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A B S T R A C T

Fisheries scientists provide stock, ecosystem, habitat, and climate assessments to support interdisplinary fisheries
management in the US and worldwide. These assessment activities have evolved different models, using different
review standards, and are communicated using different vocabulary. Recent research shows that spatio-temporal
models can estimate population density for multiple locations, times, and species, and that this is a “common
currency” for addressing core goals in stock, ecosystem, habitat, and climate assessments. I therefore review the
history and “design principles” for one spatio-temporal modelling package, the Vector Autoregressive Spatio-
Temporal (VAST) package. I then provide guidance on fifteen major decisions that must be made by users of
VAST, including: whether to use a univariate or multivariate model; when to include spatial and/or spatio-
temporal variation; how many factors to use within a multivariate model; whether to include density or
catchability covariates; and when to include a temporal correlation on model components. I finally demonstrate
these decisions using three case studies. The first develops indices of abundance, distribution shift, and range
expansion for arrowtooth flounder (Atheresthes stomias) in the Eastern Bering Sea, showing the range expansion
for this species. The second involves “species ordination” of eight groundfishes in the Gulf of Alaska bottom trawl
survey, which highlights the different spatial distribution of flathead sole (Hippoglossoides elassodon) relative to
sablefish (Anoplopoma fimbria) and dover sole (Microstomus pacificus). The third involves a short-term forecast of
the proportion of coastwide abundance for five groundfishes within three spatial strata in the US West Coast
groundfish bottom trawl survey, and predicts large interannual variability (and high uncertainty) in the dis-
tribution of lingcod (Ophiodon elongatus). I conclude by recommending further research exploring the benefits
and limitations of a “common currency” approach to stock, ecosystem, habitat, and climate assessments, and
discuss extending this approach to optimal survey design and economic assessments.

1. The broad scope for spatio-temporal models

Over the past hundred years, lawmakers in the United States and
worldwide have entrusted fisheries scientists with an increasing role in
informing fisheries management policy (Smith, 2007). The US Mag-
nuson-Stevens Act (with subsequent amendment and interpretation)
stipulates a role for biological information in several fisheries man-
agement activities including: setting an upper limit on allowable cat-
ches (Methot et al., 2014); identifying the likely impact of ecosystem
components on optimal yield (Patrick and Link, 2015); and the desig-
nation of essential fish habitat (Rosenberg et al., 2000). Providing sci-
entific information regarding the likely impact of climate change on
changing fish productivity is also a growing task in many US regions
and worldwide (Hare et al., 2016). Scientific information is therefore

needed to assess stock status and productivity, ecosystem considera-
tions, essential habitat, and climate impacts.

Stock, ecosystem, habitat, and climate assessments have historically
been conducted using a wide variety of model types (Link and
Browman, 2014), in part because these different assessments aim to
measure different biological quantities, ranging from: the maximum
sustainable yield for a population (stock assessment); the impact of
species interactions on population productivity (ecosystem assessment);
the richness and productivity of different locations (habitat assess-
ment); and the likely impact of changing climate on fish productivity
(climate assessment). However, these quantities can all be estimated by
developing a model using a single common currency: the population
density of one or more species at multiple locations within an eco-
system and how this changes over time. The quantities sought by
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different assessment types can then typically be computed from esti-
mates of population density and dynamics for multiple species across
space and time.

Fortunately, population density and its change over time for mul-
tiple locations, times, and species can now be efficiently estimated
using spatio-temporal models, an emerging class of statistical model
that estimates variation in one or more response variable (wind speed
and temperature; human exposure to diseases; density of invasive
species) across multiple locations and time periods (e.g., Cressie and
Wikle, 2011). Critically, these models predict a response variable and
its evolution over time (for example, weather conditions in the Pacific
Northwest) while acknowledging the potential role for known processes
(to continue our example, physics for atmospheric dynamics), un-
measured processes (unknown initial conditions for the atmosphere),
and imperfect system measurements (mis-calibrated sensors in wind
gauges). Spatio-temporal models follow a long tradition of “state-space
models” that incorporate both process variability and measurement
errors in fisheries models (e.g., Walters and Hilborn, 1978;
Gudmundsson, 1994; Punt, 2003), but extend this tradition by ac-
counting for the Law of Geography: the tendency for process and/or
measurement errors to be more similar at nearby sites than geo-
graphically distant locations (Tobler, 1970).

Recent research in fisheries science indicates that spatio-temporal
models can provide useful input to stock, ecosystem, habitat, and cli-
mate assessments conducted in the US and worldwide. In particular, a
body of recent research has shown how the Vector-Autoregressive
Spatio-temporal (VAST) package available in the R statistical environ-
ment (R Core Team, 2017) can be used to answer many common
questions in these multiple assessment types (Table 1). Using a single
software package for multiple assessment types has several potential
benefits, e.g., sharing expertise and review-standards between teams,
sharing costs for model development and testing, and improved com-
munication and corroboration of results within and among teams.

