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The relationship between reproductive 
output and subsequent recruitment 
of new individuals is fundamental to 
population dynamics. In stock assess-
ments, this relationship is typically 
quantified by using a spawner–recruit 
model. Such models were originally 
developed with population fecundity 
as the measure of spawners, but most 
current applications use spawning bio-
mass, calculated as the total weight of 
mature females (Rothschild and Fog-
arty, 1989). A critical assumption with 
this approach is that spawning bio-
mass accurately represents the repro-
ductive potential of a stock. However, 
this assumption does not always hold 
(Trippel, 1999; Marshall et al., 2003, 
2006) and, when violated, can inject 
error into assessment models and sub-
sequent management advice (Roth-
schild and Fogarty, 1989; Murawski 
et al., 2001; Scott et al., 2006). Thus, 
recognition is growing for the need to 
integrate more reproductive biology 
into stock assessments by replacing 
spawning biomass with more accurate 
measures of reproductive potential 
(Trippel, 1999; Morgan, 2008; Wit-
thames and Marshall, 2008). 
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Abstract—Most assessments of fish 
stocks use some measure of the repro-
ductive potential of a population, such 
as spawning biomass. However, the 
correlation between spawning bio-
mass and reproductive potential is 
not always strong, and it likely is 
weakest in the tropics and subtropics, 
where species tend to exhibit inde-
terminate fecundity and release eggs 
in batches over a protracted spawn-
ing season. In such cases, computing 
annual reproductive output requires 
estimates of batch fecundity and the 
annual number of batches—the latter 
subject to spawning frequency and 
duration of spawning season. Batch 
fecundity is commonly measured by 
age (or size), but these other vari-
ables are not. Without the relevant 
data, the annual number of batches 
is assumed to be invariant across 
age. We reviewed the literature and 
found that this default assumption 
lacks empirical support because both 
spawning duration and spawning fre-
quency generally increase with age or 
size. We demonstrate effects of this 
assumption on measures of reproduc-
tive value and spawning potential 
ratio, a metric commonly used to 
gauge stock status. Model applica-
tions showed substantial sensitivity to 
age dependence in the annual number 
of batches. If the annual number of 
batches increases with age but is 
incorrectly assumed to be constant, 
stock assessment models would tend 
to overestimate the biological refer-
ence points used for setting harvest 
rates. This study underscores the 
need to better understand the age- 
or size-dependent contrast in the 
annual number of batches, and we 
conclude that, for species without 
evidence to support invariance, the 
default assumption should be replaced 
with one that accounts for age- or 
size-dependence.

Much of the work to date on repro-
ductive potential and stock assess-
ments comes from investigations on 
gadoids, pleuronectids, and other 
high-latitude species that typically 
have determinate fecundity patterns 
(Trippel, 1999 ; Murawski et al., 
2001; Morgan, 2008; Witthames and 
Marshall, 2008; Morgan et al., 2009). 
Fewer studies have been conducted 
on fish species with indeterminate 
fecundity, in part because the data 
requirements can be more daunt-
ing (Lowerre-Barbieri et al., 2011a, 
2011b). Many warm-water marine 
species from the subtropics (lati-
tudes <40°) spawn multiple batches 
per year, usually over a protracted 
spawning season. For example, spe-
cies off the southeastern United 
States typically spawn several times 
within a 3–4 month duration (Cuellar 
et al., 1996; McGovern et al., 1998; 
Waggy et al., 2006). Near the trop-
ics, spawning seasons are even longer 
and often associated with peak (but 
variable) activity when local condi-
tions favor transport and survival of 
offspring (Johannes, 1978; Thresher, 
1984). Such extended patterns of 
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spawning, or extended readiness to spawn, are typical 
of indeterminate spawners with asynchronous oocyte 
development patterns (Hunter et al., 1985; Murua et 
al., 2003). Although many species that exhibit deter-
minate fecundity also spawn in batches, quantifying 
annual fecundity for indeterminate spawners requires 
estimates of batch fecundity (i.e., eggs per batch) and 
number of batches per year, each as a function of pa-
rental age or size (Murua et al., 2003). Estimating 
the number of batches per year requires knowledge 
about spawning season duration and spawning fre-
quency within the season (or average time between 
batches), including any temporal patterns of that fre-
quency (Murua et al., 2003). Then, annual fecundity of 
indeterminate species can be calculated as the product 
of the number of eggs per batch and the number of 
batches per year. 

