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The threat of fishing to highly fecund fishes
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The last decade has witnessed a growing awareness that fishes can not only be severely
overfished but could also be threatened with extinction through over-exploitation. Among
commercially important species, those particularly at risk are large and slow to mature,
iteroparous and may have sporadic recruitment. The threat of extirpation or extinction may be
greater if species are particularly valuable, have a limited geographical range, are part of
mixed-species fisheries, or are distributed solely within areas of intense fishing activity.
Significantly, there is little empirical or theoretical basis for hypothesizing that highly fecund
species are any less at risk than those of low fecundity, as is often assumed. Indeed, the use of
fecundity in estimating reproductive output in long-lived, highly fecund, pelagic egg-producing
species, may be deeply flawed. A general resistance to accepting that fecund marine fishes could
become endangered through exploitation stems from poor understanding of population
dynamics, especially in the early post-settlement phase, coupled with assumptions of fishery
models that ignore critical components of life history theory. Moreover, faith in the ability to
manage exploited species effectively leads to the perception that severe declines are manage-
ment, rather than conservation, issues. The growing list of threatened marine species and a
realization of the many factors that place them at risk indicate the need to be precautionary
about the possibility of extinction, and about the criteria used to assess such risk, with
important implications for research, monitoring and management.
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INTRODUCTION

In the early 1990s, Sadovy (1993) recorded the disappearance of spawning
aggregations and declines of the Nassau grouper, Epinephelus striatus (Bloch),
and questioned whether this species could become endangered, or was simply
‘ unlucky ’ in being so vulnerable to fishing. This fecund fish is the largest of a
multi-species, multi-gear, reef fishery, easy to catch as a juvenile and during its
brief annual spawning aggregations. At the time, severe declines had already
been documented for several elasmobranchs and teleosts but, in general, the idea
that highly fecund, commercially important, fishes could become endangered
was rarely considered seriously (Hendrickson, 1979; Huntsman, 1994). Declines
were generally perceived to relate to overfishing, resolvable by fishery manage-
ment, rather than to merit conservation attention. In 1996, however, the Nassau
grouper was listed as endangered on the IUCN (the World Conservation Union)
Red List and is currently a candidate under the United States Endangered
Species Act (ESA). Aggregations continue to decline.

The situation with freshwater fish faunas by the early 1990s was very different
from that in the marine environment, for documentation from around the world
90
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clearly indicated that many freshwater fishes were already threatened. Conser-
vatively, it was estimated, in 1992, that 20% of all freshwater fishes, 1800 species,
were already extinct or in serious decline. Five reasons for declines and
extirpations were identified: competition for fresh water, habitat alteration,
pollution, introduction of exotic species and over-exploitation. The fifth,
overexploitation, was considered the least important single threat to freshwater
fishes, although most declines appear to result from multiple cumulative long-
term effects of several factors (Moyle & Leidy, 1992; Bruton, 1995).

In the marine environment, exploitation has emerged as the major overall
threat to commercially important fishes and the conservation status of marine,
exploited, fishes is attracting closer scrutiny (Culotta, 1994; Roberts & Hawkins,
1999). The reasons are several and involve both a scant understanding of
extinction risk in the marine environment and misconceptions about the resil-
ience of marine fish populations to heavy exploitation. The various global
listings of endangered and threatened species reflect this history. The Conven-
tion on International Trade in Endangered Species (CITES) includes few, mainly
freshwater and specialized, relict fishes, which are limited in distribution. The
sole marine examples are the totoaba Totoaba macdonaldi (Gilbert) and the
coelacanth Latimeria chalumnae Smith. In 1996, the IUCN convened its first
workshop to look specifically at marine fishes and almost 150 species were listed
(Baillie & Groombridge, 1996; Mace & Hudson, 1999). More recently, the
American Fisheries Society recognized 82 species and subspecies of marine fishes
vulnerable to extirpation (Musick et al., 2000) while a recent summary of species
included in the threatened fishes of the world series of the journal Environmental
Biology of Fishes, included just six marine species out of 97 listed, about a third
of which were threatened by over-exploitation (Cambray, 2000).