However, there is little guidance available to researchers who would
like to apply the VAST package. In this paper, I therefore provide gui-
dance on decisions (including a decision tree) when using a VAST
model for different assessments types. To do so, I first review the history
of the VAST package, with the aim of justifying its current structure and
default settings. I then list fifteen decisions that must be made in every
application, while providing guidance regarding default decisions for
different assessment types. Finally, I demonstrate this decision tree via
application to three case studies, representing index standardization

(stock assessment), species ordination (ecosystem assessment), and
forecasting spatial distribution (climate assessment). I then conclude by
reviewing potential future research to extend spatio-temporal models to
emerging demands for fisheries science, including economic assess-
ments and optimal survey design.

2. Introduction to VAST

The vector autoregressive spatio-temporal (VAST) model can be
implemented using package VAST that is publicly available (www.
github.com/james-thorson/VAST) within the R statistical environ-
ment.2 Package VAST includes several forms of documentation to help
analysts, including: (1) Doxygen documentation that can accessed
through the standard R-help interface when the library is loaded within
R3; (2) a “VAST model structure and user interface” document that
describes the model equations while linking them to the R interface
(www.github.com/james-thorson/VAST/manual); (3) two separate
Rmarkdown “tutorials” that provide annotated code illustrating how to
run VAST for single- or multi-species example using real-world data
(www.github.com/james-thorson/VAST/examples); (4) a searchable
“issue tracker” available through GitHub; and (5) peer-reviewed articles
describing development, testing, and applications for each feature. I
include a list of all model equations and notation (Tables 2 and 3), and
the decision guidance (including decision tree) that is presented here
will be maintained as a separate “living document” to complement
these existing help-file, model-structure, R-markdown example, issue-
tracking, and peer-reviewed resources.

The initial development of VAST was motivated by applied pro-
blems for the Pacific Fisheries Management Council (PFMC), which
manages fisheries in federal waters off the US West Coast. The
Northwest Fisheries Science Center uses a spatially-stratified bottom
trawl survey to sample groundfish densities for this region (Keller et al.,
2017). One major product from this effort is an “index of abundance”
that is intended to be proportional to population biomass for many
individual species, where a stock assessment model is then fitted to

Table 1
Goals, objectives, and questions that can be addressed using the VAST package (or its precursors), along with example references for each question.

Assessment type Common activities Questions Example reference

Stock assessment Estimate trends in abundance Is abundance increasing after management changes? (Thorson et al., 2015b)
Standardize fishery-dependent catch per unit
effort (CPUE)

How to disentangle fishery targeting from population
abundance when analyzing fishery CPUE data?

(Thorson et al., 2017a)

Estimate proportion at size/age/sex from
subsampling data

What is the proportion of abundance in different size/age
classes?

(Thorson and Haltuch, 2018)

Habitat assessment Identify habitat associations Is body size greater in areas with higher primary productivity? (Thorson, 2015a)
Identify preferred habitat for multiple stages Where do juvenile or adult individuals typically occur? (Kai et al., 2017)
Estimate range expansion/contraction Does occupied habitat expand during stock rebuilding? (Thorson et al., 2016c)

Climate assessment Estimate distribution shifts Is the distribution of species changing interannually or
directionally?

(Thorson et al., 2016b)

Forecast distribution under future climate
conditions

How will distribution change under future temperature
scenarios?

(Thorson, 2018)

Attribute historical distribution shift to multiple
hypothesized drivers

How much of previous distribution shifts is caused by
temperature or size-structure?

(Thorson et al., 2017b)

Ecosystem assessment Identify species with similar dynamics
(“ordination”)

Which species are consistently co-occur within the ecosystem? (Dolder et al., 2018; McClatchie
et al., 2018)

Estimate species distribution/density for use as
input to ecosystem model

How best to approximate species interactions using information
about co-occurrence?

(Grüss et al., 2018a; Grüss et al.,
2018b)

Visualize dominant patterns of ecosystem
dynamics

How is an ecosystem changing over time? (Thorson et al., 2016a)

Estimate covariation between multiple
components of an ecosystem

Are fishes consistently associated with biogenic or abiotic
ecosystem features?

(Thorson and Barnett, 2017)

2 VAST automatically installs its dependencies including package TMB. For
successful usage, TMB requires installation of Rcpp tools, which on a windows
operating system requires installation of Rtools. Further details regarding TMB
can be found in its repository: www.github.com/kaskr/adcomp.
3 For example, users can read an overview of the package using:
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Table 2
Equations defining the model VAST (while ignoring features that are implemented but have not yet been documented).