Estimation of batch fecundity by age is relatively 
straightforward (Porch et al., 2007). In fact, these 
estimates tend to relate linearly to body weight, and 
this relationship has been the rationale for the use of 
spawning biomass as a proxy for total egg production. 
However, estimation of spawning season duration and 
spawning frequency by size or age is much more dif-
ficult. Despite recognition from individual studies that 
frequency and duration of spawning may increase with 
age and size (Lowere-Barbieri et al., 2011a), much of 
this information is lacking for many species. Without 
information, the typical default assumption in stock 
assessment is that both spawning duration and fre-
quency are invariant across age. Widespread appli-
cation of this assumption of invariance raises 2 key 
questions. Is the assumption justified? If not, what are 
the consequences for stock assessment and resulting 
management advice? We address the first question 
through a review of the literature and the second one 
by modeling effects of age-dependent spawning activ-
ity (annual number of batches) on spawning potential 
ratio (Goodyear, 1993; Shertzer et al., 2008) and re-
productive value (both of these metrics are defined in 
the next section). 

Materials and methods

Review of scientific literature—spawning frequency  
and duration

To examine whether or not age and size effects on spawn-
ing duration and frequency were common, we reviewed 
scientific literature on fishes, including aquaculture 
studies that investigated natural spawning (nonhormon-
ally induced), as well as field studies. Although most of 
these studies were of marine species, freshwater spe-
cies were not excluded from this review. In addition, 
our search included species not necessarily classified 
as indeterminate spawners because relatively few stud-
ies distinguish fecundity pattern (Murua et al., 2003). 
Our review proceeded in 2 stages. First, we selected 
articles in which batch spawning frequency was exam-

ined, either as spawning fraction (proportion of mature 
fish actively spawning), number of batches within a fixed 
time period, or average time interval between batches. 
From these articles, we further narrowed the list to 
those that reported the relationship (or lack thereof) 
between spawning frequency and age or size. Second, 
we selected articles in which spawning duration was 
examined by age or size. Numerous articles reported 
the season or duration of spawning, but duration by age 
or size was examined in relatively few of them. Thus, 
in this second review, we did not restrict our search 
to batch spawners; instead, we noted any study that 
reported spawning duration by age or size. 

Implications for stock assessment and management

To examine how the age-dependent annual number of 
batches affects stock assessment results and manage-
ment advice, we used classical per-recruit analyses 
(Shertzer et al., 2008) of spawning potential ratio and 
reproductive value. Standard fishery equations described 
equilibrium abundance of females at age (Na), weight 
at age (Wa), maturity at age (ma), fecundity at age of 
mature fish (fa), and selectivity of fishing gear (sa) (Table 
1). These analyses are “per recruit” by virtue of scaling 
to an initial abundance of one (N1=1). To populate our 
model with parameter values representing warm-water 
marine fishes, we used average life-history characteris-
tics reported for the Gulf of Mexico (Table 2). Fishes of 
this region tend to be characterized by indeterminate 
fecundity and batch spawning, in contrast to fishes 
from higher latitudes where determinate fecundity is 
more common. 

Annual fecundity at age was determined as the prod-
uct of eggs produced per batch (assumed to be pro-
portional to body weight) and the annual number of 
batches, which implicitly accounted for joint effects of 
spawning frequency and spawning duration. The an-
nual number of batches at age followed 1 of 4 qualita-
tive patterns: constant, increasing, decreasing, or dome 
shaped (Fig. 1A). To create these patterns, we first set 
the constant pattern to a value of 1, and then we scaled 
the remaining patterns such that the 4 patterns had 
equal integration (i.e., area under the curve). Although 
not all these patterns were prevalent in the literature 
review, we included all for completeness and compari-
son. In this article, we report spawning potential ratio 
and reproductive value across these 4 patterns. 

Spawning potential rat io  Spawning potential ratio 
(Goodyear, 1993; Shertzer et al., 2008) was computed 
by using standard fishery equations (Table 1): 

	 ΨF F 0= φ φ . 	 (1)

The numerator (fF) of this ratio quantified expected 
reproductive output (e.g., fecundity) per recruit under 
fishing rate F,

	 φF a a a
a

max

=
=
∑ f m N
A

1

, 	 (2)
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Table 1
Model equations used in our per-recruit analysis of spawning potential ratio and reproductive value.

