using linked 
tables is the foundation of the relational database. 

If data can be stored in a single table, a relational database 
is not necessary. If multiple tables are required to store data, cre-
ating a relational database using an RDBMS is the best option, 
because relational databases have rules that maximize data in-
tegrity across tables (Hernandez 2003). Generally, data integrity 
rules include the following: (1) tables that are constructed prop-
erly and efficiently (i.e., each table represents a single entity, 

every column in each 
table is comprised of 
distinct fields, fields 
are not repeated 
within a table, and 
each record is iden-
tified with a unique 
value called a “pri-
mary key” used for 
linking data among 
tables); and (2) data 
integrity (validity) is 
imposed at the record, 
table, and relation-
ship levels (i.e., every 
table has a column for 
the key field and keys 
are used to create re-
lationships among 
tables). 

An experienced 
curator is able to har-
ness the strengths 
of the relational da-
tabase model and 

Figure 2. Data model—design of the Lake Whitefish recruitment database indicating the primary data tables, relation-
ships between tables, and fields used as keys in the relationships. Additionally, 11 lookup tables (not included in figure) 
standardized the entry of location, gear, weather conditions, fish species, life stage, sex, maturity, invertebrate species, 
fatty acid, age structure, and prey species data (see Table 2). The ∞ symbol represents a one-to-many relationship between 
table IDs. For example, one sampling ID in the sampling table can relate to more than one fish or invertebrate ID in the fish 
and invertebrates tables, or one fish ID in the fish table can relate to more than one lipid, age, stomach, or reproduction 
ID in their respective tables.
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software by taking advantage of the built-in procedural logic 
that relates information among tables, allowing users to focus 
solely on using declarative logic to extract data; for instance, 
when combining data from multiple spreadsheets the user has 
to manually relate data among different tables, whereas in the 
relational database the user simply has to indicate data for ex-
traction because relationships between tables are predefined. 
The chances are lessened that data will become useless if 
knowledge of those relationships is ever lost because the re-
lationships among data are required to be declared explicitly. 
Using an RDBMS, data tables can adapt to changing sampling 
designs and protocols without necessitating structural changes 
so that new data can easily be incorporated in the future. RD-
BMSs also offer several advantages related to data integrity 
and quality compared to spreadsheets. Properties of atomicity, 
consistency, isolation, and durability (ACID) describe the vari-
ous mechanisms that the underlying RDBMS software uses to 
ensure data integrity between transactions (Haerder and Reuter 
1983). Though spreadsheets optimize flexibility and ease of use 
by pairing data storage with visualization, RDBMSs optimize 
data integrity through ACID principles (Haerder and Reuter 
1983; Hernandez 2003).

One foundation of ACID principles is the key field (pre-
viously mentioned), which is defined as a unique identifier 
that links data across tables. Keys provide the quickest way 
to retrieve data when searching or sorting and make it easy to 

summarize data from 
multiple tables. Keys 
can assume multiple 
formats as long as 
they are unique. The 
simplest format for a 
key is an autonumber, 
where each new record 
is assigned a sequential 
number starting at 1. 
In the Lake Whitefish 
recruitment database, 
the key for identifying 
each individual Lake 
Whitefish was a con-
catenation of sampling 
date, sampling loca-
tion, life stage, and fish 
ID (e.g., 05_06_2007_
ElkRapids_AD_001); 
this allowed the key 
itself to convey mean-
ing and to function as 
more than just a serial 
number. 

Finally, RDBMSs 
offer several addi-
tional advantages over 
spreadsheets, includ-
ing the ability to store, 

manage, and analyze data sets of considerably larger size. RD-
BMSs run so efficiently because they only retrieve data required 
through a user-specified query, whereas spreadsheets load the 
entire data set into memory when the spreadsheet file is opened. 
In addition, the ability to partition a database into multiple files 
across multiple hard disks can reduce disk contention (bottle-
necks caused by multiple processes accessing the same location 
on disk at the same time), making large and complex databases 
easier to work with. Additionally, RDBMSs use indexing to 
speed up which query results are returned for large data sets by 
reducing the number of records that must be scanned to return 
the desired result (Ling Liu and Özsu 2009).