Of these listings, the debate has been particularly intense over the possible
threat of extinction to commercially important marine species that have high
fecundity and a dispersive egg-larval phase. Fuelling this debate is a paucity of
records of marine extinctions and the differing perspectives of ichthyologists and
conservationists on the one hand, and fishery scientists and managers on the
other, regarding extinction risks to such species and their potential for recovery
(Beverton, 1992; Carlton et al., 1999; Mace & Hudson, 1999; Hutchings, 2001).
Clearly something is wrong: a significant proportion of documented world
fisheries are over-exploited, recoveries are often slower than predicted by fishery
theory, profound ecosystem changes have been noted and declines in a number
of species have been precipitous (Safina, 1995; Pauly et al., 1998; Hutchings,
2000a). But do such changes herald extinctions? Examples of population
extirpations might suggest so and are increasing as more is learnt about marine
species. However, among marine pelagic spawners, few species extinctions have
been recorded, and none of them fishes (Carlton et al., 1999; Roberts &
Hawkins, 1999). Whether the absence of extinction records is a true indication
of low extinction risk reflects a general lack of information on marine organisms,
or indicates attitudes regarding the potential for endangerment in non-mammals,
is not yet clear. Certainly, the gradual shift in management objectives from
maximizing yield (and avoiding growth overfishing) to ensuring sufficient
spawning biomass (to avoid recruitment overfishing) reflects a poor record of
management success and a growing recognition of shortcomings in management
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thresholds. Recruitment overfishing is but one step down the slippery slope to
possible extirpation and should be seriously noted by managers and conser-
vationists alike (Musick, 1999). On the other hand, biomass declines of well over
50%, which might concern conservationists and which fall within certain IUCN
thresholds for assigning threat (within a specified time frame), are often a goal of
fishery managers who seek to maximize surplus yield in a way that is theoreti-
cally sustainable. In marine fishes, it is difficult to estimate population size and
rates of population increase and recovery, or to find a reliable proxy for
abundance such that changes in abundance can be determined. This makes
assessments of risk particularly onerous and conservation status determined
solely by declines in landings could either overestimate or underestimate risk
(MacKenzie, 1995; Matsuda et al., 1997).

Out of this debate has emerged a need to examine the paradigms that inform
the perspectives of commercially exploited and fecund fishes, especially the
circumstances around known declines and extirpations. The aim of this paper is
to examine assumptions about resilience in highly fecund (those producing �104

eggs per year), marine pelagic egg producers. Patterns of vulnerability and the
more pressing shortcomings of data are identified. The present review does not
focus on extreme cases of vulnerability, such as exceptionally rare or highly
restricted species, for which there is relatively little disagreement (Hawkins et al.,
2000). Instead, it is directed at commercially important, fecund species, around
which the debate centres.
SYNTHESIS

A characteristic widely assumed to confer resilience on many exploited species
that produce pelagic eggs is their high fecundity, the production of tens of
thousands to millions of eggs by individual females each year. The implication
is that the production of large numbers of pelagic eggs allows depleted
populations a better potential for recovery, through sheer numbers, compen-
satory responses and the dispersive capability of pelagic eggs and larvae, once the
threat is released, relative to less fecund species. Evidence for each possibility
will be examined.
FECUNDITY, LIFE HISTORY AND RESPONSE TO FISHING
There are fundamental weaknesses to the argument equating high fecundity

with resilience that stifle the debate on extinction threats to marine pelagic
spawners (Hutchings, 2000b, 2001). The first, and most obvious, is that not all
eggs are created equal. It makes little sense, for example, to compare, egg by egg,
the tens of well-nourished and protected packages produced by an oviparous
skate, to the million tiny, fragile eggs produced by a similarly sized fish and
conclude that the fish must therefore be more resilient. The eggs in these
examples are not equivalent units, for their respective probabilities of survival to
a reproducing adult can differ by orders of magnitude. Such differences in egg
size and zygote survivorship have arisen through phylogenetic and environ-
mental constraints and represent very different life history strategies and
trade-offs between, even within, different taxonomic groups (Partridge &
Harvey, 1988; Stearns, 1992). Among pelagic spawners, broadcast spawning
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(bet-hedging) of large numbers of eggs might have evolved to maximize egg
number in response to large-scale spatial and temporal patchiness in food supply
or suitable habitat wherein only a few young will ultimately survive (Phillipi &
Seger, 1989). Where such patchiness does not exist, the best strategy might be,
instead, to produce few and large offspring, each with a good chance of survival.
The important point is that these adaptations to different constraints and
environments are equivalent in achieving replacement at equilibrium (Hutchings,
2001). Thus it is not surprising that, although pelagic spawners vary by up to six
orders of magnitude in fecundity, their maximum reproductive rates do not vary
by more than a single order (Myers et al., 1999; Hutchings, 2001).

Rather than broad taxonomic comparisons (i.e. between turtles and tuna, or
sharks and salmon), possible relationships between fecundity and resilience
should be examined among related species. Phylogeny can be controlled for by
taking the comparative approach (Harvey & Pagel, 1991). If fecundity and
resilience are directly linked it might reasonably be predicted that the more
fecund among related species, similar in other aspects of life history and
exploited in similar ways, are less likely to be extirpated by fishing. For example,
some sharks and rays (elasmobranchs) have declined in abundance following
fishing, especially when directly targeted, relative to groundfish stocks (Brander,
1981; Dulvy et al., 2000; Rogers & Ellis, 2000; Stevens et al., 2000). However,
among elasmobranchs, two skates, the barndoor skate Raja laevis (Mitchill) and
the common skate Raja batis (L.) represent the most extreme examples of
depletion, yet skates are among the more fecund all elasmobranchs. Clearly,
factors other than fecundity are involved. These could be related to life history
or to fishing pressure and fishing selectivity.