Equation	 Description

	 Equilibrium number of females (Na) per recruit at age a—a function of selectivity at age (sa), 
fishing mortality rate (F), and natural mortality rate (M)

	 Selectivity at age—a logistic function characterized by a slope parameter (rs) and age of 50% 
selectivity (As)

	 Maturity at age (ma)—a logistic function characterized by a slope parameter (rm) and age of 50% 
maturity (Am)

	 Weight at age (Wa)(von Bertalanffy, 1938)—a function of asymptotic length (L∞), somatic growth 
parameter (K), and an exponent (τ) relating length to weight

	 Annual number of batches spawned at age (ba) per mature female—a function of 3 parameters 
(r1, r2, Ab), scaled by a constant ci so that the area under the curve is the same for each spawning 
pattern i (Fig. 1)

	 Annual fecundity at age (fa) per mature female of spawning pattern i. Batch fecundity was assumed 
to be proportional to body weight
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Table 2
Model parameters used in the per-recruit analysis of spawning potential ratio and reproductive value. Means of values reported 
for Gulf of Mexico reef fishes are taken from Table 1 of Farmer et al.1, excluding sand perch (Diplectrum formosum) because of 
an apparent error and deepwater tilefishes and groupers because they inhabit waters typically colder than the waters of tropical 
and subtropical species.

Parameter	 Value	 Description	 Source

Amax	 22	 Maximum age; ages modeled are 1, 2,…, Amax	 Farmer et al.1

M	 M = 4.22/Amax = 0.19 	 Natural mortality rate	 Hewitt and Hoenig, 2005
F	 Range [0.0, 0.6]	 Fishing mortality rate	 Independent variable
L∞	 1.0	 Asymptotic length	 Assumed
K	 0.19	 Somatic growth parameter 	 Farmer et al.1

τ	 3.0	 Exponent relating body length to weight	 Assumed
Am	 3.16	 Age of 50% maturity	 Farmer et al.1

As	 AS = Amax/4=5.5	 Age of 50% selectivity	 Assumed
rm, rs	 1.0	 Slope of logistic maturity or selectivity, respectively	 Assumed
r1, r2, Ab for i = 1	 ∞, ∞, 0.0	 Spawning frequency constant with age	 Control variables
r1, r2, Ab for i = 2	 0.5, 0.0, Amax/2	 Spawning frequency increases with age	 Control variables
r1, r2, Ab for i = 3	 –0.5, 0.0, Amax/2	 Spawning frequency decreases with age	 Control variables
r1, r2, Ab for i = 4	 0.5, –0.05, Amax/4	 Spawning frequency dome-shaped with age	 Control variables

1	 Farmer, N. A., R. P. Malinowski, and M. F. McGovern.  2010.  Species groupings for management of the Gulf of Mexico reef fish fishery.  NOAA, 
NMFS, SERO-LAPP-2010-03 Rep., 32 p.

where	 fa	 =	� annual fecundity at age a (the product of 
batch fecundity and number of batches per 
year);

	 ma	 =	maturity at age; and 
	 Na	 =	� relative abundance at age, discounted 

through time by natural mortality and fish-
ing rates (Table 1). 

The denominator (f0) of this ratio was similarly com-
puted, but with Na discounted only by natural mortality. 
Thus, YF measured effects of fishing on the expected 
reproductive output per recruit relative to the output 
under no fishing. It decreased with increased fishing rate.

Spawning potential ratio was suggested conceptu-
ally by Goodyear (1977), and its use remains widely 
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Figure 1
(A) Annual number of batches spawned per mature female, based on 
4 qualitative patterns used in our per-recruit analysis of spawning 
potential and reproductive value: constant (i=1, solid line), increasing 
(i=2, dotted line), decreasing (i=3, dash-dot line), and dome-shaped 
(i=4, dashed line). (B) Spawning potential ratio as a function of 
fishing mortality rate. Model equations and parameters are given 
in Tables 1 and 2 respectively.

popular in stock assessments for 2 reasons. First, data 
requirements are low relative to other age-structured 
assessment approaches; for example, computation does 
not depend on a spawner–recruit relationship. Second, 
the spawning potential ratio can provide biological 
reference points for fishery management (Caddy and 
Mahon, 1995), in particular for a target fishing rate 
FX%. The fishing rate FX% is defined as the F that 
provides X% of reproductive output per recruit relative 
to the unfished output level (i.e., spawning potential 
ratio expressed as a percentage). In many cases, FX% 
is used as a proxy for the F associated with maximum 
sustainable yield (FMSY). Mace (1994) suggested a de-
fault proxy of F40% when the spawner–recruit relation-

ship is unknown; however, the appropriate level of X% 
will depend on life-history and fishery characteristics 
(Clark, 2002; Williams and Shertzer, 2003; Brooks et 
al., 2009).

