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A B S T R A C T

Indices of abundance are commonly used in fisheries stock assessment models to represent trends in population
size over time; however, an index can misrepresent such trends when catchability varies, sampling gears change
or spatial sampling frames shift. Here we develop a state-space model in a Bayesian framework that combines
both chevron trap catches and video counts into a single integrated index. The modeling approach accounts for
variation in sampling efficiency (catchability) of both sampling gears and adjusts for aspects of changes in the
spatial sampling frame (sampling intensity and spatial coverage) through time due to monitoring program de-
velopment. We validate the model using a simulation study and then demonstrate its utility using data on
vermilion snapper Rhomboplites aurorubens from the period 1990–2016. The index suggests high variation in the
abundance of vermilion snapper, particularly for years previous to 2000 and a systematic decline in abundance
between the early 1990s and 2016. This pattern culminates (2016) with vermilion snapper at about 16% of their
average early 1990s abundance which is a stronger decline than is indicated by the current index used for stock
assessment of the species.

1. Introduction

Fisheries harvest policies are typically based on the results of fitting
population dynamics models with a variety of data types (Hilborn and
Walters, 1992; Walters and Martell, 2004). One essential piece of in-
formation used in many fisheries stock assessments is a metric that
indexes changes in total stock size through time (Maunder and Punt,
2004). These indices are typically derived from some form of fishery-
dependent or -independent catch or count per-unit-effort data and are
assumed to change in proportion to abundance, and thus reflect a scaled
version of the total stock size. The resultant indices are used to “tune”
stock assessment models, affecting estimates of population dynamics
quantities and management reference points, such as harvest targets.
Due to their importance for effective fisheries management, much at-
tention has been paid to fisheries index development (e.g. Maunder and
Star, 2003; Maunder and Punt, 2004; Maunder et al., 2006); however,
obtaining efficacious indices reflecting true changes in total stock size
can be quite difficult (Kimura and Somerton, 2006).

Analysts face many challenges when developing abundance indices
for stock assessments, particularly regarding the assumption of pro-
portionality. One of the simplest representations of an abundance index

is =I N qt t , where the index It is the product of the true abundance Nt
and the catchability q (i.e. the proportion of Nt sampled). As long as
catchability is constant through time, the assumption of proportionality
is met and the index will have the desirable property of reflecting true
proportional changes in abundance. However, when catchability varies,
changes in q (or qt) are confounded with changes in Nt , such that It may
not adequately represent true abundance trends. Complicating this
matter is that q (almost) always varies when sampling fish for a variety
of reasons (Monk, 2013; Gwinn et al., 2016). For example, the influence
of vessel effects on catchability and fishery-dependent indices is well
known with variation in q related to variables such as vessel size, crew
size, GPS technology, power of motor, and specific gear characteristics
(Maunder, 2001; Maunder and Punt, 2004; Thorson and Ward, 2014).
Fisheries-independent data for use in developing abundance indices are
generally recognized as superior to fishery-dependent data (e.g. Dennis
et al., 2015), however, these data are similarly vulnerable to variable q.
For example, the catchability of reef fish with common baited traps can
be strongly related to environmental variables such as temperature,
depth, soak time, and substrate characteristics (Coggins et al., 2014;
Bacheler et al., 2014; Shertzer et al., 2016). At best, these influences on
catchability add noise into catch data but can also result in spurious
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patterns in It that do not reflect Nt when influential variables change
systematically across space and time (e.g. Walters and Maguire, 1996;
Ward, 2008; Langseth et al., 2016).

Shifts in sampling design elements such as the spatial frame of
sampling and sampling methods commonly occur in long-term mon-
itoring programs. Typically intended to improve sampling, these idio-
syncrasies can also create challenges when developing fisheries indices
(Conn et al., 2017). Similar to changes in catchability, changes in the
spatial sampling frame and associated environmental characteristics
can influence the component of the stock targeted by sampling (e.g.
Walters and Maguire, 1996; Langseth et al., 2016). This is also true for
changes in sampling gears and is the reason why there is a continuous
development of methods to create spatially-explicit indices (e.g.
Walters, 2003; Cao et al., 2017; Ducharme-Barth et al., 2018) and in-
dices that integrate multiple sampling methods (e.g. Conn, 2010;
Gibson-Reinemer et al., 2017; Kotwicki et al., 2018; Ono et al., 2018).
Thus, methods that are robust to variation in catchability due to en-
vironmental variables, as well as shifts in sampling frame and sampling
methods, are important tools for stock assessment scientists (Maunder
and Piner, 2015).

The management of many economically important reef fisheries
along the southeast U.S. Atlantic coast rely on indices derived from
surveys using fishery-independent chevron traps. These traps have been
used in this region since 1990 but were fitted with video cameras be-
ginning in 2011 to further understand the quality of chevron trap catch
data for indexing reef fish abundance, including species that do not
enter traps (Bacheler et al., 2013a; Shertzer et al., 2016). The use of
underwater video to assess the properties of various sampling gears is
becoming increasingly common in the literature (e.g. Ward, 2008;
Parker et al., 2016; Streich et al., 2018) and can result in a form of
replicated count data that may be used to index abundance (Bacheler
et al., 2013b; Schobernd et al., 2014). However, appropriate statistical
methods that create indices from data collected with these two sam-
pling gears have yet to be developed. Combining data from multiple
gears presents the opportunity for improved inference, but in this case,
introduces two prominent challenges. Firstly, the paired samples of the
chevron trap and video count are not fully independent. Although each
gear represents an independent sample of the vulnerable fish commu-
nity at the survey location, they are non-independent at the spatial scale
of inference (i.e. the region) because samples are collected from the
same locations and thus do not represent two independent measures of
stock size at the regional level. Secondly, early research comparing trap
catches to video counts revealed substantial variation between the two
(Bacheler et al., 2013b), likely due to differences in how environmental
conditions influenced the catchability of traps and videos for various
species of fish (Bacheler et al., 2014; Coggins et al., 2014).