What life history factors other than fecundity could account for extirpations of
several skate species and what might be the role of selective fishing (Casey &
Myers, 1998)? Walker & Hislop (1998) showed differences among skate species in
a south-west North Sea fishery in apparent response to fishing. Several species
declined (R. batis and thornback ray, Raja clavata L.), while others had increased
since 1930, such as the starry ray Raja radiata (Donovan). These skates show a
wide range in ages and lengths at maturity and maximum size, but most length
and age classes of all species were taken in the trawl fishery where all species have
commercial value except for R. radiata, an incidental bycatch. Shifts in skate
species composition over time show that those of lowest length-age at maturity
and highest rate of population increase have come to dominate catches, while
larger species, with late ages of maturity, are those that have severely diminished.
Although it is difficult to assess the precise role played by fisheries in altering the
abundance of skates and rays in the North Sea without knowing about
oceanographic conditions and changing fishing practices, there does appear to be
a general trend of lower resilience to fishing in the larger species, which are slow
to become sexually mature. Brander (1981) concluded that the response to
exploitation of R. batis is more importantly determined by net survival to
maturity than by fecundity per se, while Stevens et al. (2000) found that age at
maturity was the strongest correlate of shark rebound potential, and Dulvy et al.
(2000) concluded that replacement rate in skates is inversely related to body size.

Among pelagic spawning fishes, comparative studies, where the confounding
effects of both fishing selectivity and phylogeny have been accounted for,
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indicate that, as for some elasmobranchs, large size and low potential rates of
population increase, but not fecundity, affect resilience to intense exploitation.
Jennings et al. (1998), for example, looked at life-history correlates of 18
intensively exploited temperate groundfish stocks over the same time period
(mackerel Scomber scombrus L., sole Solea solea (L.), plaice Pleuronectes platessa
L., herring Clupea harengus L., cod Gadus morhua L., haddock Melanogrammus
aeglepinus (L.), saithe Pollachius virens (L.)). Pair-wise comparisons among
related species showed that those maturing later, attaining a larger maximum
size, and with low potential rates of population increase, had greater relative
abundance declines. The analysis also showed that neither fecundity or low
growth rate were significant determinants of responses to heavy exploitation. A
comparative analysis with similar outcomes was conducted on three tropical reef
fish families in a multi-species Fijian fishery that took a wide range of life history
stages (Jennings & Lock, 1996). Among heavily exploited snappers (Lutjanidae)
and groupers (Serranidae), those species that declined most in abundance,
compared to their nearest relatives, attained a greater maximum size, suggesting
that size, or some correlate thereof, may facilitate the prediction of vulnerability
to fishing (Jennings et al., 1999a). Among the lightly targeted parrotfishes
(Scaridae) on the other hand, no such relationship was detected. Whether this is
because different life history correlates are involved (or none), or because the
effects only become apparent at low population levels, and under intense
exploitation, is not known. In both studies, greater declines of larger species
were not evident when traditional cross-species analyses were performed. Com-
parative analyses among related species, therefore, where fishing selectivity is
eliminated as a confounding factor, represent a powerful analytical tool for
assessing vulnerability of fish populations to exploitation and help to eliminate
correlated characteristics among taxa being compared. Understanding what
makes one species more vulnerable than another, among related species, greatly
enhances predictive capability in identifying species at risk (Jennings et al.,
1999a, b).

Rockfishes (Scorpaenidae) typically produce one to several batches of thou-
sands to several million live young per year but, although highly fecund, other
life history attributes render them susceptible to overfishing (Parker et al., 2000).
They are long-lived (some >100 years) and may take many years to mature. They
are also heavily exploited and often marketed well before attaining sexual
maturity. Two medium-sized species, the copper rockfish Sebastes auriculatus
Girard and the quillback rockfish Sebastes maliger (Jordan & Gilbert), are being
reviewed under the ESA, and the boccacio, Sebastes paucispinis Ayres, one of the
larger rockfishes (attaining 0·91 m total length, LT, and 30 years), is listed as
critically endangered on the IUCN Red List, having been reduced by over 90%
with little recovery in decades (Parker et al., 2000). It is not clear why recovery
is so slow but larger rockfishes appear to be particularly susceptible to fishing.

The groupers (Serranidae) include some of the most fecund of all reef fishes,
females releasing thousands or millions of eggs each spawning season. Like the
rockfishes and other long-lived species, groupers are heavily exploited but most
can withstand only light levels of fishing pressure (Huntsman et al. 1994;
Coleman et al., 1996, 1999; Crouse, 1999). During the last decade, there has
been growing concern over the conservation status of several groupers and two
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are currently candidates for the ESA, the jewfish Epinephelus itajara
(Lichtenstein) and E. striatus, which had dropped to just 1% SPR [the ratio of
the fished spawning stock biomass per recruit (SSBR) to the unfished SSBR and
used to evaluate the condition of the spawning stock and to establish criteria for
managing spawning potential (Goodyear, 1989; Sadovy & Eklund, 1999)]. The
largest grouper and biggest of all reef fishes, the giant (or Goliath) grouper,
Epinephelus lanceolatus (Bloch), is listed as vulnerable on the 2000 IUCN Red
List which included 13 groupers in threatened categories. As for rockfishes,
snappers and sharks, larger species have low natural mortality and large size at
maturity, and appear to be more vulnerable than smaller species. Many
groupers also exhibit complexities of reproductive biology that make them
particularly susceptible, such as hermaphroditism or aggregation-spawning
(Sadovy, 1993; Vincent & Sadovy, 1998; Crouse, 1999; Huntsman et al., 1999).