Reproductive value  Reproductive value (Va) measures 
the age-dependent contribution to population growth by 
combining survivorship and fecundity, the 2 life-history 
elements crucial to fitness. The concept of reproductive 
value has been applied most commonly to examine life-
history evolution (Goodman, 1982; Stearns, 1992), but 
it also has been suggested as useful in the context of 
fishery management (MacArthur, 1960; Ware, 1985; Xu 
et al., 2012). For example, MacArthur (1960) argued that 
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the highest harvest rates can be achieved by removing 
first those ages with the lowest reproductive value. For 
our purposes, we use reproductive value to demonstrate 
the importance of older fish toward population growth 
and to quantify how that importance depends on the 
pattern of annual number of batches. 

We computed reproductive value of a stationary popu-
lation as the expected number of offspring produced by 
an individual from age a until the end of the lifespan 
(Amax):

	 V
l
l

g
x

A

a
x

a
x

a

=
=
∑

max

, 	 (3)

where	 lx	 =	� the probability that an individual survives 
to age x; and 

	 gx	 =	� the mean number of offspring produced by an 
individual of age x (Stearns, 1992), here the 
product of annual fecundity and maturity. 

Because this analysis was conducted on a per-recruit 
basis, lx was equivalent to Na of Table 1. The term lx/la 
was the probability of surviving to age x conditional on 
having survived to age a. To examine implications for 
optimal management strategies, we computed Va across 
a range of fishing rates. For each of the 4 qualitative 
patterns in annual spawning frequency, we report Va in 
the absence of fishing in addition to the age for which Va 
was maximized as a function of fishing rate.

Results

Review of the literature—spawning frequency  
and duration

In our review of spawning frequency, we found 208 
articles that reported multiple batches and indicated 
some information about the frequency or number of 
batches occurring within a specified time period. Only 
20% (41 articles, 34 species) presented findings about 
spawning frequency related to age or size (Table 3). 
Of this subset, most (28 articles, 21 species) reported 
increases of spawning frequency with age or size. Some 
(9 articles, 9 species) reported no effect, but several of 
these articles cautioned about lack of power. Only 4 
articles (4 species) indicated a decrease in spawning 
frequency with age or size. 

We found that if we tried to restrict our review of 
spawning frequency to stocks or species that exhibit 
indeterminate fecundity, we would have had a chal-
lenging task. Of the articles (n=208) reporting some 
information about spawning frequency, only 52 were 
explicit about fecundity type or oocyte development pat-
tern, and most (38) of them indicated an indeterminate 
type. Of the 41 articles reporting a spawning frequency 
trend by size or age, 10 indicated a fecundity type and 
7 reported an indeterminate type. 

In our review of spawning duration, we found 33 ar-
ticles (28 species) that reported results related to age 

or size (Table 4). Of these articles, most (28 articles, 23 
species) of them reported increased spawning duration 
with age or size. Several articles noted no change (5 
articles, 5 species). None of them mentioned a decreased 
duration with age or size.

Implications for stock assessment and management

Across all levels of fishing, spawning potential ratio 
was highest when batch production decreased with 
age and lowest when it increased with age (Fig. 1B). 
Therefore, an incorrect assumption about annual batch 
production could lead to substantial bias in biological 
reference points and consequently in resulting manage-
ment advice. For example, in this model, F40% equals 
0.24 for age-invariant batch production, F40% equals 0.11 
for increasing production, F40% equals 0.53 for decreas-
ing production, and F40% equals 0.26 for dome-shaped 
production. If the actual pattern was that of increas-
ing batch production but was incorrectly assumed to 
be age invariant, the estimated F40% would be biased 
high by 118%.