Here we develop a novel fishery-independent index of abundance
that integrates paired trap catches and video counts into a single index
of stock size using a Bayesian hierarchical formulation of a state-space
model (SSM). The SSM has three key features that make it potentially
useful for this application: (i) The model incorporates the baited trap
catches and video counts into a single index that accounts for depen-
dence between the gears; (ii) the model accommodates changes in
catchability due to temporal and spatial variation in the environment
through the use of covariates and random effects of the observation
processes; and (iii) the model can account for aspects of variable
catchability due to shifts in the sampling frame by modeling temporal
variation at the meta-population scale separate from spatial variation at
the sub-population scale. We apply this model to vermilion snapper
(Rhomboplites aurorubens) data collected along the southeast U.S.
Atlantic coast by the Southeast Reef Fish Survey as an example and
compare it to an index developed with the current methods (Conn,
2010) taken from the most recent stock assessment for the species
(SEDAR, 2018). The current method of index development (i.e. Conn,
2010) treats the chevron trap catches and camera counts as in-
dependent measures of the stock and does not explicitly account for

shifts in the spatial frame of the surveys, thus offering a useful com-
parison for the SSM method.

2. Methods

2.1. Overview of methods

We organize our methods in four main parts. First, we describe the
sampling design and data treatment in the context of the Southeast Reef
Fish Survey sampling of R. aurorubens along the southeastern coast of
the U.S., which is the motivation behind our model; second, we de-
scribe the general model structure, covariate structure, model fit eva-
luation and model optimization methods used in the example analyses;
third we describe how we compare our index to the current index used
for stock assessment of R. aurorubens; and last we describe validation
methods of our model on a set of simplified simulated data sets.

2.2. Sampling design

R. aurorubens count data were collected along the southeast United
States Atlantic Coast from Florida to North Carolina by the Southeast
Reef Fish Survey (Fig. 1a). All baited traps were set on or near hard-
bottom reef locations. There were 15,629 chevron trap samples avail-
able covering a period of 27 years (1990–2016). The number of loca-
tions sampled has varied substantially among years due to program
development and funding. In the early years, the number of samples
collected annually was typically in the range of several hundred;
however, this number has expanded severalfold to over thirteen hun-
dred in the most recent years. Along with increased sampling intensity,
the sampling frame of the program has expanded in both the latitudinal
and longitudinal directions, thus shifting the sub component of the
stock vulnerable to sampling (for a detailed description of the sampling
frame shift, see Appendix A). Traps were set no closer than 200m from
one another to maintain spatial independence relative to fish move-
ment, and at depths between 13 and 115m. All trap sites used for this
analysis were selected randomly from a defined sampling frame of
hard-bottom sampling points (Bacheler et al., 2014). Traps were baited
with menhaden and set for approximately 90min. For the time period
of 2011–2016, the chevron traps were fitted with an outward-looking
video camera (Fig. 1b) resulting in 7,644 41-frame video samples
(Fig. 1c). The camera (Canon Vixia HFS200 in 2011–2014 and GoPro
Hero 3 or 4 in 2015 and 2016) recorded at least 20min of video from
the bottom, and videos were read according to Schobernd et al. (2014).
Specifically, a series of video frames spaced 30 s apart were read 10 to
30min after the trap landed on the bottom. This resulted in 41 replicate
camera samples and one baited trap sample per site.

2.3. Data and treatment

For trap data, we analyzed the un-transformed catch and for the
video data, the sum of the counts across the 41 camera frames
(SumCount). We chose to use the SumCount of the camera data because
SumCount changes linearly with the MeanCount (Bacheler and
Carmichael, 2014), which is often the preferred camera metric (Conn,
2011; Schobernd et al., 2014; Campbell et al., 2015), and using the
SumCount preserves the discrete nature of the camera counts allowing
for the use of derivations of the Poisson distribution to describe both the
chevron trap and camera observation processes. We applied several
data filters to either simplify predictor variables, remove records with
missing predictor variables, or to remove unusual values. Detailed
methods of the data cleaning process are reported in Appendix B.

2.4. Model development

The model was formulated with three distinct hierarchical layers
such that the relative abundance at the meta-population level
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(representing our index of interest, denoted as It) was modeled sepa-
rately from the relative abundance at the sub-population level (i.e. at
sample sites, denoted as ns t, ) and separately from the observation pro-
cesses. By modelling the meta-population level abundance separately
from the sub-population abundance, we were able to isolate the fishery
index of interest from components of spatial variation among sampling
locations. This is the key component that separates shifts in spatial
sampling frame relative to latitude, longitude, and depth from the
changes in the average meta-population abundance. Furthermore, by
modeling the abundance processes and observation processes with se-
parate sub-models we were able to separate observation error from
process error and account for systematic variation in catchability.

The most general version of our model describes the latent meta-
population level relative abundance (hereafter referred to simply as
abundance, It) for each year as an independent, freely estimated para-
meter represented as:

Ilog( ) Normal(0, 100)t (1)

however more constrained formulations that assume that meta-popu-
lation level abundance is a random effect among years (i.e.

I Ilog( ) Normal(¯, )t ), a Markovian random walk (i.e.
= +I I rlog( ) log( )t t t1 , where r rNormal(¯, )t ), or any population dy-

namics model (e.g. logistic model, age-structured model) could be ap-
plied based on the intended use of the index. If the index will be used to
fit a more complex population dynamics model for stock assessment, it
may be desirable to impose as little constraint on the temporal pattern
of the index as possible; thus, we present the model that assumes in-
dexes are independent among years to represent this case.

Spatial variation in abundance across sample sites each year (sub-
population level) was modeled on the log scale as:

= + +n I covlog( ) log( )s t t s t
n

s t
abun

, , , (2)

where the term Ilog( )t is the year specific intercept of the linear model,

covs t
n
, is a linear combination of spatial covariates, and s t

abun
, describes

random site-level variation in abundance that is not explained by the
covariate structure.