Name Equation Num
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= = =
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Exponential
correlation
function
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overdispersion
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Where r1* and r2
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2.18

Varimax rotation = = =B argmax b c c( ( 1, 2) )B c
nc

c
nc

2 1 1 1
2

given that B is a rotation matrix
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Where V and are, respectively, the first nf eigenvectors and eigenvalues of

=B L Linv ( )*

Where Linv ( )* is the Moore-Penrose pseudo-inverse of L*
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each abundance-index to estimate changes in population density over
time. Scientists in this region have used a model-based framework to
develop the abundance-index in part because the survey is conducted
using equipment and staff from contracted fishery vessels and previous
research showed the importance of accounting for differences in
catchability among vessels (Helser et al., 2004). Index standardization
for 2013 PFMC stock assessments was conducted using an R package
nwfscDeltaGLM, and subsequent research using this package suggested
that treating the interaction of spatial stratum and year as a random
effect was a robust approach to account for spatial variability and low
sample sizes in some strata (Thorson and Ward, 2013). However, a
random interaction of stratum and year still required defining spatial
strata a priori, and this approach did not include any information re-
garding which strata were adjacent to one another. Subsequently,
Shelton et al. (2014) demonstrated that a spatially-explicit model could
explain a substantial portion of residual variation by accounting for
variable population density within existing spatial strata, but this ap-
proach required long run-times relative to spatially-stratified methods.

Table 3
Definition of mathematical notation, including the symbol used, its type (Index,
Data, fixed effects “FE”, random effects “RE”, intermediate quantity computed
internally “IQ”, and derived quantities that are outputted for users “DQ”), and
its dimension.

Name Symbol Type Dimensions

Observation number i Index –
Spatial location number s Index –
Time interval number t Index –
Category number c Index –
Factor number f Index –
Habitat covariate number p Index –
Catchability covariate number k Index –
Stratum number l Index –
Index number for measures of center-of-

gravity
m Index –

Index number for other book-keeping z Index –
Sample response bi Data ni
Location for each sample si Data ni
Time interval for each sample ti Data ni
Category for each sample ci Data ni
Overdispersion level for each sample vi Data ni
Area covered by each sample ai Data ni
Distance between locations sn and sm d s s( , )n m Data ×n ns s
Habitat covariates for each location, time,

and variable
X s t p( , , ) Data × ×n n ns t p

Catchability covariates for each sample and
variable

Q i k( , ) Data ×n ni k

Area associated with location in each stratum a s l( , ) Data ×n ns l
Statistic for each location used to calculate

center of gravity
z s m( , ) Data ×n ns m

Intercept for 1st linear predictor c t( , )1 FE/RE ×n nc t
Intercept for 2st linear predictor c t( , )2 FE/RE ×n nc t
Loadings matrix for spatial covariation for 1st

linear predictor
L c f( , )1 FE ×n nc 1

Loadings matrix for spatial covariation for
2nd linear predictor

L c f( , )2 FE ×n nc 2

Loadings matrix for spatio-temporal
covariation for 1st linear predictor

L c f( , )1 FE ×n nc 1

Loadings matrix for spatio-temporal
covariation for 2nd linear predictor

L c f( , )2 FE ×n nc 2

Loadings matrix for overdispersion
covariation for 1st linear predictor

L c f( , )1 FE ×n nc 1

Loadings matrix for overdispersion
covariation for 2nd linear predictor

L c f( , )2 FE ×n nc 2

Impact of habitat covariates on 1st linear
predictor

c t p( , , )1 FE × ×n n nc t p

Impact of habitat covariates on 2nd linear
predictor

c t p( , , )2 FE × ×n n nc t p

Impact of catchability covariates on 1st linear
predictor

k( )1 FE nk

Impact of catchability covariates on 2nd

linear predictor
k( )2 FE nk

Parameters governing residual variation c z( , )m
2 FE ×n 2c

Decorrelation rate for 1st linear predictor 1 FE 1
Decorrelation rate for 2nd linear predictor 2 FE 1
Autocorrelation for intercepts of 1st linear

predictor
1 FE 1

Autocorrelation for intercepts of 2nd linear
predictor

2 FE 1

Conditional variance for intercepts of 1st

linear predictor
1

2 FE 1

Conditional variance for intercepts of
2ndlinear predictor

2
2 FE 1

Autocorrelation for spatio-temporal
covariation of 1st linear predictor

1 FE 1

Autocorrelation for spatio-temporal
covariation of 2nd linear predictor

2 FE 1

Parameters governing geometric anisotropy h z( ) FE 2
Spatial factors for 1st linear predictor s f( , )1 RE ×n ns 1
Spatial factors for 2nd linear predictor s f( , )2 RE ×n ns 2
Spatio-temporal factors for 1st linear

predictor
s f t( , , )1 RE × ×n n ns t1

Spatio-temporal factors for 2nd linear
predictor

s f t( , , )2 RE × ×n n ns t1

Overdispersion factors for 1st linear predictor v f( , )1 RE ×n nv 1

Table 3 (continued)