As with spawning potential ratio, reproductive value 
was sensitive to the spawning pattern. In the absence 
of fishing, older females were considerably more im-
portant to population growth in cases of constant or 
increasing batch production than in cases of decreas-
ing or dome-shaped batch production (Fig. 2A). For 
example, with the increasing pattern, reproductive 
value exceeded a value of 5 and was maximized near 
age 14, indicating that a fish of that age can produce 
more than 5 times the number of offspring throughout 
its remaining lifespan than can a fish of age 1. With 
the decreasing pattern, the maximum reproductive 
value was less than twice the value of fish at age 1 and 
occurred near age 6. As the rate of fishing increased, 
the age of maximum reproductive value shifted toward 
older fishes in each case but did so more quickly and 
to much older ages in cases of constant or increasing 
batch production (Fig. 2B). This result highlights the 
importance of older individuals for population growth.

Discussion

Our review of literature on batch spawning revealed that 
most studies have not examined, or at least have not 
reported, size- or age-dependent effects. In those studies 
where spawning frequency was examined, the majority 
of species (62%) were found to spawn more often with 
increasing age or size. Similarly, in those studies where 
spawning duration was examined, the majority of spe-
cies (82%) were found to spawn over a longer duration 
with increasing age or size. These patterns of increasing 
spawning frequency and duration were common but not 
universal. Several studies found no discernible change 
with age or size, and patterns of decreases with age or 
size appeared to be rare. Although 1 of 2 articles on 
Atlantic cod (Gadus morhua) found spawning frequency 
to decrease with age (Kjesbu et al., 1996), that article 
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Table 3
Patterns of spawning frequency by age or size based on a review of spawning frequency within the scientific literature on fish 
reproduction. 

Spawning frequency	 Species	 Reference(s)

Increases with size or age	 Atherina boyeri (sand smelt, Atherinidae)
	 Cynoscion nebulosus (spotted seatrout, Sciaenidae)
	

	 Danio rerio (zebra danio, Cyprinidae)
	 Engraulis mordax (northern anchovy, Engraulidae)
	 Engraulis ringens (Peruvian anchoveta, Engraulidae)
	 Gasterosteus aculeatus (threespine stickleback, Gasterosteidae)
	 Hemiramphus brasiliensis (ballyhoo, Hemiramphidae)
	 Limanda aspera (yellowfin sole, Pleuronectidae)
	 Lutjanus campechanus (red snapper, Lutjanidae)
	 Melanogrammus aeglefinus (haddock, Gadidae)
	 Merluccius hubbsi (Argentine hake, Merlucciidae)
	 Mycteroperca microlepis (gag, Serranidae)
	 Ocyurus chrysurus (yellowtail snapper, Lutjanidae)
	 Sardinops ocellatus (southern African pilchard, Clupeidae)
	 Sardina pilchardus (true sardine, Clupeidae)

	 Sciaenops ocellatus (red drum, Sciaenidae)
	 Scomber japonicus (Pacific chub mackerel, Scombridae)
	 Solea solea (sole, Soleidae)
	 Sprattus sprattus balticus (Baltic sprat, Clupeidae)
	 Tautoga onitis (tautog, Labridae)
	 Thunnus albacares (yellowfin tuna, Scombridae)

Decreases with size or age	 Clupea bentincki (Chilean herring, Clupeidae)_
	 Engraulis australis (Australian anchovy, Engraulidae)
	 Engraulis ringens (Peruvian anchoveta, Engraulidae)
	 Gadus morhua (Atlantic cod, Gadidae)

No change with size or age	 Decapterus punctatus (round scad, Carangidae)
	 Engraulis mordax (northern anchovy, Engraulidae)
	 Gadus morhua (Atlantic cod, Gadidae)
	 Hyphessobrycon pulchripinnis (lemon tetra, Characidae)
	 Lepomis gibbosus (pumpkinseed, Centrarchidae)
	 Pogonias cromis (black drum, Sciaenidae)
	 Seriphus politus (queenfish, Sciaenidae)
	 Stegastes partitus (bicolor damselfish, Pomacentridae)
	 Tilapia zillii (redbelly tilapia, Cichlidae)

1	 Crabtree, R. E., and D. H. Adams.  1998.  Spawning and fecundity of spotted seatrout, Cynoscion nebulosus, in the Indian River Lagoon, 
Florida.  In Investigations into nearshore and estuarine gamefish abundance, ecology, and life history in Florida, p. 526–566.  Technical Report 
for Federal Aid in Sportfish Restoration Act Project F-59.  Florida Dept. Environmental Protection, Florida Mar. Res. Inst., St. Petersburg, FL.

2	 Perez, N., A. Garcia, N. C. H. Lo, and C. Franco.  1989.  The egg production method applied to the spawning biomass estimation of sardine (S. 
pilchardus, Walb.) in the North-Atlantic Spanish coast.  ICES Council Meeting (CM) Doc.1989/H:23, p. 1−20.