That large size, or some life history correlate thereof, and low potential rates
of population increase, rather than fecundity, may determine vulnerability is
consistent with examples of extreme declines in other large, highly fecund marine
or estuarine teleosts. Sciaenid (croakers) females can produce millions of eggs a
year. The two largest species attain 2 m LT and count among the most
threatened of all marine fishes. Totoaba macdonaldi, from the Sea of Cortez,
declined so drastically that it was included on CITES Appendix 1 in 1976 and
numbers have still not recovered (Barrera Guevara, 1990; Cisneros-Mata et al.,
1995). The giant yellow croaker Bahaba taipingensis (Herre), found only along
the coast of southern China, is not only commercially extinct in Hong Kong
(Pitcher et al., 1998) but has all but disappeared throughout its range and is
considered a state protected species in China (Y. Sadovy & W-L. Cheung,
unpubl. data). While human activities in and around the estuarine habitats on
which these species partially depend surely contribute to their threat, as it does
for several other croakers (Musick et al., 2000), it is fishing pressure that is
almost certainly the major cause for their decline. The highly valued Thunnus
maccoyii (Castelnau), listed on the IUCN Red List as critically endangered, is at
record low levels with declines in adult biomass of >90%; this species attains 40
years and almost 2·5 m (Hayes, 1997). One of the largest of all reef fishes
(Labridae), the humphead wrasse Cheilinus undulatus Rüppell, is severely
depleted throughout much of its range (Sadovy & Vincent, 2002; Donaldson &
Sadovy, 2002). None of these large species has evidently been protected by their
high fecundity and they represent some of the most extreme examples of
commercially significant marine pelagic spawners at risk, largely or entirely from
overexploitation.

In summary, once fishing selectivity and phylogenetic relatedness are con-
trolled for, comparative analyses indicate that large size, long life, late matur-
ation and low rates of natural increase render some elasmobranchs and many
marine teleosts particularly vulnerable to fishing, some to the point of endanger-
ment. The finding that fecundity per se is not directly linked to vulnerability is
consistent with life history theory. Many long-lived marine teleosts share a suite
of life-history characteristics of delayed sexual maturity, long reproductive
lifespan, sporadic recruitment and iteroparity. These are adaptive responses and
predictable ‘trade-offs’ to low probabilities of successful reproduction, due to
high egg mortalities of millions of small pelagic eggs, in any given year (Roff,
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1981; Leaman, 1991; Stearns, 1992; Ferreira & Russ, 1995; Crouse, 1999).
Reproductive potential in long-lived species may be further compromised when
population age structure becomes truncated through fishing by loss of larger,
older fish, and when many juveniles are taken, commonly the case in long-lived
species and multi-species fisheries (Beverton, 1986; Leaman, 1987). Short-lived
fishes, by contrast, combine early sexual maturation and high rates of intrinsic
population growth and are theoretically more resilient to fishing (Roff, 1983;
Stearns, 1992; Hutchings, 2000a).
FECUNDITY AND MEASURING RATES OF POPULATION INCREASE
Although fecundity is clearly not an indicator of resilience to fishing, it is

widely used to estimate the rate of natural increase of populations, with the aim
of comparing vulnerability, or recovery potential, across populations or species.
There are several problems with its use, in this context. Because r, the intrinsic
rate of natural increase (i.e. per capita instantaneous rate of increase of a
population with a stable age distribution) is hard to estimate, and because
absolute population sizes are so difficult to determine for fishes, proxies are
typically used. One of several such proxies is rest which approximates to ln
Ro T�1 (where T is generation time, the average age of mothers giving birth, and
Ro is the net, per generation, reproductive rate, or the number of daughters
expected per female per lifetime) (Stearns, 1992). The fundamental problem with
this approach is that age distribution and age-specific survival rates are assumed
to be stable. Since this is rarely the case for longer lived species, an alternative
indicator of potential for rate of population increase has been proposed,
‘ reproductive value ’ (RVt=�tmax

t=i Si Ei, where Si is survival rate until spawning
season of age i and Ei is the fecundity of female in age class i, and tmax is
maximum age) which weights the contribution of individuals of different ages to
population growth rate (Fisher, 1930; Goodman, 1982; Stearns, 1992;
Katsukawa, 1997). RV incorporates probabilities of survival and expected
number of offspring by age class and is equivalent to spawning per recruit of a
recently recruited individual used in SSBR analyses in fish stock assessments
(Goodyear, 1989).