Name Symbol Type Dimensions

Overdispersion factors for 2nd linear
predictor

v f( , )2 RE ×n nv 2

1st linear predictor p i( )1 IQ ni
2nd linear predictor p i( )2 IQ ni
1st link-transformed predictor r i( )1 IQ ni
2nd link-transformed predictor r i( )2 IQ ni
Spatial correlation matrix for 1st linear

predictor
R1 IQ ×n ns s

Spatial correlation matrix for 2nd linear
predictor

R2 IQ ×n ns s

Anisotropy matrix H IQ ×2 2
Predicted density d s c t( , , )* DQ × ×n n ns c t

Index of abundance I c t l( , , ) DQ × ×n n nc t l
Center of gravity Z c t m( , , ) DQ × ×n n nc t m
Average density D c t l( , , ) DQ × ×n n nc t l
Effective area occupied A c t l( , , ) DQ × ×n n nc t l
Rotation matrix for spatial covariation for 1st

linear predictor
B 1 DQ ×n nc c

Rotation matrix for spatial covariation for
2ndlinear predictor

B 2 DQ ×n nc c

Rotation matrix for spatio-temporal
covariation for 1st linear predictor

B 1 DQ ×n nc c

Rotation matrix for spatio-temporal
covariation for 2ndlinear predictor

B 2 DQ ×n nc c

Rotation matrix for overdispersion
covariation for 1st linear predictor

B1 DQ ×n nc c

Rotation matrix for overdispersion
covariation for 2ndlinear predictor

B2 DQ ×n nc c

Rotated loadings matrix for spatial
covariation for 1st linear predictor

L c f( , )1
* DQ ×n nc 1

Rotated loadings for spatial covariation for
2nd linear predictor

L c f( , )2
* DQ ×n nc 2

Rotated loadings for spatio-temporal
covariation for 1st linear predictor

L c f( , )1
* DQ ×n nc 1

Rotated loadings for spatio-temporal
covariation for 2nd linear predictor

L c f( , )2
* DQ ×n nc 2

Rotated loadings for overdispersion
covariation for 1st linear predictor

L c f( , )1
* DQ ×n nc 1

Rotated loadings for overdispersion
covariation for 2nd linear predictor

L c f( , )2
* DQ ×n nc 2

Rotated spatial factors for 1st linear predictor s f( , )1
* DQ ×n ns 1

Rotated spatial factors for 2nd linear predictor s f( , )2
* DQ ×n ns 2

Rotated spatio-temporal factors for 1st linear
predictor

s f t( , , )1
* DQ × ×n n ns t1

Rotated spatio-temporal factors for 2nd linear
predictor

s f t( , , )2
* DQ × ×n n ns t1

Rotated overdispersion factors for 1st linear
predictor

v f( , )1
* DQ ×n nv 1

Rotated overdispersion factors for 2nd linear
predictor

v f( , )2
* DQ ×n nv 2
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VAST then grew out of several software packages developed by col-
laborative research over the past decade. Most importantly, Kristensen
et al. (2014) demonstrated new statistical software for mixed-effects
models, which would subsequently be called Template Model Builder
using package TMB (Kristensen et al., 2016). Similarly, the R-INLA
package (Illian et al., 2012) had recently demonstrated a computation-
ally efficient “stochastic partial differential equation” (SPDE) approx-
imation to spatio-temporal processes (Lindgren et al., 2011). Thorson
et al. (2014b) documented how to efficiently implement the SPDE ap-
proximation within the new TMB software, and Thorson et al. (2015b)
subsequently introduced an R package SpatialDeltaGLMM that could fit
single-species index standardization models while including both spatial
variation that is constant among years (spatial effects) and spatial var-
iation that varies among years (spatio-temporal effects). Simultaneously,
Thorson et al. (2015a) introduced spatial factor analysis (SFA, using
package Spatial_FA), which could estimate covariation for multiple spe-
cies in a single time interval, and Thorson et al. (2016a) extended this to
spatial dynamic factor analysis (SDFA, using package SpatialDFA), which
could account for both spatial and spatio-temporal covariation. Finally,
Thorson and Barnett (2017) merged all features from SpatialDeltaGLMM,
Spatial_FA, and SpatialDFA within a single R package, which they called
the vector autoregressive spatio-temporal (VAST) model. VAST has
subsequently merged features for estimating species interactions from
package MIST (Thorson et al., 2017c), although we do not discuss those
features here. This package continues to evolve to include new features,
but is generally designed to be backwards compatible (i.e., previous code
can be re-run with no or minimal modifications to accommodate sub-
sequent updates). Analysts are recommended to use package VAST for
any task that might previously have involved SpatialDeltaGLMM, Spa-
tial_FA, SpatialDFA, and MIST packages.

Since the development of package SpatialDeltaGLMM in 2015, VAST
and its precursors have been used for both research and operations, and
I briefly summarize when it has been presented to fisheries managers
and/or peer-reviewers hired to review materials for fisheries managers
(Table 4). By this measure, usage of VAST had a slow start (with 4
reports in 2015–2016), but subsequently has seen increased use (with
13 reports in 2017–June 2018). This includes inclusion in nine stock
assessments in the “base case” model and six stock assessments in a
“sensitivity” model, as well as for seven taxa within two ecosystem-
considerations reports. So far VAST has had little usage within habitat
or climate assessments, although this could partly reflect a lower annual
rate of reports for habitat and climate assessments. Applications for

fisheries management are limited to the Gulf of Alaska, Eastern Bering
Sea, US West Coast, and South Africa.