3	 Witthames, P. R.  2003.  Methods to assess maturity and realized fecundity illustrated by studies on Dover sole Solea solea.  In Report of the 
Working group of modern approaches to assess maturity and fecundity of warm- and cold-water fish and squids; 4–7 September 2001, Bergen, 
Norway (O. S. Kjesbu, J. R. Hunter and P. R. Witthames, eds.), Fisken og havet. no. 12-2003, p. 125–138.  Inst. Mar. Res., Bergen, Norway.

Tomasini et al., 1996
Crabtree and Adams1; 
Roumillat and Brouwer, 
2004; Brown-Peterson, 2003; 
Lowerre-Barbieri et al., 2009

Uusi-Heikkilä et al., 2010
Parrish et al., 1986
Claramunt et al., 2004, 2007
Wootton, 1973
McBride and Thurman, 2003
Nichol and Acuna, 2001
Collins et al., 2001
Trippel and Neil, 2004
Macchi et al., 2004
Collins et al., 1998
Trejo-Martinez et al., 2011
LeClus, 1989
Perez et al.2; Garcia et al., 
1992; Quintanilla and Perez, 
2000; Ganias et al., 2003a 
Roberts et al., 1978
Dickerson et al., 1992
Witthames3

Kraus and Koster, 2004
LaPlante and Schultz, 2007
McPherson, 1991

Cubillos et al., 2007
Dimmlich et al., 2009
Cubillos et al., 2007
Kjesbu et al., 1996

McBride et al., 2002
Hunter and Macewicz, 1980
Kjesbu, 1989
Burt et al., 1988
Fox and Crivelli, 1998
Nieland and Wilson, 1993
DeMartini and Fountain, 1981
Cole and Sadovy, 1995
Coward and Bromage, 1999
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Table 4
Patterns of spawning duration by age or size based on a review of spawning season duration within the scientific literature on 
fish reproduction. 

Spawning
Duration	 Species	 Reference(s)

Increases with	 Atherina boyeri (sand smelt, Atherinidae)
size or age
	 Clupea bentincki (Chilean herring, Clupeidae)
	 Cynoscion nebulosus (spotted seatrout, Sciaenidae)
	 Engraulis encrasicolus (European anchovy, Engraulidae)
	 Engraulis mordax (northern anchovy, Engraulidae)
	 Engraulis ringens (Peruvian anchoveta, Engraulidae)

	 Gadus morhua (Atlantic cod, Gadidae)

	 Genyonemus lineatus (white croaker, Sciaenidae)
	 Hemiramphus brasiliensis (ballyhoo, Hemiramphidae)
	 Lepomis gibbosus (pumpkinseed, Centrarchidae)
	 Leuresthes tenuis (California grunion, Atherinidae)
	 Lutjanus carponotatus (stripey sea perch, Lutjanidae)
	 Melanogrammus aeglefinus (haddock, Gadidae)
	 Merluccius hubbsi (Argentine hake, Merlucciidae)
	 Sardina caerulea (Califorinia sardine, Clupeidae)
	 Sardina pilchardus (true sardine, Clupeidae)
	 Sardina pilchardus sardina (Mediterranean sardine, Clupeidae)
	 Sardinops ocellatus (southern African pilchard, Clupeidae)
	 Sardinops sagax (Pacific sardine, Clupeidae)
	 Scomber japonicus (Pacific chub mackerel, Scombridae)

	 Seriphus politus (queenfish, Sciaenidae)
	 Solea solea (sole, Soleidae)
	 Trachurus symmetricus (jack mackerel, Carangidae)

No change noted	 Clupea harengus (Atlantic herring, Clupeidae
overall, but larger 	 Clupea pallasi (Pacific herring, Clupeidae)
fish develop eggs 	 Cynoscion regalis (weakfish, Sciaenidae)
and/or spawn 	 Scomber scombrus (Atlantic mackerel, Scombridae)
earlier	 Trachurus trachurus (horse mackerel, Carangidae)

1	 Knaggs, E. H., and R. H. Parrish.  1973.  Maturation and growth of Pacific mackerel Scomber japonicus Houttuyn.  Marine Resources Tech. 
Rept. 3, 19 p.  Calif. Dept. Fish and Game, Long Beach, CA.