We approximated the baited trap catches (cs t
trap
, ) and the camera

SumCounts (cs t
cam
, ) as deviates drawn from Poisson log-normal distribu-

tions, which are similar in character to negative binomial distributions
(Ntzoufras, 2009, p. 315–317), but can demonstrate better mixing
properties than negative binomial distributions when applied in Baye-
sian programs such as JAGS. We specified these models as:

+ +( )c ePoissons t
trap n cov
,

log( )s t s t
trap

s t
trap

, , , (3)

+ +( )c ePoissons t
cam n cov
,

log( )s t s t
cam

s t
cam, , , (4)

where the mean on the log scale is the site-specific abundance nlog ( )s t,
plus a linear combination of environmental and/or sampling covariates
(i.e. covt j

trap
, and covt j

cam
, ) to account for systematic variation in catch-

ability. The parameters s t
trap
, and s t

cam
, are gear-specific log-normal dis-

tributed random observation errors modeled as, Normal(0, )s t, ,
with a mean of zero and an estimated standard deviation specific to
each sampling method (i.e. trap and cam).

2.5. Model covariates

To account for systematic variation in our count data, we in-
corporated a suite of covariates into the abundance and observation
sub-models. We selected covariates based on two key considerations.
Our first consideration was to separate covariates that influenced the
spatial distribution of fish from those that influenced temporal patterns
in fish abundance. This was important because spatial and temporal
patterns of abundance are modeled in two separate hierarchical layers
(i.e. Eqs. (1) and (2)) to create a distinction between the fishery index,
i.e. temporal patterns in abundance at the meta-population level (It),
from spatial variation in the data due to patterns in the spatial

Fig. 1. Study area (a), sample video frame (b) and a Chevron fish trap outfitted with an outward-looking Canon high-definition video camera over the mouth of the
trap (c). The points on panel (a) represent sample locations.
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distribution of fish (ns t, ) and shifts in the sampling frame through time.
Thus, we included nonlinear (quadratic) effects of latitude (lat and lat2),
longitude (lon and lon2) and depth (dep and dep2), as well as the po-
tential interaction between latitude and longitude as covariates of local-
scale abundance. We included both main and quadratic effects of these
variables to account for any optimal ranges in latitude, longitude and
depth within our sampling frame that vermilion snapper may prefer.
The interaction between latitude and longitude was included to allow
any preferred range of one variable to be dependent on the other. For
example, if vermilion snapper demonstrated a preferred distance from
shore, a positive interaction between latitude and longitude could ap-
proximate this spatial distribution. Lastly, we included a measure of
bottom relief (rel) and the percent of the substrate that was hard-bottom
(sub) as these habitat features may affect the local density of fish.
Spatial covariates of abundance were incorporated into the model as:

= + + + + +
+ + +

cov lat lat
rel sub
lon lon lat lon

dep dep .
s t
n

s t s t s t s t s t s t

s t s t s t s t

, 1 , 2 ,
2

3 , 4 ,
2

5 , ,

6 , 7 ,
2

8 , 9 , (5)

Our second key consideration was to separate covariates of the
abundance and observation processes. This was important because our
model likely has limited ability to disentangle systematic patterns in
abundance from systematic patterns in catchability when they are si-
milar. Thus, we do not expect to be able to resolve the effects of cov-
ariates that have similar influences on patterns in abundance and
catchability (Barker et al., 2017). Given this limitation, the most useful
covariates for predictive purposes are those that either, (i) only influ-
ence abundance or catchability (but not both), or (ii) have very dif-
ferent influences on abundance and catchability. Thus, we included
main and quadratic effects of trap soak time (E and E2), and main and
quadratic effects of bottom water temperature (temp and temp2) as
continuous variables; we included water turbidity (turb) as a categorical
variable with two levels (low as turb=0 and high as turb=1); and we
included current direction as a categorical variable with three levels
(current away from the lens and trap opening indicated by dir1=0 and
dir2= 0; current towards the side of camera and trap indicated by
dir1= 1 and dir2= 0; and current away from the lens and trap mouth
indicated by dir1=0 and dir2= 1). We incorporated these covariates
into our chevron trap observation model as:

= + + + + +

+

cov E E temp temp turb dir

dir

1

2
s t
trap

s t s t s t s t s t s t

s t

, 1 , 2 ,
2

3 , 4 ,
2

5 , 6 ,

7 , (6)

In the camera catchability sub-model, we included turbidity, current
direction, and main and quadratic effects of bottom temperature as:

= + + + + + +cov turb dir dir temp temp1 2s t
cam

s t s t s t s t s t t, 1 2 , 3 , 4 , 5 , 6 ,
2

(7)

where the intercept 1 allows for a systematic difference in the average
catchability of the camera relative to the chevron trap. The parameter t
is a fixed value (i.e. log(1.72), Bacheler and Ballenger, 2018) that ac-
counts for the increased field of view of the video cameras used in 2015
and 2016. All continuous covariates were centered on zero and scaled
to one standard deviation with the exception of the effort covariate. We
scaled effort by subtracting 60 and dividing by 60 to ease interpretation
(effects are relevant to one hour). The absolute value of the Pearson
correlation coefficient between covariates were all< 0.6 with the ex-
ception of latitude and longitude (ρ=0.87); however, we chose to re-
tain both covariates as we expected that they would both be important
for describing site-level variation in abundance and the correlation
would not impact adversely on the abundance index after model reg-
ularization. All covariate definitions are provided in Table 1, the cor-
relation matrix of all covariates is presented in Table B1 (of Appendix
B) and JAGS model code and fitting methods are provided in Appendix
C.