The use of fecundity in such estimates of rate of population increase is a
fundamental problem. The parameters Ro or Ei, intended as measures of
reproductive output, are typically represented either by annual fecundity or by
adult female biomass. Using egg production (egg counts), or adult female
biomass, to estimate reproductive output for long-lived pelagic egg producers is
problematic for four reasons: spawner-recruit relationships, estimation of annual
fecundity, determination of adult female biomass, and complexity of behaviour
or life history trade-offs. For spawner-recruit relationships, given high mortality
in the planktonic/larval phase, the number of pelagic eggs produced is unlikely to
reflect the number of individuals surviving to recruit (settlement). Spawner-
recruit relationships tend to be more obscure in high fecundity than low
fecundity species which means that spawner (or egg) biomass, or SPR, do not
reflect reproductive potential, or adult numbers subsequent juvenile recruitment
(Murphy, 1968; Robertson et al., 1993; Shepherd & Brown, 1993; McShane,
1995; Boehlert, 1996; Roberts, 1996). Among related species, stocks with higher
fecundity have higher recruitment variation (Rickman et al., 2000). Estimates of
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annual fecundity are extremely difficult in long-lived pelagic spawners because
(1) spawning frequency per female in multiple spawners is difficult to estimate;
(2) annual fecundity is particularly difficult to estimate in repeat batch spawners
that might spawn frequently over long reproductive seasons; (3) not all mature
females reproduce every year e.g. yellowfin bream Acanthopagrus australis
(Günther), gag grouper Mycteroperca microlepis (Goode & Bean), and orange
roughy Hoplostethus atlanticus Collett (Pollock, 1984; Koslow et al., 1995;
Koenig et al., 1996) and (4) high variation and sporadic recruitment events in
space and time, for many longer lived or more fecund pelagic spawners, make
annual estimates difficult (Murphy, 1968; Leaman & Beamish, 1984; Grimes &
Turner, 1999; Rickman et al., 2000). Adult female biomass may not be a reliable
proxy for fecundity in red snapper Lutjanus campechanus (Poey); one large
female of 12·5 kg is equivalent in fecundity to 212 smaller females averaging
1·1 kg each, yet 12·5 kg of females each 1·1 kg each (c. 11 fish) would be
substantially less fecund that one female of the same mass because of the form of
the fecundity-body mass curve (Plan Development Team, 1990) (see also annual
fecundity estimates, above). Complex behaviours or life history trade-offs can
affect the number of eggs produced even within species, or among closely related
species (see also depensatory effects below). For example, the inverse relation-
ship between egg size and number of eggs, and the positive relationship between
egg survivorship and egg size can confound the use of egg number alone to
meaningfully compare reproductive output among species (Smith & Fretwell,
1974; Elgar, 1990).

There is a need to discard the widespread notion that fecundity and resilience
in marine pelagic spawning species are intimately linked and to examine carefully
the use of fecundity in estimating rates of population increase. The foregoing
strongly suggests that more appropriate estimates of the potential for population
increase, and hence recovery, need to be developed for long-lived fecund fishes.
Estimates could focus on the post-planktonic phase when post-settlement
mortality by age can be factored into calculations of life history tables. From a
conservation perspective, life-history correlates could be used to identify partic-
ularly vulnerable species, as discussed above. Improved and consistent, fishery-
independent, monitoring of exploited populations would enable more reliable
estimates of changes in abundance to be made over time.

Significantly, fecundity is an inappropriate criterion for identifying extinction
risk. Even with the caveat that it has low priority relative to rate of population
increase (which also involves the use of fecundity) (Musick et al., 2000), its very
inclusion signals an apparent relevance which is not supportable (Hutchings,
2001). Moreover, the use of rest may not reflect the intrinsic rate of natural
increase if fishing-induced phylogenetic or phenotypic changes have already
occurred and the problem with the use of RV is that age-specific fecundities and
survival are known for relatively few species (Musick, 1999; Hutchings, 2001).
DISPERSAL CAPABILITY AND GEOGRAPHIC RANGE IN RELATION TO
POTENTIAL FOR RECOVERY AND PERSISTENCE UNDER FISHING

If high fecundity per se does not confer resilience to fishing and a high
potential for population recovery, why does the perception persist that it does?
Perhaps some pelagic spawners are indeed more resilient than less fecund species
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because of egg and larval dispersal, recolonization, or compensatory (density-
dependent) responses at reduced population levels.
Evidence for dispersal-recolonization

A planktonic egg-larval phase would appear to confer considerable potential
for recolonization of reduced or extirpated populations from propagules origi-
nating elsewhere. However, while many marine species have wide geographic
distributions, not all have long-range larvae and, even among those that do, the
potential for dispersal may never be realized. Significant recent advances in
molecular and other techniques have made it possible to examine questions of
species status in the sea and population structure. Such studies have revealed
regional genetic differentiation previously not apparent, as well as evidence for
self-recruitment which suggests limits to the potentially wide dispersal of pelagic
eggs and larvae in fishes (Planes, 1993; Culotta, 1994; Planes et al., 1998; Jones
et al., 1999; Swearer et al., 1999). Some species with pelagic larvae have
extremely restricted ranges, despite a planktonic egg and or larval phase
(Hawkins et al., 2000). Moreover, recovery of heavily fished populations
through dispersal from elsewhere can only occur if there remains an ‘ elsewhere ’.
Despite a pelagic phase, some species have geographic ranges entirely within
heavily fished areas and there may remain little in the way of refugia as a source
of recruits. For example, the China Seas are among the most heavily fished in
the world and several species with limited ranges in the region have declined
heavily, with little apparent opportunity for recovery despite their high fecun-
dity. Examples include the Hong Kong grouper Epinephelus akaara (Temminck
& Schlegel), and the giant yellow croaker (Sadovy & Cornish, 2000; Y. Sadovy
& W-L. Cheung, unpubl. data).
Evidence for density-dependent or compensatory responses

Fishery theory suggests that over time, and within a range of exploitation
intensities, a stock will adjust to increased rates of mortality brought about by
fishing through compensatory adjustments in growth and recruitment (such as
changes in size and age of sexual maturation, fecundity, and survivorship)
(Ricker, 1975; Hilborn & Walters, 1992; Rochet, 1998). What is the evidence for
compensatory, density-dependent responses at low population levels for fecund
pelagic spawners and are the changes sufficient to allow recovery?