Version Control

Sampling and postprocessing of samples collected for the 
Lake Whitefish project occurred over 3 years; therefore, the co-
ordination of data submittal and updates to the database was 
done semiannually by the data curator. Every time new data 
were uploaded or existing data were corrected, a new version of 
the database was created. 

It is critical that the curator exert control over the perpetua-
tion of multiple versions of a single database. If version control 
is not implemented, different versions of files, related files at 
different locations, and information cross-referenced among 
files are all subject to the viral phenomenon of cascading repli-

TABLE 2. Database table names (columns) and non-key fields (rows) for the Lake Whitefish recruitment database. 
Italics indicate fields linked to lookup tables. 

Sampling Fish Invertebrates Lipidsb,c Agea,b,c Stomachb, c Reproductionc

Date Species Species Total lipids Age Stomach weight Gonad weight

Time Life stage Length Fatty acid type Structure used to 
determine age

Prey species Egg diameter

Location Length Weight Fatty acid 
concentration

Prey frequency Egg weight

Latitude Weight Sex Prey weight Sperm velocity

Longitude Sex Biomass Sperm tail length

Depth Maturity Density Sperm cell 
volume

Gear Liver weight Milt volume

Tow speed Body condition Mean 
spermatocrit

Tow 
distance

VFI1

Ambient 
conditions

Protein2

Energy2

Moisture2

1 Visceral fat index; 2 in muscle tissue.
Alphabetic superscripts delineate data collected for life stages or groups as follows:
a larval Lake Whitefish.
b age-0 juvenile Lake Whitefish.
c adult Lake Whitefish.
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cates being distributed, utilized, and reproduced. How version 
control is implemented depends on whether there are single or 
multiple users and whether versions across space and time need 
to be synchronized (Van den Eynden et al. 2011). Our suggested 
best practices for a version control strategy are listed in Table 4. 

One of the most elegant advantages of using relational data-
bases is that they can be programmed to be as self-documenting 
as the users require. “Self-documenting” refers to the process 
in which data transactions are logged along with their identify-
ing features, such as who ordered the transaction, a time/date 
stamp identifying when the transaction occurred, and the na-
ture of the specific transaction. We designed our database to 
be self-documenting in the sense that all changes to data were 
recorded in the database itself, so users could query which data 
were updated, by whom, and when. Each time the database went 
through major updates, a description of what occurred was pro-
vided to users along with the new version. We implemented 
versioning control using an FTP site, because the site offered 
security and ease of distribution with minimal upfront program-
ming. At the end of the project, our curator ensured that each 
collaborator was provided with a final version of the database 
that contained not only verified data but also previous versions 
of the database with records of any updates that occurred during 
the course of the project. This allowed the collaborators to audit 
revision history and recover deleted information if necessary. 

Quality Control and Standardization

One of our curator’s most valuable contributions to the 
Lake Whitefish recruitment project was quality control and 
standardization of data. Initially quality control involved coor-
dinating the group to use standardized naming conventions and 
code lists during field collection and data processing. A second-

ary layer of quality control operated inherent 
in the relational design model and embedded 
integrity rules—eliminating duplicates, re-
ducing redundancy, increasing consistency, 
and maximizing accuracy of data (Hernandez 
2003; Borer et al. 2009; Hook et al. 2010). The 
creation of formal data definitions disallowed 
data of one type to be entered as another type 
(e.g., wind direction was stored as text so it 
was impossible to accidentally store it as a 
number). Our curator also placed checks on 
data ranges and coding through lookup tables 
for gear types, sampling sites, and fish identi-
fication codes and used input masks to ensure 
that data were formatted consistently. 