2.6. Model fitting and prior specification

The posterior distributions of all parameters were estimated using a
Gibbs sampler implemented in JAGS (Plummer, 2003). We called JAGS
from program R (R Core Team, 2015) using the library R2jags (Su and
Yajima, 2015). All prior distributions of log-scale covariate effect
parameters, including model intercepts and the fisheries index It were
specified as diffuse normal distributions (N[0,100]). Standard deviation
parameters including all random effects were specified as scaled half
Student-t distributions with input parameter values chosen to stabilize
fit while inducing negligible parameter shrinkage (i.e. =µ 0, = 2.78,

=k 2). Inference was drawn from 10,000 posterior samples taken from
two chains of 106 samples. We discarded the first 500,000 values of
each chain to remove the effects of initial values and thinned the chain
to every 100th value. Convergence of all models was diagnosed by vi-
sual inspection of trace plots and Gelman-Rubin statistic (R̂ ≤ 1.1 in-
dicate model convergence, Gelman et al., 2004).

2.7. Model fit evaluation and regularization

There are two common purposes of models in applied ecology, (i)
causal explanation and (ii) empirical prediction, and the same model
will often not perform well for both purposes (Shmueli, 2010; Authier
et al., 2016). A model used for the purpose of explanation requires that
the uncertainty in parameter estimates are appropriately accounted for
such that the realized 95% credible interval coverage is equivalent to
the a priori expectation (i.e. true parameter value contained within 95%
CI 95% of the time). In practice, this requires that the model error
structure adequately explains the residual error and, thus, can be de-
termined with model fit tests. Alternatively, the optimal predictive
model will often be a model where the covariate effect estimates are
removed or shrunk towards zero through a process termed regulariza-
tion (e.g. Reineking and Schroder, 2006; Hooten and Hobbs, 2015).
Thus, some level of increased bias is accepted for the predictive ad-
vantage of decreased variance. Although optimal prediction of our
index is our main purpose, we were also interested in the influence of
our covariates on abundance and catchability. Thus, we first used a
posterior-predictive check to determine an adequate error structure for
our fully parameterized model for the purpose of evaluating covariate
relationships (termed ‘global model’). Covariates were considered sta-
tistically different than zero when the associated 95% Bayesian credible
intervals (quantile based) did not include zero. Second, for our best
error structure, we used a process termed Stochastic Search Variable
Selection (SSVS) to induce shrinkage of covariate effects and generate a
model with optimal predictive properties to produce the fisheries index
(termed ‘reduced model’). Using SSVS to produce models with desirable
predictive properties was first introduced by George and McCollock
(1993) but has been thoroughly discussed in more recent ecological
literature by O’Hara and Sillanpaa (2009), Tenan et al. (2014), and
Hooten and Hobbs (2015).

We evaluated model fit of the global model for eight general model
error structures with Bayesian p-values (Kery, 2010). The Bayesian p-
value is a posterior-predictive check that provides a measure of under-
or over-dispersion of the data relative to the model (Kery, 2010; Hooten
and Hobbs, 2015). The eight error structures were models that either
included or excluded the random variables abun, trap, and/or cam. We
performed our model fit evaluation by simulating our data directly from
each model for each Markov Chain Monte Carlo (MCMC) iteration and
calculating a Pearson residual between the simulated and expected
values (i.e. predicted 2) and observed and expected values (i.e. ob-
served 2). The simulated data are considered “perfect” because they
are generated directly from the model and, thus, the resulting Pearson
residual represents the fit of the model when all model assumptions are
perfectly met (Kery, 2010). We then created a fit metric that is equal to
one when the Pearson residual was greater for the observed data than
the simulated data and is equal to zero, otherwise. The Bayesian p-value
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was then calculated as the mean of the posterior sample of the fit metric
for each data type, where a mean of 0.5 indicates perfect model fit to
the data and a mean approaching 0 or 1 indicates under- or over-dis-
persion of the data relative to the model, respectively.

We chose the procedure of SSVS to produce the reduced model and
optimize prediction because preliminary analysis indicated that pro-
cessing times in excess of four days may be expected for the example
data. Thus, many common approaches to variable selection that either
employ iterative model runs such as information theoretic methods
(e.g. AIC, WAIC, DIC, etc.) or k-fold cross validation are prohibitive.
Therefore, we employed SSVS which took approximately five days to
complete two million MCMC iterations. We applied the SSVS method
for each covariate effect parameter in Eqs. (5), (6), and (7) to invoke
parameter shrinkage. Specifically, we applied a hierarchical structure
for each of our covariate priors that is conditional on a random effect
indicator variable as: P w( | ) Normal(0, )j j j , where = +w100 0.01j j .
The variable wj is a random effect for each covariate that has a prior
distribution of P w( ) Bernoulli(0.5)j , such that when =w 1j ,

= 100.01j , approximating a standard uninformative prior on the cov-
ariate effect parameter j. Alternatively, when =w 0j , = 0.01j which
approximates a highly informative prior for a 0j . Thus, the condi-
tional prior creates a region of high probability around zero similar to
ridge regression or a “slab and spike” prior (Tibshirani, 1996; Ishwaran
and Rao, 2005). Furthermore, the posterior mean of wj can be inter-
preted as the relative support of a non-zero value of j similar to the
posterior probabilities for different model structures obtained via re-
versible jump methods (e.g. Hillary, 2011). However, one advantage of
the SSVS process is that model predictions are automatically model
averaged, providing a more refined level of regularization. Thus, we
produced the index from the regularized model that included all cov-
ariates as well as the indicator variables and conditional priors.