Compensatory or density-dependent responses to fishing are highly variable,
may be genetically constrained, may be inadequate, or may not occur at all (Law,
2000). In plaice, sole and cod from the North Sea there was little evidence of
variability in reproductive parameters related to changes in population density
(Rijnsdorp et al., 1991). Results from this study showed differing trade-offs
among maturity and growth, density and egg production, pointing to complex
interactions between growth, reproduction and maturation. Trade-offs were
often not strongly density-dependent and may be constrained by genetic factors.
In general, onset of maturity may depend more on age, in short-lived species that
mature early, and on size in longer-lived, late-maturing species, with develop-
mental or genetic constraints more evident in longer lived species (Roff, 1982,
1983; Archibald et al., 1983; Leaman, 1991; Jennings & Lock, 1996).
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Even if compensation does occur, and there are many examples of increased
growth at reduced density or abundance, it may be insufficient for recovery from
heavy fishing. For example, when size, rather than age, is an important
determinant of sexual maturation, a compensatory response of increased growth
rate to attain size of sexual maturation more quickly can mean lower fecundity
at sexual maturation (Adams, 1980; Roff, 1983). Moreover, a relatively small
increase in fecundity may have an insignificant effect on recruitment and
population recovery (Leaman & Beamish, 1984; Sale, 2000). A minor increase in
fecundity (by attaining sexual maturation faster) may compensate little for major
declines in lifetime reproductive output resulting from the loss of larger, more
fecund, individuals through truncation of average lifespan through fishing
(Leaman, 1991). In heavily exploited rockfish, such as S. alutus, for example,
there is limited compensatory phenotypic plasticity, and little apparent buffering
against the effects of reduced lifespan, while in the grouper, M. microlepis, heavy
fishing produced no substantial change in size of female sexual maturation over
more than 10 years (McGovern et al., 1998). In the orange roughy, Hoplostethus
atlanticus, mean fecundity increased by only 20% during a 5 year period during
which time stock size declined two-fold, although there was also an increase in
the number of spawners during this same period (Koslow et al., 1995).

While there is a wide literature, both theoretical and empirical, in support of
compensatory, density-dependent responses, among industrial fisheries, few
examples refer to long-lived species at very low population levels, and others are
contradictory. There is evidence for density-dependent responses at very low
stock levels in fisheries of small pelagics (Beverton, 1990). An analysis of 90
stocks of gadids, flatfishes, sparids and scombrids showed that recovery, after
cessation of fishing and 15 years after reductions of 45–99% in reproductive
biomass’ was slower than predicted by theory: shorter-lived clupeiforms, on the
other hand, fared much better than longer-lived species, indicating better
compensatory responses, although the confounding effects of fishing selectivity
could not be ruled out (Hutchings, 2001). The resilience of clupeiforms indicated
by these two, and other, studies, suggests that these fish may not, in fact, serve as
appropriate models against which to judge the resilience of longer-lived fished
species in general. Perhaps clupeiforms are even exceptional in their resilience,
or, perhaps the nature of their fisheries means that fishing can be better
controlled than in more mixed-species situations. On the other hand, Mace &
Sissenwine (1993) analysed 91 sets of spawner-recruit data and found that, after
depletions, larger species, with low natural mortality, could recover from lower
percentage biomass relative to virgin biomass better than smaller species.

According to fishery theory, compensation can also aid population recovery
by increasing reproductive output, or egg survivorship, at low population levels
on the assumption that populations are limited by factors such as food, disease
shelter and predation pressure. There is little evidence that survivorship of small
pelagic eggs is higher at low population densities. Moreover, Myers et al. (1999)
looked at maximum reproductive rates of temperate species at low population
sizes by examining 500 S-R relationships and showed that the maximum
reproductive rate not only was relatively constant within species but also that the
rate is rarely >7 and is more usually c. 3. This is significant in as much as such
rates approximate those of terrestrial vertebrates, notwithstanding the almost
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six-fold difference in fecundity among the fishes (Hutchings, 2001). These
authors found scant evidence for increased survival at low spawner biomass and
concluded that their ‘ unexpected ’ finding of a maximum reproductive rate
suggested an inability to sustain intense fisheries (Myers & Barrowman, 1996).
In general, there is clearly a need for more work to evaluate compensatory
responses in pelagic egg producers at low population levels, particularly where
populations may be recruitment-limited, as in some reef fishes, or where there is
large annual variation in recruitment (Leaman, 1991; Hilborn & Walters, 1992;
Roberts, 1996).
Evidence for depensation
Depensation is the response whereby an increase in recruits produced per