One data management best practice is to 
audit, capture, and intercept suspect values as 
close to the source of the collection as possible 
because reworking data long after the actual 
sampling is complete is more time consuming 
and can result in unusable samples. To verify 
that data were accurate, our curator performed 
simple reviews of data by periodically check-

ing for missing values; verifying that data were in their proper 
columns; scanning for impossible values; and generating simple 
statistics such as frequencies, means, ranges, and clusters to de-
tect errors or anomalous values (e.g., the lengths of all age-0 
juveniles should fall between 20 and 70 mm; the latitude and 
longitude for Little Bay de Noc in northern Lake Michigan can-
not map to southern Lake Michigan, etc.). Our curator also es-
tablished more sophisticated error traps by communicating with 
project collaborators to identify what errors were most common 
to their data contributions. For instance, because Lake White-
fish eat small diet items, if a diet item exceeded 20% of the total 
length of the predator, the sample was flagged. Sampling event 
data and individual fish biological data were entered into the 
database at different times and in different places, so our curator 
created a query to verify that the total number of fish recorded 
during a sampling event was equal to the number of biological 
records for individual fish associated with that sampling effort. 

Our curator also verified that collaborators were not violat-
ing their own sampling protocol. For instance, the collabora-
tors agreed that when sampling adult female Lake Whitefish 
for fecundity, they would only collect eggs from females that 
were “green” (i.e., with mature eggs that were still attached to 
the skein) and not from females that were “running or spent” 
(i.e., eggs that were free flowing or had already been deposited). 
After data collection, egg samples were sent to one laboratory 
and female fish were sent to another for analysis. Upon receipt 
of data, the curator could use simple queries to easily match up 
all of the samples to ensure that fecundity was not estimated for 
fish that fell outside of the maturity requirements. 

Data Extraction 
Scientists may not have been comfortable extracting data 

from a relational database, yet they still needed to be able to 

TABLE 3. Comparison of available technologies to manage data.a Structured query lan-
guage (SQL) is a programming language designed for working with relational databases. 
Other considerations include operating system or integration with other clients (desktop 
or geographic information system software).

Concerns/needs Spreadsheet—
basic

Database—
intermediate

Database—
advanced

Desktop or server 
based

Desktop Desktop Server based

Spatially enabled No No Yes

Security No Low High

Multiuser data entry No No Yes

Size of data set Limited Limited Unlimited

Web-based No No Yes

Examples Excel Access, Microsoft SQL 
Express, SQLLite

SQL Server, Oracle, MySQL

Cost Low Low High (although some open-
source RDBMSs are available)

Level of programming 
experience needed

None Little to none Expert

a This table is meant to indicate the general advantages/disadvantages of the different tiers of 
technologies to manage data, and the characterizations do not hold true in all cases. 
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easily extract data for analysis. One of the greatest benefits of 
having a data curator was that collaborators could simply send 
an e-mail or make a call and ask for data to be assembled and 
formatted in whatever way was needed and the curator could 
deliver those data quickly and efficiently. For more general-
ized data selections, the curator set up standardized forms in the 
database with checkboxes that allowed collaborators to select 
data without assistance. As an overseer of data extractions from 
the database, our curator could ensure that two collaborators ac-
cessing the same data were doing so identically, decreasing the 
likelihood that different conclusions might be reached because 
different data were selected for analysis. 

Because most statistical software requires data in a flat for-
mat, it might seem counterintuitive to take the time to create a 
database only to extract and flatten data for analysis. However, 
having taken the time to standardize, assemble, and properly 
structure data, there is no end to the various combinations that 
the curator can provide to the collaborators, and extracting data 
in any flat format takes mere seconds. Multiple statistical soft-
ware packages allow selection of data within a database via 
structured query language (SQL); for example, users of R (R 
Development Core Team 2011) have several CRAN packages 
available that retrieve the results from relational databases as 
entire data frames (R Development Core Team 2011). 