2	 Witthames, P. R.  2003.  Methods to assess maturity and realized fecundity illustrated by studies on Dover sole Solea solea.  In Report of the 
working group of modern approaches to assess maturity and fecundity of warm- and cold-water fish and squids; 4–7 September 2001, Bergen, 
Norway (O. S. Kjesbu, J. R. Hunter and P. R. Witthames, eds.), Fisken og havet. no. 12-2003, p. 125–138.  Inst. Mar Res., Bergen, Norway.
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also found that older fish had greater annual fecundity, 
and less frequent spawning over a longer season. In 
other cases, mediating factors, such as temperature or 
productivity, may have explained an anomalous size-
based trend. Two articles on anchovies and a sardine 
reported lower spawning frequency among larger-size 
fish of stocks in shelf waters that were geographically 
separated from smaller fish in warmer coastal waters 
(Cubillos et al., 2007; Dimlich et al., 2009). Elsewhere, 
one of the anchovy species, Peruvian anchoveta (Engrau-
lis ringens), was noted to have a positive relationship of 

size with both spawning frequency (Claramunt et al., 
2004, 2007) and duration (Claramunt et al., 2007; Cubil-
los and Claramunt, 2009). From life-history theory, we 
would expect older fishes to invest relatively more energy 
into reproduction (Stearns, 1992); however, increased 
investment could manifest in various ways (e.g., egg 
quality rather than quantity; Berkeley et al., 2004a, 
2004b). Empirical observations, as reviewed here, were 
necessary to elucidate patterns in the annual number of 
batches. The common assumption of age or size invari-
ance would appear to be generally wrong.
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Measures of mean spawning frequency and duration 
are commonly applied to derive estimates of spawning 
stock biomass through the daily egg production method 
(DEPM) in species with indeterminate fecundity (Stra-
toudakis et al., 2006). Although this method is difficult 
to apply with precision, the DEPM has been used most 
often in assessments of short-lived clupeoid species for 
which direct methods of estimating spawning biomass 
are preferred (Stratoudakis et al., 2006). Because this 
approach is not explicitly dependent on age structure, 
the implications of size and age variation should be 
minimal. However, Priede and Watson (1993) provide 
an example of the difficulties in applying the DEPM to 

a longer-lived species, including the case when older At-
lantic mackerel (Scomber scombrus) begin spawning ear-
lier than younger mature females. The knowledge that 
older adults may spawn earlier, over a longer season, 
or more often to produce more batches may help guide 
sampling designs. Sampling of adults should be repre-
sentative of a population or enough information on stock 
structure should be gathered to properly weight the 
adult data used for DEPM (Stratoudakis et al., 2006). 

In contrast to application of egg production methods 
to short-lived species, our results may be most informa-
tive for estimates of reproductive potential used in age-
structured assessments of relatively long-lived species 
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Figure 2
(A) Reproductive value incorporating survival, maturity, batch fecun-
dity, and 4 qualitative patterns of annual number of batches. Results 
are based upon these qualitative patterns are shown in relation to 
the value at age 1, computed as a function of age under natural 
mortality only. (B) Age of maximum reproductive value as a function 
of fishing-induced mortality rate. In both panels, annual number of 
batches spawned (shown in Fig. 1A) per mature female are constant 
(i=1, solid line), increasing (i=2, dotted line), decreasing (i=3, dash-
dot line), and dome-shaped (i=4, dashed line).
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that have been shown or must be assumed to be indeter-
minate spawners. When information is lacking to make 
a distinction about fecundity type, the recommendation 
is to follow an indeterminate approach that, in theory, 
will give accurate estimates of annual fecundity regard-
less of fecundity type (Lowerre-Barbieri et al., 2011b). 

Applications of our model showed substantial sensitiv-
ity to age dependence in the annual number of batches. 
If the annual number of batches increased with age but 
was incorrectly assumed constant, stock assessment 
models tended to overestimate the biological reference 
points used for setting harvest rates. We found this 
result to be true for rates based on spawning potential 
ratio (Fig. 1B), as well as for those rates based on maxi-
mum sustainable yield.