spawner with an increase in spawning stock occurs indirectly through one of two
processes: predation or the ‘ Allee ’ effect (Ricker, 1975; Hilborn & Walters,
1992; Walters & Kitchell, 2001). Predation can act through a process where, as
egg production increases, the predation risk per egg decreases if predation is
constant. Most discussion on depensation in fisheries literature focuses on this
form of depensation, while in the conservation literature it is on the Allee effect
(Stephens & Sutherland, 1999). The Allee effect is the inability to find a mate, or
brings about reduced fertilization success, at low numbers and has been reported
in fishes and other vertebrates (Hilborn & Walters 1992; Wielebnowski, 1998;
Courchamp et al., 1999; Møller & Legendre, 2001). Since this review is
particularly concerned with populations at very low levels, and the risk of
extinction, the possibility of Allee-type depensation must be considered.
Depensation may be difficult to detect, particularly because data from depleted
populations are uncommon, but several studies do suggest depensatory
responses among commercial species. While evidence for depensation in three
out of 129 stocks examined in four taxa (salmonids, gadiforms, clupeiforms and
pleuronectiforms) led to the initial conclusion that the effects of overfishing were
generally reversible, even at low population levels (Myers et al., 1995),
re-analyses of the same dataset revealed that depensation could not be ruled out
in many cases. Moreover, the finding that recovery of north-east Atlantic cod
has still not occurred after 7 years of closure indicates problems with the general
assumption of compensation, which should have led to an estimated tripling of
stocks by now, and suggests some level of depensation (Liermann & Hilborn,
1997; Myers et al., 1997a, b; Shelton & Healey, 1999).

It is often implied that the Allee effect is insignificant in marine fishes, but the
idea that, if a population drops below some critical density the intrinsic rate of
population increase may not be realized because breeding activity may cease,
cannot be readily dismissed and a number of possible Allee effects have been
noted. In salmon at low stock densities, reduced reproduction can be caused by
difficulties in finding mates in a sparse and scattered population (Neave, 1954).
Heavy fishing pressure can disrupt spawning in Atlantic cod leading to lowered
reproductive output (Hutchings et al., 1999). Many larger reef fish species
aggregate to spawn and some of these aggregations have been heavily fished
(Sadovy, 1996). The reduction in number caused by aggregation fishing or by
exploitation of aggregating species may have produced direct or indirect im-
pacts on aggregating and reproductive behaviours. Examples include extended
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spawning seasons in heavily fished stocks, reduced courtship behaviour when
numbers are low and high male aggression when sex ratios become male-biased
(Colin, 1992; McGovern et al., 1998; Johannes et al., 1999). The significance of
such apparent behavioural changes in terms of reproductive output is not known
but it is quite possible that aggregation formation may require critical densities
for successful reproduction, while aggregating behaviour presumably reflects
some biological imperative for sociality during the reproductive season (the
location of spawning sites may also be critical in some way). Indeed, if there is
a fitness advantage to high-density aggregations (mate choice, fertilization
success, predator protection) then reproductive success could be compromised if
numbers are low. Moreover, fish migratory behaviour to spawning sites may be
critical for social transmission among age groups leading investigators to suggest
that altered migration patterns of collapsed cod and herring stocks may have
changed forever (Helfman & Schultz, 1984; Dodson, 1988; Frank & Brickman,
2000).

Many long-lived fishes show complex social structures and mating systems.
One distinctive example is hermaphroditism, found in many reef species and
most frequently expressed as female to male sex change (protogyny). All detailed
behavioural studies to date on the factors inducing sex change in fishes indicate
that it is socially mediated, with females responding when males are lost through
sex change (Warner, 1984; Shapiro, 1989). However, such sex switches are
evidently subject to temporal and size constraints which may prevent a timely
1 : 1, female to male, replacement under heavy fishing (Vincent & Sadovy, 1998).
In the heavily fished Mycteroperca microlepis (Goode & Bean), for example,
adult sex ratios changed from 20 to 2% male, with the very real concern of severe
curtailment of reproductive potential through insufficent males (sperm), despite
sufficient female biomass (Koenig et al., 1996). In the angelfish Centropyge
potteri (Jordan & Metz), density and minimum female size constrain sex change
(Lutnesky, 1994, 1996) while in a protogynous sparid, the red porgy Pagrus
pagrus (L.), the SPR fell below 1% and the population collapsed despite the
continued presence of adult females (Huntsman et al., 1995, 1999). Lopholatilus
chamaeleonticeps (Goode & Bean) is not hermaphroditic but has a complex
mating system. Fishing may disrupt the breeding system, by removing behav-
iourally dominant males, resulting in reduced reproductive success (Grimes &
Turner, 1999). In other species, spawning frequency, synchronization of spawn-
ing, gonad steroid levels and fertilization rates can vary significantly with group
size or density with unknown effects at low or disturbed levels (Pankhurst &
Barnett, 1993; Tyler, 1995; Warner et al., 1995). Where there may be constraints
on socially mediated processes in reproductive activity, depensatory-type
responses when population levels become significantly reduced, cannot be
discounted. While cessation of fishing may allow such species to recover, lack of
sufficient protection could severely compromise recovery from particularly low
population levels, despite plenty of eggs.
DISCUSSION

The potential threat of exploitation to marine fishes as a conservation, rather
than a management, issue has only recently received serious attention. The
reasons for this are many and have to do not only the lack of documented
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extinctions but also with widely held perspectives on the biology and response to
fishing of targeted species, especially those that are highly fecund. Importantly,
there is no theoretical or empirical support that high fecundity confers resilience
relative to less fecund species.