Initially, most collaborators felt uneasy allowing a data cu-
rator to develop and manage a database because they thought 
that it might limit their influence over extraction and analysis 
processes, thereby increasing the distance between themselves 
and their data. Consequently, our curator ensured that all col-
laborators had open access to the database and served as teacher 
and advisor for those who wanted to learn how to extract their 
own data, while allowing those who were familiar with data-
bases the freedom to extract on their own. In fact, most of the 
collaborators eventually ended up extracting their own data as 
the project matured and they became familiar with the database 
structure and operation.

Data Documentation and Archival

Ultimately, the value of data are enhanced, not exhausted, 
by their subsequent publication and use (RIN 2008; Whitlock 
2011). If data are not properly documented, no one outside of 
the original collectors will be able to use them properly; and 
because memories fade, eventually even the data originator may 
have trouble recalling important information relevant to a data 
set (Akmon et al. 2011). Broadly, “documentation” (descriptive 
information about data sets, also called “metadata”) includes 
the following components: what data are; when they were col-
lected; how they were collected; geographic scope of the proj-
ect; contact information of collectors; directions for citation; 
any information relevant to interpretation (e.g., processing that 
occurred, confounding factors, how missing data were handled, 
quality assessment, projection information, etc.); and individual 
definitions for each data field (see Table 5 for an example of 
data documentation for a single table of the Lake Whitefish da-
tabase). 

Multiple standards provide models for data documenta-
tion; the most comprehensive and broadly applicable are the 
Federal Geographic Data Committee Content Standard for 
Digital Geospatial Metadata (FGDC-STD-001-1998) and the 
International Organization for Standardization standards (ISO 
9001:2011). For the Lake Whitefish project, our curator used 
Federal Geographic Data Committee standards to create a for-
mal data dictionary, which was provided to each collaborator at 
the conclusion of the project. An object linking and embedding 
reference to the data dictionary was embedded in the data set 
so that it can continue to be accessed and interpretable into the 
future. For broadest access, it is best to archive data using open-
source formats rather than proprietary formats when possible. 

Scientific Value-Added Aspects of Data Management 

As is becoming more common in research, field and labo-
ratory samples for the Lake Whitefish recruitment project were 
obtained by multiple collectors at sites separated by substan-
tial geographic distances. In consultation with the data curator, 
researchers were able to efficiently merge field and labora-
tory data contained in the relational database and effectively 
extract them to investigate complex relationships and identify 
mechanisms related to the effects of declines in Lake Whitefish 
growth and condition on recruitment potential of populations 
across the Great Lakes. 

For example, all sampling events were recorded in the sam-
pling table where each event had its own unique ID. Then, fish 
caught during a sampling event were stored in their own fish 
table, where every fish had its own unique ID and the ID of its 
sampling event. When lipid analyses were done on an individual 
fish, lipid data were stored in their own lipid table along with 
the ID from the fish the lipids were extracted from. Thus, even 
though these pieces of information were being stored in sepa-
rate tables, the relational database, which linked the IDs among 
tables, allowed analyses to be performed across all fields with-
out the onerous manual linking required if spreadsheets were 

TABLE 4. Version control strategies—best practices.

Identify a single location for the storage of versions (in the Lake Whitefish 
case a secure FTP site). 

Decide how many versions to simultaneously maintain (in the Lake White-
fish case, one version).

Uniquely identify versions using a meaningful naming convention, which 
should include the status of version (e.g., draft, working, final).

Record changes made to each version and maintain old versions for back-
ups.

If applicable, manage any merging of entries or edits by multiple users.

Police users so that multiple working versions are not being developed in 
parallel.

Set permissions to read and write data to the database.

Develop formal procedures for destruction of any master files. 

Properly document all version control procedures. 
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used. Using the links among the sampling, fish and lipids tables, 
Muir et al. (2010) found that female Lake Whitefish in poorer 
physiological condition had a tendency to produce age-0 juve-
niles with poorer body composition at some sites, but this pat-
tern was not evident across all sites. In the same manner, using 
the linkages among three other tables (sampling, fish, and stom-
ach), Claramunt et al. (2010a) were able to partially explain this 
spatial pattern of juvenile condition by showing that early life 
history survival was likely dependent on favorable growth early 
in development, which allows an earlier ontogenetic diet shift 
to emergent spring macro-invertebrates, demonstrating that the 
link between parental and juvenile physiological condition was 
influenced by early life growth rates. 