3. VAST design principles

VAST represents four main design principles. Although there are
many other implementation details that distinguish VAST from pre-
vious index-standardization methods, I believe that these four design
principles represent the features that any future replacement should
include.

3.1. Area weighting

VAST is built around the principle that analysts typically seek to
estimate variables occurring over a pre-defined spatial domain. VAST
predicts population density for all locations within this spatial domain,
and then predicts derived quantities (e.g., total abundance, spatial
concentration, or the centroid of spatial distribution) by aggregating
population density across the spatial domain while weighting density
estimates by the area associated with each estimate (see discussion of
year x area interactions in Maunder and Punt (2004)). Ideally, this
spatial domain represents the spatial boundaries for a given stock,
ecosystem, habitat, or climate assessment. In this case, the estimate of
total abundance can be treated as an “abundance index” that is directly
comparable to other data sources and model estimates of population
biomass developed at this spatial scale.

3.2. Distinct catchability and habitat covariates

VAST makes an explicit distinction between habitat and catchability
covariates. Both types of covariates contribute to variation in expected
catch rates, but VAST uses only habitat covariates when predicting
population density within the spatial domain. VAST therefore “controls
for” the effect of catchability covariates (i.e., filters out these compo-
nents of covariation) and “conditions upon” the effect of habitat cov-
ariates (i.e., uses information about habitat covariates to improve per-
formance when predicting population density). Previous index
standardization methods have typically involved fitting a regression
model including a year intercept and covariates, and then treated the
year intercept as the abundance index. This approach implicitly treated
all covariates as “catchability covariates”, even when these variables
were likely associated with increases in local population density. By

Table 4
List of reports (including taxa, region, year, type, usage and reference) using VAST or its precursors for documents presented specifically to fisheries management
agencies or authorities, including whether the report is regarding ecosystem or single-species management decisions (USWC: US West Coast; GOA: Gulf of Alaska;
EBS: Eastern Bering Sea).

Year Region Type Taxon Usage Reference

2015 USWC Stock Canary Base (Monk et al., 2018)
2015 USWC Stock Darkblotched Base (Gertseva et al., 2015)
2015 GOA Stock Dusky Sensitivity (Lunsford et al., 2015)
2016 EBS Stock Walleye pollock Sensitivity (Ianelli et al., 2016)
2017 USWC Stock Lingcod Base (Haltuch et al., 2017)
2017 USWC Stock Yelloweye Base (Gertseva and Cope, 2017)
2017 USWC Stock Pacific Ocean perch Base (Wetzel et al., 2017)
2017 USWC Stock Arrowtooth Base (Sampson et al., 2017)
2017 South Africa Stock Hake complex Sensitivity (Fairweather et al., 2017)
2017 EBS Stock Blue King crab Sensitivity (The Plan Team for the King and Tanner Crab Fisheries of the Bering Sea and

Aleutian Islands, 2017)
2017 South Africa Stock Groundfish complex Base (Winker et al., 2017)
2017 GOA Stock Arrowtooth Sensitivity (Spies et al., 2017)
2017 EBS Ecosystem Forage fish, groundfish, jellyfish, salmon (4

documents)
Base (Moss et al., 2017)

2017 GOA Ecosystem Forage fish, groundfish, salmon (3 documents) Base (Moss et al., 2017)
2018 USWC Stock Bocaccio Sensitivity (He and Field, 2018)
2018 USWC Stock California scorpionfish Base (Monk et al., 2018)
2018 USWC Stock Yellowtail Base (Stephens and Taylor, 2018)
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enforcing an explicit distinction between habitat and catchability cov-
ariates, VAST seeks to eliminate the common ambiguity between ha-
bitat and catchability covariates. VAST typically cannot identify whe-
ther a given variable should be treated as affecting catchability or
density, and this decision generally requires theoretical insight from
analysts.

3.3. Condition on missing covariates

VAST estimates the effect of measured processes (habitat and
catchability covariates), approximates the effect unmeasured processes
(unobserved variables or processes that affect local density), and uses
both when predicting derived quantities. Previous research has ex-
plored algorithms for imputing unobserved processes (e.g., imputing
biomass in unsampled areas; Carruthers et al. (2011)), while VAST
approximates the net effect of unmeasured processes using spatially
correlated random effects. These random effects serve two main pur-
poses: (A) inclusion of random effects is used to represent the spatial
correlation in available data, which would otherwise invalidate statis-
tical tests for covariates or confidence intervals for derived quantities;
(B) predictions of these spatial random effects are a useful approx-
imation of the aggregate effect of unobserved variables and processes.
VAST predicts population density based on both habitat covariates and
spatial and spatio-temporal random effects, and in this way it “condi-
tions upon” the missing processes and covariates that inform these
random effects (Thorson and Ward, 2013; Shelton et al., 2014). I re-
commend further research comparing statistical imputation (using
random effects) and algorithmic imputation (using assumptions about
sampled locations), but in either case recommend careful consideration
of how this is done (also see Section 5: Dealing with Interactions in
Maunder and Punt, 2004).