Among widespread, commercially valuable, marine fishes, those most vulner-
able are relatively large, long-lived and slow-growing, with late sexual matur-
ation, and sometimes exhibiting complexities of social behaviour. They may be
limited in geographic range (though not necessarily highly restricted), or
distributed only within coastal areas where there is heavy exploitation and little
scope for management. It is not uncommon that they carry a high market value,
ensuring exploitation even at very low abundance and they may be just one
component of a multi-species fishery. They may also be highly fecund.

The ability to recognize and effectively address declines in vulnerable species
and, ultimately, to better understand the risk of extinction in commercially taken
fishes depends not only on fishery science and management practice, but also on
the quality of information available. For many fisheries, species-level infor-
mation is scarce or lacking. For example, species-specific data are entirely absent
for all but a few dominant trawled species, and for all reef-associated species, in
much of the heavily fished northern sector of the South China Sea. In many
regions of the world, species data are lumped and meaningless at species level.
Even if collected, landings or catch per unit effort (CPUE) data may not be
reliable indicators of population condition, if not taken from fishery-independent
sources. There is also much to learn, in marine fishes, of minimum viable
population sizes and depensatory and compensatory effects, genetic diversity,
and meaningful ways of estimating intrinsic rates of population increase, and
hence recovery potential from fishing. Such dearth of information makes it very
difficult to recognize severe declines in vulnerable species and has led to
alternative approaches to data acquisition and species assessments, with ‘ rules of
thumb ’ approaches for identifying vulnerable species (Johannes, 1998; Carlton
et al., 1999; Dulvy et al., 2000; Morris et al., 2000; Reynolds et al., 2001).

The suggestion that fecund marine fishes should be exempt from quantitative
criteria used to assign extinction risk, or that fecundity can be used as a means
for assigning level of threat (Musick et al., 2000), is inconsistent with a
precautionary approach to fishery management as well as to conservation of
marine biodiversity. In seeking a way forward, it is critical for conservation
biologists and fishery managers to collaborate, for despite differences in perspec-
tives, extinction in the case of conservation biologists and sustainability for
fishery managers, there is much common ground (Mace & Hudson, 1999).

My thanks to P. Hart and J. Reynolds for the invitation to present this work to the
annual international symposium of the Fisheries Society of the British Isles. I am most
grateful to J. Bohnsack, P. Colin, M. Domeier, N. Dulvy, J. Hutchings, P. Miller, J.
Musick, J. Reynolds and M. Samoilys for valuable comments on the manuscript,
opinions, or access to literature. This work was partially funded by research supported
by the Research Grants Council, Hong Kong.
References

Adams, P. B. (1980). Life history patterns in marine fishes and their consequences for
fishery management. Fishery Bulletin 78, 1–11.



       103
Archibald, C. P., Fournier, D. & Leaman, B. M. (1983). Reconstruction of stock history
and development of rehabilitation strategies for Pacific ocean perch in Queen
Charlotte Sound, Canada. North American Journal of Fisheries Management 3,
283–294.

Baillie, J. & Groombridge, B. (1996). 1996 IUCN Red List of Threatened Animals.
Gland, Switzerland: IUCN.

Barrera Guevara, J. C. (1990). The conservation of Totoaba macdonaldi (Gilbert),
(Pisces: Sciaenidae), in the Gulf of California, Mexico. Journal of Fish Biology 37
(Suppl. A), 201–201.

Beverton, R. J. H. (1986). Longevity in fish: some ecological considerations. Basic Life
Science 42, 161–185.

Beverton, R. J. H. (1990). Small marine pelagic fish and the threat of fishing; are they
endangered? Journal of Fish Biology 37 (Suppl. A), 5–16.

Beverton, R. J. H. (1992). Fish resources: threats and protection. Netherlands Journal of
Zoology 42, 139–175.

Boehlert, G. W. (1996). Larval dispersal and survival in tropical reef fishes. In Reef
Fisheries (Polunin, N. V. C. & Roberts, C. M., eds), pp. 61–84. London: Chapman
& Hall.

Brander, K. (1981). Disappearance of common skate Raia batis from the Irish Sea.
Nature 290, 48–49.

Bruton, M. N. (1995). Have fishes had their chips? The dilemma of threatened fishes.
Environmental Biology of Fishes 43, 1–27.

Cambray, J. A. (2000). ‘ Threatened fishes of the world ’ series, an update. Environ-
mental Biology of Fishes 59, 353–357.

Carlton, J. T., Geller, J. B., Reaka-Kudla, M. L. & Norse, E. A. (1999). Historical
extinctions in the sea. Annual Review of Ecology and Systematics 30, 515–538.

Casey, J. M. & Myers, R. A. (1998). Near extinction of a large, widely distributed fish.
Science 281, 690–692.
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