The male contribution to Lake Whitefish reproduction and 
recruitment potential was explored by Blukacz et al. (2010) 
using linkages among the fish, reproduction, and lipids tables 
to show that male fish in better condition tended to produce 
higher quality sperm, suggesting that males are not irrelevant to 
Lake Whitefish recruitment potential. In addition, the linkages 
between the sampling and fish tables were used by Claramunt 
et al. (2010b) to relate larval fish densities to several abiotic 
and biotic factors, including adult stock size, abiotic conditions 

during incubation, and spring productivity. It was pre-
cisely the extracting and combining data using linked 
tables that enabled the research team to efficiently ad-
dress more complex and related questions and provide 
a more thorough understanding of Lake Whitefish re-
cruitment potential.

Follow-on components of the Lake Whitefish 
recruitment project were also able to benefit from ef-
forts to create and curate the Lake Whitefish relational 
database. For example, some members of the Lake 
Whitefish recruitment project team secured additional 
funding to analyze stable isotopes from tissue samples 
archived during the original project sampling. The proj-
ect database made it straightforward to match the stable 
isotope data to the original project data through the ad-
dition of a stable isotope table. Information queried 
from linkages among the fish, lipids, and new stable 
isotope tables was used to address questions about the 
connection between Lake Whitefish condition and prey 
quality (Fagan et al. 2012) and the use of C:N ratios to 
predict lipid content (Fagan et al. 2011). 

DATA CURATION BEYOND THE 
SINGLE RESEARCH TEAM

It is the sum of all of the actions our curator took 
to ensure proper data management throughout the life 
cycle of the project (setting initial standards, coordi-
nating data transfer, building a relational database, 
managing data updates, error checking/trapping, data 
extraction, data documentation, teaching, coordinating 
and communicating with project collaborators) that ul-
timately resulted in a rich body of scientific publication 

and a robust database available for future study (Brenden et al. 
2010). In our experience, the efforts toward effective data man-
agement more than justified the time and expense.

But does data management for a single project have ben-
efits beyond that project? Does it behoove a granting agency to 
impose proper data management if the collaborators are already 
going through the formal publication process? We suggest that 
it does, because a well-designed and defined database is the 
equivalent of formal documentation of scientific methods. In 
a time of restricted financial resources, grantors who want to 
maximize the scope of their investments would be well served 
by minimizing the redundancy in data collection that occurs 
when data sets are lost through lack of proper management and, 
by extension, archiving. 

Devoting resources to data management has benefits even 
beyond increasing the consistency and accuracy of individual 
project data. Relational database approaches facilitate inte-
gration of information from multiple sources, affording more 
robust, scientifically defensible decision-making capabilities 
(McLaughlin et al. 2001; Baker et al. 2005; Baker and Stocks 
2007). Effectively documented and structured data sets encour-
age data sharing and communication among collaborators by 

TABLE 5. Parameter documentation for sampling table in the Lake Whitefish 
database.

Sampling table

Column Definition Format Example

Date Date of sampling mm/dd/yyyy 06/25/2005

Time Time (military) gear was 
deployed

hh:mm 13:40

Location N, Naubinway; BBdN, Big Bay 
de Noc; ER, Elk Rapids; BH, 
Bailey’s Harbor; L, Ludington; 
S, Saugatuck, PP, Point Peelee; 
WP, Whitefish Point; RB, Row-
ley’s Bay; M, Muskegon; MC, 
Manitowec; FI, Fisherman’s 
Island; BB, Brimley Bay

Text N

Latitude Stores the latitude of the sam-
pling site in decimal degreesa

Number (double)b 42.64606

Longitude Stores the longitude of the 
sampling site in decimal de-
grees

Number (double) −86.22633

Water temp Water temperature (°C) Number (double) 10

Air temp Air temperature (°C) Number (double) 12

Depth Stores the depth of the sam-
pling station in meters.