2.8. Comparison of indices

To increase our insight into the value of the SSM index, we com-
pared it to an index developed for use in the most recent stock assess-
ment of R. aurorubens (Conn, 2010; SEDAR, 2018; hereafter referred to
as the “Conn index”). The Conn index utilized a hierarchical analysis to
combine multiple indices into a single index for use in stock assessment
(Conn, 2010). The method requires prior knowledge of sampling error
and constraints on process error, which may be difficult to inform. A
detailed description of methods is provided in Conn (2010). In brief, the
approach treats multiple, independently developed indices of abun-
dance as measurements of the same underlying quantity (the true re-
lative abundance), with each index subject to sampling and process
error. For this application toward R. aurorubens, two indices were
combined, one developed from video gear (Cheshire et al., 2017) and
one from chevron traps (Bubley and Smart, 2017). Thus, the data were
the same as those used for the SSM index, and the primary difference in
methodology is that the Conn (2010) approach operates on previously
created indices, whereas the approach presented here operates at the
level of the observed data. By doing so, our approach more naturally

accounts for the lack of independence between the gears that might be
expected when sampling co-occurs (i.e., cameras are mounted on traps)
and the potential impact of non-independence between the sampling
methods on the index uncertainty.

To simplify comparison of the indices we used a parametric boot-
strap method to estimate the linear slope of population change through
time for each index. For each year and index, we sampled 10,000
random values drawn from log-normal distributions with the means
specified as the annual index point estimates and the associated stan-
dard deviations. For each random sample, we use least square methods
to estimate the intercept and slope of the index through time on the log
scale. This results in a probability distribution of the log-scale linear
trend for each index.

2.9. Model validation

To validate the efficacy of our model, we addressed two questions
with a simulation experiment; (i) is our model identifiable and (ii) does
it produce unbiased parameter estimates when applied to perfect data?
Our methods were to define a data-generating model, simulate multiple
datasets, and analyze the simulated datasets with the data-generating
model. Our data-generating model is presented in Table 2 and was
identical to the model described for our R. aurorubens analysis where
the temporal abundance process is modeled as an independent variable
for each year (Eq. (1), Table 2) drawn from a log-normal distribution
with a mean and standard deviation set to represent observed variation
in the R. aurorubens index. However, we excluded the random variables

abun, trap, and cam to reduce the limitations of computation time. We
simulated nine covariate relationships influencing sub-population level

Table 1
Covariate descriptions and definitions.

Variable Abbreviation Class Definition

Latitude lat continuous The latitude of the sample location.
Longitude lon continuous The longitude of the sample location.
Depth dep continuous The water depth at the trap location.
Soak time E continuous The length of time the trap was set before retrieval.
Temperature temp continuous The water bottom temperature at the trap locations during sampling.
Turbidity turb categorical A dummy variable indicating the level of turbidity (1 = level 2, 0 = level 1).
Substrate sub continuous The percent of the substrate visible with the camera that is hard-bottom.
Relief rel categorical A dummy variable with value of 1 indicating that the relief was “high”.
Current away dir1 categorical A dummy variable that is 1 when the current direction is flowing away from the camera lens.
Current side dir2 categorical A dummy variable that is 1 when the current direction is flowing perpendicular to the camera lens.

Table 2
Simulation structure and inputs. The equations represent the structure of the
data-generating model and the Inputs are the parameter values used in the si-
mulation.

Data-generating model Description Inputs

Process model
I µlog( ) Normal( , )t Temporal abundance

model
=µ 3, = 0.93

= +n I covlog( ) log( )s t t s t
n

, , Site-level abundance
model

= + +cov x x x1 2 3s t
n

s t s t s t, 1 , 2 , 3 , Spatial covariates = 11 , = 0.52 ,
= 03

Trap observation model
+ )c ePoisson(s t

trap ns t covs t
trap

,
log( , ) , Trap observation

model
= + +cov x x x4 5 6s t

trap
s t s t s t, 4 , 5 , 6 , Trap catchability

covariates
= 14 , = 0.55 ,
= 06

Camera observation model
+ )c ePoisson(s t

cam ns t covs tcam
,

log( , ) , Camera observation
model

= + +cov x x x7 8 9s t
cam

s t s t s t, 7 , 8 , 9 , Camera catchability
covariates

= 17 , = 0.58 ,
= 09
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abundances, trap catchability and camera catchability ( 1 9, Table 2),
where the simulated covariates, x1-x9 (Table 2) are nine separate
vectors of random draws from normal distributions with mean of zero
and standard deviation of one to simulate generic centered and scaled
covariates. We chose covariate effect sizes arbitrarily to represent dif-
ferent levels of effects and the absence of effects. The input values for
the simulated covariate effects were, = 11,4,7 , = .52,5,8 , and

= 03,6,9 . Simulated data sets were fit with the data generating model.
We report the mean absolute error as a measure of bias and, to evaluate
if the credible interval coverage was appropriate, we reported when the
true parameter value was excluded from the 95% credible intervals for
each iteration of the simulation. All simulation code is included in
Appendix D.

3. Results

3.1. Simulation study

Our simulation study revealed that the SSM model does indeed re-
turn unbiased estimates of meta-population abundance (It) and cov-
ariate relationships with appropriate credible intervals. The mean ab-
solute error of all covariate effect estimates centered on zero (Fig. 2a)
and the true value was included in the 95% Bayesian credible intervals
between 91.5 and 96.5% of the time. The results for the simulated re-
lative abundance index were similar with little to no systematic bias
(Fig. 2b) and 95% credible interval coverage of the true index value for
90.2–97.2% of simulation iterations. These results indicate that the
model is identifiable and produced unbiased parameter estimates with
appropriate levels of uncertainty.

3.2. Vermilion snapper analysis

All eight error structures of the global model fit to R. aurorubens
count data converged after 106 iterations and each required up to 96 h
of computer processing of two MCMC chains run in parallel. Our pos-
terior-predictive check indicated that three model error structures
adequately fit the data (models 1, 2, & 3 in Table 3). All of these models
included a site-specific random effect in the abundance sub-model
( abun) and either a site-specific random effect in the camera sub-model
( cam), the trap sub-model ( trap) or both. Global model 2 and 3 had the
simplest structure of only two random effects, allowing us to exclude
global model 1 as the most parsimonious error structure. Global model
3 produced a lower model deviance than global model 2 and the pos-
terior estimates of the standard deviation of the random effect trap were
near zero when estimated with global model 1 offering additional
support for global model 3 as the best error structure (See Appendix E).
Thus, we used global model 3 for the remaining analyses in this paper.
This model included the random effects abun and cam and excluded the
random effect trap (Table 3).