This source of error in the determination of harvest 
rate may be of particular concern when management is 
based on output controls, such as annual catch limits, 
where the estimation of absolute scale of a population 
matters. However, it is not straightforward to predict 
a priori the consequences of all the interactions within 
an assessment model. For example, age dependence 
of spawning may not affect the estimated number of 
recruits (Morgan et al., 2007) but could affect the esti-
mated spawning biomass and, therefore, the estimated 
spawner–recruit curve. As a result, the erroneous as-
sumption of age invariance may be a common source of 
the error-in-variables problem identified in spawner–re-
cruit estimation (Walters and Ludwig, 1981). Whether 
through error-in-variables or other latent assumptions, 
inadequately accounting for the effects of age structure 
on reproductive potential can result in poor prediction 
of stock status (Witthames and Marshall, 2008; Murua 
et al., 2010). 

Our study adds to a growing list of age-dependent 
characteristics shown to influence reproductive success, 
including skipped spawning (Jørgensen et al., 2006; 
Secor, 2008; Rideout and Tomkiewicz, 2011), egg or 
larval quality (O’Farrell and Botsford, 2006; Spencer 
et al., 2007), and senescence (Woodhead, 1979; Porch 
et al., 2007). The first 2 characteristics likely would 
(although not necessarily) increase the value of older 
fishes beyond that considered by our models, and senes-
cence would likely decrease the value of older fishes for 
population growth. Another consideration more difficult 
to ascertain is the influence of males on reproductive 
success (Van Doornik et al., 2008). Although our mod-
els predicted recruitment through the conventional use 
of only females, some other assessments model stock 
productivity as a function of both sexes (Brooks et al., 
2008). Sperm limitation may be important in popula-
tion dynamics if sex ratio fluctuates with changes in 
population structure, as it does, for example, in her-
maphroditic fishes, particularly if the sperm quality, 
production, or allocation depends on age or size (Brooks 
et al., 2008; Uusi-Heikkilä et al., 2012).

In many assessments, spawning biomass is used in 
place of total egg production, either for simplicity or 
because no reliable information on batch fecundity ex-
ists. Because batch fecundity typically scales with body 

weight (Hunter et al., 1985; Porch et al., 2007; but see 
Dick, 2009), the use of spawning biomass may serve as 
a first-order approximation, particularly when no other 
measure of reproductive potential is available. To ad-
ditionally account for increased number of batches, the 
age-based vector of body weight can be multiplied by an 
age-based vector (b) of annual number of batches. In 
essence, this technique generalizes the usual approach, 
where b=1 is assumed. An increasing vector would 
seem more credible and, in data-limited cases, could 
be obtained by borrowing data from similar species or 
from meta-analysis. 

Indeed, we initially considered a meta-analysis of 
the studies from our literature review. However, after 
examining the data as reported, we did not think we 
could provide meaningful, quantitative analyses. In ag-
gregate, those studies were more useful in the qualita-
tive sense of identifying patterns of increase, decrease, 
or no change in the number of batch spawnings. We 
anticipate that quantitative meta-analysis will become 
possible as more detailed data on batch spawning are 
collected. Lowerre-Barbieri et al. (2011a) provide guid-
ance on the standardized information and approaches 
needed for estimating spawning frequency and duration.

We also desired to categorize the results of our litera-
ture review by fecundity type, but we could identify only 
a trend for indeterminate type among studies reporting 
multiple spawning. Most studies did not explicitly in-
dicate either fecundity type or oocyte recruitment pat-
tern. For warm-water species, indeterminate fecundity 
type is often assumed but not proven, and, as mentioned 
earlier, this assumption can be a robust one for estimat-
ing annual fecundity (Lowerre-Barbieri et al., 2011b). 
Careful review within the literature by species may 
yield more insight, but fecundity type often may defy 
easy categorization because the synchrony of oogenesis 
and resulting fecundity type may vary even within a 
species. Different stocks, especially those separated by 
latitudinal zones, may exhibit different fecundity types 
(Abaunza et al., 2003). Therefore, multiple criteria are 
recommended for defining fecundity type (Murua and 
Saborido-Rey, 2003; Lowerre-Barbieri et al., 2011b) and, 
accordingly, some corrections have been made to previ-
ous classifications (Arocha, 2002). 

Conclusions

The 2 principal findings of this study are that, for fishes 
with indeterminate or uncertain fecundity type, age 
(size) dependence in the annual number of batches is 
more common than age invariance and that this depen-
dence merits consideration in population models. For 
many species, stock assessments could be improved 
by collecting age-specific information on spawning 
frequency and duration. Without such information, or 
unless data indicate otherwise, the assumption that 
annual spawning increases with age may be more plau-
sible than the currently common assumption of age 
invariance. 
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