Number (double) 2.3333

Gear TN, trap net; GN, gill net; S, 
seine; NN, Neuston net; G, grab; 
SL, sled; MN, mysis net; H, hy-
droacoustics

Text GN

Tow speed The speed (m/s) at which the 
sampling gear was towed

Number (double) 1.5

Tow distance The distance (m) over which the 
sampling gear was towed

Number (double) 822

Comments Any comments related to the 
sampling event

Memo PI was arrested 
by Saugatuck 
police

a Our data were projected in the World Geodetic System (WGS84)—this information belongs in 
the metadata or data dictionary that describes each sampling parameter in detail. 
b Double means that the number is noninteger.
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motivating them to make explicit all of the nuances of their data 
(McLaughlin et al. 2001; Porter and Ramsey 2002; Birnholtz 
and Bietz 2003). Databases can serve as storage for unique or 
irreplaceable records that can only be properly preserved for 
reuse though effective documentation and management (Brunt 
1994; Borgman et al. 2007; Heidorn 2008). Only well-managed 
and documented data allow for reproduction of research where 
checks and balances operate at the most fundamental level (Parr 
2007; Heidorn 2008; Borgman 2010). Others believe that be-
cause most research is publicly funded, data belong to society 
at large, and best practices should be used when managing those 
data for preservation and reuse (Costello 2009; Guttmacher et 
al. 2009; Borgman 2010). Effectively managed data allow for 
repurposing, thereby saving money that might otherwise be 
used for redundant collections (Hale et al. 2003; Carlson and 
Anderson 2007; Heidorn 2008). Finally, properly documented 
and organized data have unlimited potential for reuse by pro-
viding archival material to address future problems, thereby 
advancing science in ways possibly unforeseen by the original 
collectors (Postel et al. 2002; Nelson 2009; Borgman 2010).

One contentious issue surrounding data reuse is reluctance 
by researchers to share data beyond the original collaborators 
or close colleagues. Secrecy in guarding research has been part 
of scientific culture throughout history, and recent articles ex-
ploring the data sharing attitudes find scientists overwhelmingly 
unwilling to freely share data within and among their own com-
munity (Blumenthal et al. 1997; Campbell et al. 2002; Blumen-
thal et al. 2006; Vogeli et al. 2006; Haas 2011; Tenopir et al. 
2011), where willingness to share data is positively correlated 
with the ease of extraction and relationship to requestor (Witt 
et al. 2009; Cragin et al. 2010). In some sense, curators negate 
certain issues surrounding resistance to sharing that have to do 
with expending time and energy to prepare data, but address-
ing the underlying scientific-professional reward structure that 
does not reward sharing remains outside their scope of influence 
(McDade et al. 2011). 

Issues surrounding ownership and security also determine 
the extent to which data are shared (Beard et al. 1998). When 
research projects are funded by federal government agencies, 
philanthropic organizations, or private industries, grantor-
specific stipulations often influence how data will be retained 
and disseminated (Fishbein 1991) as well as being subject to 
the Freedom of Information Act (5 U.S.C. 552). One simple 
solution to data sharing and ownership issues is a data shar-
ing agreement. Data sharing agreements should be specific to 
each project and should include intended level of exposure (e.g., 
within the group only, within the field only, publicly accessi-
ble), level of control applied to data outflow, whether an em-
bargo period will be applied to data availability, and how data 
will be recognized when being used by others. In our case, our 
data sharing agreement stipulated that data would flow freely 
among principal investigators (PIs) and that each PI could de-
cide to share or not share their portion of the data beyond the 
original collaborators at their discretion. 