Most of the covariates evaluated with global model 3 had a statis-
tically significant influence on abundance or catchability (Table 4). We
found that the strongest determinants of sub-population abundance
(ns t, , equation 3) were the latitude, longitude, depth, and percent hard-
bottom substrate at the sample site (Fig. 3, Table 4). However, the in-
teraction between the latitude and longitude of the location was also a
strong influencer (Fig. 3, Table 4). The only covariates of abundance
that were not statistically different than zero were the main effect of
depth (dep, 06 , Table 4) and the bottom relief at the site (rel, 08 ,
Table 4). The catchability of the chevron trap was found to be strongly
related to the amount of time the trap was set (E, > 01 , Table 4) and
its square (E2, < 02 , Table 4). This relationship suggests that the
number of R. aurorubens captured increases with trap soak time to a
maximum (at ∼110min of soak time), beyond which the catch declines
(Fig. 4a). Temperature and its square (temp 3 5 and temp2 4 6,
Table 4) defined a pattern in catchability for both the chevron trap and
cameras that stayed fairly constant at lower temperatures and increased
rapidly at temperatures greater than ∼25 °C (Fig. 4b); however, this
pattern was less pronounced for the camera (Fig. 5a). Current direction
influenced the catchability of both the chevron trap and camera ( 6, 7,

3, and 4, Table 4) but was a stronger effect for the camera (Figs. 4c
and 5 c). For both gears, the lowest catchability was when the current
direction was towards the mouth of the trap and camera lens, while it
was the highest when the current direction was away from the trap
mouth and camera lens (Fig. 4c and 5 c). Finally, higher levels of tur-
bidity increased the catchability of the camera (Table 4, Fig. 5b), but
had no influence on chevron trap sampling efficiency (Table 4).

Fig. 2. The bias of simulated covariate effect parameters (a) and fishery index
(b) posterior distributions. Posterior samples were derived by fitting the data-
generating model to 200 simulated 20-year data sets.

Table 3
Bayesian p-values for model fit evaluation. Each model includes or excludes site
level random effects in the abundance ( abun), trap ( trap), and camera ( cam) sub-
models. The Bayesian p-value is the output metric of a posterior-predictive
check where a value of 0.5 indicates perfect fit of the model to the data and
values approaching zero or one indicate under- or over-dispersion of the data
relative to model predictions, respectively.

# Random effects included in model Model deviance Bayesian p-value

Camera Trap

1 abun, trap, cam 31511.1 0.33 0.49
2 abun, trap 31487.2 0.11 0.67
3 abun, cam 31281.3 0.33 0.48
4 trap, cam 31741.2 0.99 0.71
5 abun 120003.7 0.02 0.67
6 trap 3081507.0 1.00 0.64
7 cam 183413.1 1.00 1.00
8 None 3218795.0 1.00 1.00
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Our model regularization procedure resulted in a reduced model
with the effective removal of nine covariates relative to the global
model (wj < <0.5, Table 4). For example, the three non-statistically
significant covariates (i.e. 6, 8, and 5, Table 4) had wj values equal to
zero. Additionally, six statistically significant covariates (i.e. 5, 6, 7,

3, 4, and 5) were effectively removed from the model with wj values
≤ 0.23. Although statistically different than zero in the global model,
these covariates tended to have small effects sizes with relatively high
levels of uncertainty (Table 4). We found that the value of several
covariates with high inclusion probabilities (i.e. w 1.00j ) differed
between the global and reduced model (i.e. 1, 3, 4, 2, Table 4). This
is likely a result of some level of multicollinearity among covariates
(particularly for latitude and longitude covariates). Our index

generated from the reduced model tended to be equally precise as the
index generated from the global model with an average coefficient of
variation of 0.40 (range across years= 0.35, 0.52) and 0.42 (range
across years= 0.36, 0.51), for the reduced and global model, respec-
tively. The observed different of 0.02 is likely not large enough to be
biologically relevant.

Our index of R. aurorubens suggests high annual variation in abun-
dance (Fig. 6a). For example, our model predicted a nine-fold increase
in abundance between 1990 and 1991. After 1991, annual variation in
abundance ranges between a 168% increase in 1994 and an 87% de-
crease in 2003. This level of variation was fairly consistent across the
time series (Fig. 6a). The index also suggests a linear decline in R.
aurorubens since the 1990s. A bootstrapped slope of this decline on the
log scale was statistically negative (=−0.60, 95% CI=−0.69, −0.51,
Fig. 6b) and suggests that R. aurorubens are currently (2016) at about
16% of their average abundance in the early 1990s (i.e. 1990–1995).

The SSM index described a very similar pattern in abundance to the
index generated from the methods of Conn (2010); however, there were
some differences (Fig. 6c). For example, the Conn index had a smaller
average coefficient of variation than the SSM index (Conn=0.35,
SSM=0.40) and demonstrated some differences in year-to-year var-
iation in the index, however these differences were subtle (Fig. 6a and
b). Most notably, the SSM index described a stronger pattern of decline
across the time frame of the data than the Conn index. The boot-
strapped slope of the Conn index was statistically different than zero
but nearly half the value of the SSM index (=−0.36, 95% CI=−0.49,
−0.24, Fig. 6d). This decline suggests that R. aurorubens in 2016 are at
approximately 33% of their mean abundance in 1990–1995, which is
over twice the value predicted by the SSM index.