3.4. Bridge between univariate and multivariate applications

Previous index-standardization models have generally focused on
single-species applications (univariate data). However, analysts will
need to model multiple species to interpret transitions in community
composition (Hovel et al., 2017), multiple sizes to interpret ontogenic
habitat shifts (Kristensen et al., 2014; Kai et al., 2017), and multiple
ages to expand age-composition samples (Hocking et al., 2018; Thorson
and Haltuch, In press). VAST allows analysts to explore simplified
models for individual species, but also to transition analyses to include
multiple species/age/size/stage categories whenever this becomes ne-
cessary.

4. Fifteen major decisions when using package VAST

Analysts must make many decisions when running VAST for a given
assessment process. Although these decisions are listed in the various
papers introducing new features of VAST (e.g., Table 1), there is no
single document providing guidance regarding all of these decisions or
how they relate to one-another. I therefore summarize these major
decisions, while noting the specific inputs used to implement decisions
in footnotes (for further details regarding software usage, please see the
User Manual and R help files). I also organize these decisions into a
decision tree (Fig. 1), where analysts can start either with inputs (data
characteristics) or outputs (desired quantities to estimate) and identify
relationships among major decisions.

4.1. Spatial domain used when calculating derived quantities

The first decision is what spatial domain to define. Many fishery
surveys use stratified-random sampling within a pre-defined domain,
and in this case the analysis will typically be restricted to that spatial
domain so that estimates of abundance are directly comparable to de-
sign-based indices. In other cases, analysts may analyze fishery catch-

per-unit-effort (CPUE) or other types of opportunistic data, where there
is no pre-defined spatial domain. VAST requires analysts to define the
area over which densities are to be extrapolated when calculating de-
rived quantities, and VAST installs an “extrapolation grid” defined for
surveys that have been previously analyzed. When analyzing data from
a region for which no “extrapolation grid” has already been developed,
VAST attempts to guess at an appropriate area by using all areas within
a specified distance from the nearest sample4.

When analyzing opportunistic data, I recommend that analysts de-
fine the area that is included in any stock assessment for that fishery as
spatial domain, even if there are no sampling data available for a
portion of that spatial domain. For example, fishery CPUE data are
often not available for all areas that are included in a stock assessment,
and VAST will have higher predictive uncertainty when predicting
density in these areas with low/zero sample sizes. The variance of many
derived quantities is an increasing function of the variance and covar-
iance for predicted density (Kass and Steffey, 1989). Consequently, the
resulting abundance index will generally be more precise in years
where a greater proportion of area had CPUE data available, and I
believe that this is a reasonable default behavior for any CPUE abun-
dance index. If opportunistic data only sample a very small portion of
the area occupied by a stock, then this is likely an indication that these
data are not appropriate to generate an abundance index for that stock.
In this case, I recommend integrating multiple data sources to achieve a
reasonable spatial coverage of the stock area (e.g., Grüss et al., 2017).

4.2. Which categories (species/sizes) to include

Next, analysts must decide which categories (species/size/age/
stage) are modeled. This decision can easily be revised later, but affects
subsequent decisions in this decision tree. I recommend starting with as
simple a model as possible (e.g., using several univariate models for a
multispecies analysis), and add model complexity gradually (in this
case, by transitioning to a multivariate model). This simple-to-complex
model building process is useful to diagnose issues, e.g., if a problem
arises when analyzing data for one particular category. An increase in
the number of categories generally increases model complexity
(number of possible model configurations to explore) and computa-
tional cost (model run time). I therefore recommend including multiple
categories only when it is likely useful to share information among
categories (Thorson and Barnett, 2017), or when study goals are in-
trinsically linked to a multivariate analysis, e.g., when seeking to esti-
mate covariation among species (Thorson et al., 2016a; Dolder et al.,
2018)5.

4.3. Identify whether to analyze encounter, abundance, and/or biomass-
sampling data

Analysts must decide whether to analyze encounter/non-encounter
(binary), abundance (count), or biomass (real-valued) data, and this
decision dictates what distribution and link-functions should be used
(see section 4.12). It is also possible to fit VAST using multiple data
types, and this feature is currently being tested (A. Grüss, personal
communication). Many fisheries analyses are conducted using popula-
tion biomass, and VAST uses a delta-model (Table 2, Eq. (2.5)) for
biomass-sampling data that separately estimates encounter-probability