Building and managing databases can be challenging, espe-
cially if long-term data management is underfunded. Granting 
institutions may recognize the benefits of requiring data sets as 
deliverables but may also be loath to become their ultimate rest-
ing place. One field that is taking on the challenge of long-term 
digital curation is library science. University libraries are creat-
ing institutional repositories as part of a larger technology and 
service structure that can contribute resources and expertise in 
data curation (Cragin et al. 2010). Data centers (open-standard, 
interoperable, nonproprietary web services) are also becoming 
widely established (Baker and Bowker 2007; Costello 2009). 
The lure of data centers is that by providing open or semi-open 
access to data, they act as a dual facilitator for finding and stor-
ing data and, as of yet, no one repository has been established as 
the mainstay for fisheries data. Examples of established open-
access ecological data repositories are the Long Term Ecologi-
cal Research Network, DataONE, and MARIS (Baker et al. 
2000; MARIS 2008; Michener et al. 2012). All three provide a 
framework for assimilation and management of disparate data 
sets with tools for data discovery and guidance on data manage-
ment. The NOAA also has its own sophisticated internal data 
centers, whose services, as far as we were able to ascertain, are 
not available to non-NOAA researchers. 

Not everyone is sold on the idea of depositing their data 
in open-access repositories though. Tenopir et al. (2011) found 
that only 15% of ecologists expressed a willingness to place 
their data into an open-access repository, and the majority 
expressed different conditions for doing so, including the fol-
lowing: opportunities to collaborate (80%), mandatory reprints 
provided (75%), coauthorship (65%), results of analyses not 
disseminated without data providers’ approval (46%), legal per-
missions obtained (40%), and monetary reimbursement (28%). 
Not included in the survey was an embargo period allowing PIs 
the first chance to publish on data, but we assume that would 
also be a consideration of data providers. To mitigate issues 
specifically related to recognition, formal and consistent cita-
tion of databases will need to become more common in our field 
(NOAA 2012). 

The concept of depositing data in an open-access repository 
was so foreign to the Lake Whitefish project team that we never 
seriously considered using one for our data set. This decision 
resulted in data that can now only be obtained through com-
munication with a PI personally. We realize that our decision 
not to use a repository undermines a key message of this article, 
which is that data will not remain accessible without a plan for 
their preservation (Uhlir 2010), but the decision also accurately 
depicts the state of existing data preservation practices of most 
scientists in our position and field. We believe that whatever the 
future of institutional repositories and open-access data centers, 
they will continue to stay underutilized if they cannot support 
existing data practices specific to each scientific field and ad-
equately mitigate the cultural issues associated with data shar-
ing and recognition.

Given the shift toward large collaborative projects, we 
predict that formalized data management will become a more 
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integral part of research and will require explicit allocation of 
funds and recognition of professional productivity (McDade et 
al. 2011). We recommend that resource commitment associated 
with data management be estimated at the outset of the project 
so that dedicated resources can be requested from funding agen-
cies for proper data curation. We also exhort funding agencies 
to support these requests for additional resources by realizing 
the benefits they provide in ensuring data availability for future 
research. Furthermore, an actual data set offered as a product 
of externally funded research is perhaps one of the most con-
crete and useful deliverables that can be produced as return on 
investment. 

Organization is an emergent property for any complex sys-
tem, and efforts like the Lake Whitefish database are necessary 
as first steps in developing greater information organization 
within the fisheries research community. Looking beyond the 
development of a single database ultimately probes at a number 
of underlying systemic issues relating to large-scale informa-
tion leveraging, in particular, resistance to sharing data, how to 
preserve and use historical data sets, the general lack of meth-
odological standardization, and assessing whether the creation 
of these large-scale data endeavors yields returns enough to jus-
tify their investment in resources. Ultimately, the fisheries com-
munity should continue to examine ways to improve efficiency 
(reduce fragmentation) in research, reduce the duplication of 
effort in data collection, and spearhead efforts to coordinate data 
standards at a national level in order to adequately transfer sci-
entific information. This can only be accomplished if we take 
the first steps toward a common goal of sharing, documenting, 
and preserving data that are collected and reported. 
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