4. Discussion

We developed a state-space model that integrates data from mul-
tiple gears that are non-independent relative to the sampling process
into a single fisheries index. We demonstrated its use for indexing R.
aurorubens abundance from paired count data derived from underwater
video cameras and catch data from traditional fisheries-independent
baited traps. The method provides a means to account for random and
systematic variation in the catchability of both sampling gears and
adjusts for aspects of non-proportionality due to changes in the spatial
frame of sampling expected when monitoring programs are developing.
The model produced unbiased estimates of meta-population level re-
lative abundance when the model is correctly specified and demon-
strated good fitting properties. We see this modelling approach as a
flexible tool that has the potential to be useful for generating fisheries
indices for stock assessment for a variety of fish species sampled with
paired non-independent gears, particularly traditional gears paired with
underwater video cameras.

Table 4
Covariate parameter posterior summaries. Posterior means and credible inter-
vals are derived from posterior samples of the full model prior to model re-
duction. The asterix after the parameter sybol indicates covariates that are
statistically different than zero at = 0.05. Variable definitions are presented in
Table 1. The column labeled ‘Mean (SSVS)’ is the mean of the posterior dis-
tribution with induced shrinkage via the Stochastic Search Variable Selection
procedure (SSVS) and the column labeled ‘wj’ is the parameter inclusion in-
dicator variable.

Variable Parameter Mean 95% Credible intervals Mean (SSVS) wj

Abundance
lat 1* −1.38 −2.03, −0.71 −1.86 1.00
lat2 2* −1.02 −1.27, −0.76 −1.00 1.00
lon 3* 0.80 0.24, 1.35 1.24 1.00
lon2 4* −1.03 −1.33, −0.74 −0.64 1.00
lat:lon 5* 0.79 0.29, 1.32 0.09 0.12
dep 6 0.12 −0.04, 0.29 0.00 0.00
dep2 7* −0.15 −0.19, −0.1 −0.14 1.00
rel 8 0.04 −0.33, 0.39 0.00 0.00
sub 9* 0.61 0.50, 0.73 0.60 1.00

Trap
E 1* 4.65 2.86, 6.47 4.83 1.00
E2 2* −2.92 −4.28, −1.6 −3.05 1.00
temp 3* 0.81 0.71, 0.91 0.72 1.00
temp2 4* 0.11 0.09, 0.13 0.10 1.00
turb 5 0.04 −0.21, 0.28 0.00 0.00
dir1 6* 0.63 0.32, 0.97 0.10 0.23
dir2 7* 0.35 0.06, 0.64 0.00 0.00

Camera
turb 1* 0.78 0.49, 1.03 0.79 1.00
dir1 2* 1.06 0.72, 1.43 0.59 1.00
dir2 3* 0.41 0.06, 0.76 0.00 0.00
temp 4* 0.28 0.13, 0.42 0.02 0.11
temp2 5* 0.05 0.00, 0.11 0.00 0.00

Fig. 3. The predicted response of sub-population abundance to spatial covariates. The grey region represents 95% Bayesian credible intervals.
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One of the key strengths of the SSM model is its ability to account
for variation in catchability for both sampling gears. The importance of
the covariates of catchability was highlighted by our SSVS model reg-
ularization procedure that indicated the optimal predictive model in-
cluded many of these covariates. Furthermore, it is important to note
the advantage that multiple sampling gears provide in addition to
covariates when estimating parameters of state-space models. The ad-
dition of multiple gears, and thus, multiple observation sub-models to
the SSM provides contrast between the residual error of each gear and
the covariates that describe it. This contrast between patterns in

residual error provides greater information for the model to disentangle
process error from observation error. For example, when relative catch
rates of the gears deviate from the expected value differently, at least
one of these deviations must be due to observation error. Alternatively,
when only one observation sub-model is included in the SSM, the
pattern in the residual and the a priori choice of covariates to describe it
are the only sources of information that the model has to distinguish
observation error from process error. Furthermore, it is the inclusion of
multiple sampling methods that allows a model that assumes in-
dependence of the index among years to be identifiable, which is a

Fig. 4. The predicted response of chevron trap sampling efficiency to sampling
and environmental covariates. The grey region represents 95% Bayesian cred-
ible intervals.

Fig. 5. The predicted response of video camera sampling efficiency to en-
vironmental covariates. The grey region represents 95% Bayesian credible in-
tervals.
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desirable option when the index will be further used to fit a stock as-
sessment population dynamics model. With only a single observation
model, a more confining structure must be imposed on the index to
obtain identifiability, such as a Markovian temporal process commonly
applied in state-space models (e.g. Clark and Bjornstad, 2004; Jiao
et al., 2009). Furthermore, greater contrast between the variation in
catchability of the gears will provide the most informative data and
likely result in greater index precision. Thus, the inclusion of multiple
gears can be quite advantageous in this context.

In our case, the direction of the covariate effects on the observation
sub-models tended to be consistent with previous research on the
sampling efficiency of these gears (Bacheler et al., 2013b, c; Coggins
et al., 2014; Shertzer et al., 2015). This comes as no surprise because we
based our choice of covariates, in part, on these studies. For example,
we found a dome shaped relationship between trap soak time and
catchability that resulted in a maximum catch at about 110min of soak
time. A similar relationship has been found for other reef fish species
such as black sea bass (Centropristis striata) and is likely the result of
entry and exit rates of fish into and out of the trap that change through
time inversely proportional to each other (Bacheler et al., 2013c;
Shertzer et al., 2016). Similarly, we found that the effect of temperature
on both the trap and camera was positive with the appearance of a
threshold-like response at ∼25 °C. Bacheler et al. (2014) found a
comparable relationship between chevron trap catch of R. aurorubens,
with a threshold at ∼20 °C, but did not detect this relationship for
cameras. We observed a positive relationship between camera counts of
R. aurorubens and turbidity which has also been observed for red
snapper (Lutjanus campechanus, Coggins et al., 2014). Although this
response may be counterintuitive, our data filtering process was similar
to Coggins et al. (2014), which removed high turbidity data points that
demonstrably impacted the counting of fish in video frames; thus, this
effect may be a result of fish behavioral changes with variation in water
clarity (e.g. McMahon and Holanov, 1995; De Robertis et al., 2003;