4 Analysts specify an “extrapolation grid” that defines the spatial domain
using input ‘Region’ to function ‘FishStatsUtils::make_extrapolation_info’.
Inputting ‘Region=”Other’ generates an extrapolation grid based on the loca-
tion of sampling data and ‘FishStatsUtils::Prepare_User_Extrapolation_Data_Fn’
can be used to specify a user-defined extrapolation grid.
5 The user specifies the response (e.g., sampled biomass) for each sample

using vector `b_i`, where vector `c_i` indicates the category (species, age, etc)
for each sample. Both `b_i` and `c_i` are passed to `?VAST::Data_Fn`.
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and positive catch rates. Analysts may instead analyze abundance
(counts), and VAST uses a zero-inflated model (Eq. (2.6)) that sepa-
rately estimates the probability that sampling occurs in habitat where
the species will never occur (“zero-inflation probability”), and the ex-
pected abundance within occupied habitat (“abundance-density”).
VAST includes features for analyzing biomass-sampling data that does
not include zeros in one or more years, and also for count-data that is
not zero-inflated, and users are directed to the R-help documentation
for dealing with these instances. The delta-model and zero-inflated
models involve two separate “linear predictors” that are then trans-
formed to predict available data. Each linear predictor can include an
intercept, spatial and spatio-temporal variation, habitat and catch-
ability covariates, and a random effect representing overdispersion (see
section 5. Model Structure for a detailed explanation). Finally, VAST
has been fitted to encounter/non-encounter (binary) data, and in this
case it is only necessary to estimate parameters for one of the two linear
predictors (Grüss et al., 2017, 2018a). I recommend analyzing as many
data as are available, while accounting for differences in sampling de-
sign or sampling vessels as catchability covariates or vessel-effects (e.g.,
Dolder et al. (2018), see later sections for details).

4.4. Including spatial and/or spatio-temporal variation

Spatial autocorrelation (i.e., a spatial pattern in model residuals)
will often arises when a statistical model does not account for all of the
processes (either environmental drivers, or intrinsic biological dy-
namics) that drive autocorrelated variation in population density.
Proper statistical inference (testing significance of covariates, or esti-
mating confidence intervals for derived quantities) requires accounting
for spatial autocorrelation (Dormann et al., 2007), and the presence of
autocorrelation can be explored by including a spatial random effect

and estimating whether its estimated variance is substantially greater
than zero. Furthermore, conditioning model predictions upon residual
patterns, e.g., as is done when kriging (Petitgas, 2001), can sub-
stantially improve predictions of population abundance (Bahn and
McGill, 2007).

For these two reasons, I recommend by default that analysts include
variation in population density that is constant over time (“spatial
variation”) and that varies among modeled time-intervals (“spatio-
temporal variation”) for both linear predictors in either a delta-model
or zero-inflated model. This involves making a decision about four
model components (spatial and spatio-temporal variation for both
linear predictors). Spatial variation represents a species’ “fundamental
niche” (its expected spatial distribution on average over time), while
spatio-temporal variation represents a species’ environmental response
(response to transient, unmeasured environmental conditions). The
estimated magnitude of spatial variation will be greater than spatio-
temporal variation whenever species have stable patterns in spatial
distribution, and vice-versa whenever spatial distribution varies greatly
among years. It is necessary to include spatio-temporal variation to
accurately characterize shifts in distribution (Thorson et al., 2017b). If
the estimated standard deviation of spatial or spatio-temporal variation
approaches zero (i.e.,< 0.001), then it may hinder model convergence
and I recommend that this component be removed6. In some cases,

Fig. 1. Decision tree representing the relationship between decisions (boxes) listed in the main text. Analysts are advised to start either with inputs (blue boxes) or
outputs (green box) and proceed via arrows to related decisions; the direction of each arrow is chosen to visualize the recommended path when starting with inputs,
but can be reversed to indicate the path when starting with outputs. Arrows indicate that a given decision (box) has a strong dependency upon earlier decisions
(arrows flowing in) and strong effect on later decisions (arrows flowing out); weak dependencies are not explicitly represented but do in some cases exist. The order of
boxes is chosen to simplify drawing of arrows, whereas the order in the main text is chosen to simplify textual description (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article).

6 This decision is made by specifying the input `FieldConfig`, passed to
function `VAST::Data_Fn`, where e.g., `FieldConfig = c("Omega1"=1,
"Epsilon1"=1, "Omega2"=0, "Epsilon2"=0)` indicates that VAST should in-
clude spatial and spatio-temporal variation in the 1st linear predictor (Omega1
and Epsilon1, respectively), and should remove spatial and spatio-temporal
variation for the 2nd linear predictor (Omega2 and Epsilon2, respectively).
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model selection may indicate that a spatial or spatio-temporal compo-
nent is not parsimonious even though its variance is greater than zero
(Tolimieri et al., 2015).

However, there are several cases where it is useful to remove spatial
or spatio-temporal variation by default. For example, many count-data
models do not have sufficient information to estimate spatial or spatio-
temporal variation in zero-inflation probability. In these cases, the
analyst may choose to remove spatial and spatio-temporal variation for
the first linear predictor, and instead deal with an excess of zeros using
options for estimating overdispersion in the 2nd linear predictor. An
analyst may also seek to conduct species ordination (categorize species
based on similar dynamics), and this task could be difficult when esti-
mating all four spatial/spatio-temporal covariance matrices. In this
case, the analyst may choose a priori to only include spatial or spatio-
temporal variation (see the 2nd case study below). Finally, any analysis
that includes only a single time period requires removing spatio-tem-
poral variation a priori.