Andersen et al., 2008).
Another important benefit of our SSM is that it can account for shifts

in the sampling frame from year to year. For example, over the length of
time of the Southeast Reef Fish Survey sampling program, the number
of chevron traps set each year has systematically increased as the
program expanded (particularly since 2011). The expanding of the
program has led to changes in the distribution of traps relative to la-
titude, longitude, and depth (Fig. 7a– c), resulting in variability in the
mean covariate values among years with apparent systematic increases
in depth and decreases in latitude over the life of the program (Fig. 7).
Our model accounts for this shift by modeling the index It at a fixed
point in space (relative to latitude and longitude) and for a fixed depth.
The limitation of this method is that it only accounts for the shift in the
sampling frame relative to these covariate relationships. Thus, any
unaccounted for systematic spatial patterns in abundance that coincide
with the expansion of sampling may still result in a biased index. This
provides high incentive to determine the important drivers and struc-
ture of the spatial distribution when using this method, which could
include environmental covariates as well as modeling a spatially au-
tocorrelated residual. In our case, inspection of the residual did not
reveal any non-random patterns in the spatial distribution relative to
the covariates and the expanding sampling design, nor did calculating
the index from only the sample locations contained within a core area
that was sampled every year produce an index substantially different
from the one presented in Fig. 6a. These two diagnostics suggest low
risk of a biased index due to shifting sampling frame, in our case (see
Appendix F for details about the diagnostics). However, unaccounted
for changes in the average abundance due to shifts in the sampling
frame or shifts in the species distribution should be carefully considered
when applying this method. This is particularly the case if the count
data are derived from a fishery-dependent source, where preferential
sampling that is often related to fish density is common (Pennino et al.,
2018). As accounting for preferential sampling in the analysis of count

Fig. 6. The predicted annual relative abundance of the vermilion snapper meta-population using our State-Space Model (a) and the methods of Conn (2010) (c). The
grey region represents 95% Bayesian credible intervals. The dashed line represents the estimated linear trend. Panels (b) and (d) represent the probability dis-
tributions of the bootstrapped linear trend for each index.
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data can be analytically challenging (e.g. Conn et al., 2017; Pennino
et al., 2018), we recommend, first, that appropriate spatial designs be
used for sampling and, when this is not possible, that appropriate di-
agnostics be used to evaluate the risk of induced bias.

4.1. Model extensions

There are several possible extensions to the SSM that would allow it
to accommodate various idiosyncrasies of different data sets worth
discussing. One prominent extension is to accommodate various levels
of zero inflation in the sub-population model. Our example data set was
zero inflated with 75% and 70% zeros in the trap catches and camera
counts, respectively. We approximated the structural component of
these zeros with the log-normal random effect abun; however, this
method makes explicit the assumption that these potential zeros are
actually very small non-zero values. Our model fit test suggested that
this model structure provided adequate fit to our example data; how-
ever, another option is to model a zero-inflated spatial abundance
process by including a shared Bernoulli variable in both (or all) ob-
servation models as:

+ +( )c z ePoissons t
trap

s t
n cov

, ,
log( )s t t j

trap
s t
trap

, , , (8)

+ +( )c z ePoissons t
cam

s t
n cov

, ,
log( )s t t j

cam
s t
cam, , , (9)

where zs t, is a latent random variable distributed as,
z Bernoulli( )s t s t, , . The Bernoulli probability of a non-zero abundance
could be modeled independently for each year, as a function of a set of
spatial covariates with a logit link, or as a function of covs t

n
, to create a

formal relationship between the spatial abundance and occurrence
processes (e.g. Smith et al., 2012). Additionally, a zero-inflated ob-
servation process could be modelled by specifying unique Bernoulli
processes for each observation sub-model.

Another prominent extension would be to model spatiotemporal
variation in patterns in abundance more explicitly. For example, ap-
plying a multivariate-normal prior to s t

abun
, to explicitly model spatial

auto-correlation could be used to improve the predictive potential of
the model and to better account for changes in the spatial distribution
of sampling among years. Furthermore, specifying covariate effects of
the spatial abundance process as random effects across years could be
used to evaluate and account for non-stationarity in these relationships
through time. These are only a few examples of potentially useful ex-
tensions to our model that could improve its application to various
settings. Thus, we see this model as a foundation that could be easily
extended to accommodate the nuances of a variety of data structures
and contexts.

Fig. 7. Impact of changing sampling frame on the predicted relative abundance at the meta-population level. Panel (a)–(c) represent the mean and range in latitude,
longitude, and depth across samples collected each year. Panel (d) is the model predicted increases to the fishery index expected when the spatial changes on panel
(a)–(c) are not accounted for. The grey region on panel (d) represents 95% Bayesian credible intervals of the predictions and the dashed line is the log-linear trend of
the predictions.
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4.2. Management implications

The application of our model to R. aurorubens revealed a systematic
decline in abundance across the time period of 1990–2016. This decline
was similar to, but stronger than the decline described by the Conn
index (Conn, 2010). This discrepancy between the two indices is in the
direction that would be predicted given the systematic expansion of the
sampling design into latitudes, longitudes, and depths of greater
abundance, and given that the Conn index does not account for this
systematic expansion, while the SSM does (Fig. 7d). The difference also
suggests that the R. aurorubens stock may have a lesser ability to
compensate for the reductions in density due to harvest (i.e. lower
productivity) than would be indicated by the Conn index. It is difficult
to predict the effect this would have on management recommendations;
however, we may expect the use of the SSM in a formal stock assess-
ment to result in more conservative harvest regulations to meet man-
agement targets such as Maximum Sustainable Yield (Beverton and
Holt, 1957) and maintain acceptable levels of risk of overfishing (Zhou
et al., 2016). Although an explicit comparison between the outcomes of
formal stock assessments with each index would be necessary to know
this for sure.
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