4.5. Choosing the spatial smoother and resolution

Spatial models generally shrink the value of a random effect to-
wards its value at nearby locations. VAST accomplishes this in a com-
putationally efficient manner using three options for a spatial smoother.
The default option uses a stochastic partial differential equation (SPDE)
approximation to a Matérn correlation function (Lindgren et al., 2011),
which is applicable for any set of points within two spatial dimensions
(a “2D mesh”). This SPDE approach is widely used in the popular R-
INLA software (Illian et al., 2012), and VAST allows users to specify a
Matérn function that is either isotropic (where correlations decline at
the same rate in any direction) or follows geometric anisotropy (where
the rate at which correlations decline depends upon the direction of
movement). Geometric anisotropy is common in marine ecosystems,
where correlations decline slowly when moving along a depth contour
but rapidly when moving perpendicular to the depth contour (Thorson
et al., 2015b). As an alternative, VAST also allows users to specify an
isotropic exponential correlation function, defined at equally spaced
locations within a given spatial domain (called a “2D grid” in VAST). I
recommend exploring the 2D grid as a sensitivity analysis, to explore
whether the decision about spatial smoother causes a substantial
change in model results. VAST includes a new, fourth option to model
spatial correlations using network distance within rivers and streams
(Hocking et al., 2018), although documentation and examples for this
feature are a work in progress (M. Rudd, personal communication).

VAST also achieves computational efficiency by defining spatial
variables at a specified number of “knots” within a “predictive process”
statistical framework (Banerjee et al., 2008). The user specifies the
number of knots a priori, and VAST defines the location of knots to
minimize the average distance between samples and knots. Any loca-
tion is assumed to have all spatial variables equal to their value at the
nearest knot, so the number of knots implicitly defines the spatial re-
solution at which VAST estimates spatial variation in population den-
sity. I recommend that users start with a small number of knots during
model testing and development (perhaps 50–100), and then increase
the number to the maximum that is feasible on a given machine. For
applications being used for fisheries management, I also recommend
that users work with their regional review organizations (e.g., Scientific
and Statistical Committees in the US) to pre-define a number of knots,
so that decisions about the number of knots are made independently of
any opportunity to look at model results.7 In cases with spatially un-
balanced data (e.g., fishery-dependent CPUE), research suggests that it
is important to place knots evenly over the modeled spatial domain

rather than in proportion to available data (A. Grüss, personal com-
munication)8.

4.6. Choosing the number of spatial and spatio-temporal factors

VAST can be fitted to both univariate (single response) and multi-
variate (multiple response) data sets, and VAST models covariation
among multiple categories using a factor-modelling approach (Thorson
et al., 2015a; Warton et al., 2015a) where this notation is presented
later (see section 5. Model Structure). For a model with C categories,
the number of factors F can be any whole number …F C{0,1, 2, , },
and this decision must be made separately for four separate components
(spatial and spatio-temporal variation for each linear predictors)9.
Specifying =F 0 implies that a given spatial/spatio-temporal compo-
nent has been “turned off”, and a univariate model involves turning on
( =F 1) or turning off ( =F 0) each component. Deciding upon the ap-
propriate number of factors is clearly more complicated in a multi-
variate model. For example, in a model with =C 3 categories and =F 1
factors for spatial variation in the linear predictor affecting encounter
probability, VAST estimates a single factor representing spatial varia-
tion in encounter probability, and estimates a 3-by-1 “loadings matrix”
representing the impact of that factor on encounter probability for each
category. Continuing this example, if the analyst next explores =F 3,
VAST then estimates three factors for spatial variation in encounter
probability and a 3-by-3 loadings matrix representing the impact of
each factor on each category. To ensure that each parameter has a
unique value (is “identifiable”) all upper-triangle elements of the
loadings matrix are fixed at zero. This factor-modelling approach can
greatly reduce model complexity: a “full-rank” model (where =F C)
must estimate many more covariance parameters than a “reduced rank”
model (where <F C), particularly when modelling many categories10.

4.7. Specifying temporal correlation on model components

In addition to specifying correlations across space (using spatial and
spatio-temporal random effects) and among species (using a factor-
modelling approach), VAST allows users to specify a correlation
structure across time. Specifically, users can separately specify a tem-
poral correlation for both annual intercepts and/or spatio-temporal
variation for each of the two linear predictors (i.e., four separate model
decisions)11.

The intercept for each linear predictor is a fixed effect for each year
by default. This default ensures that estimates of abundance are es-
sentially independent for each modeled year, which is appropriate
when estimating an abundance index to be used as data in a subsequent
stock assessment model (see case study #1 below). However, users can
instead specify that intercepts follow a first-order autoregressive pro-
cess, a random-walk process, a random process that is independent

7 Users specify the default smoother using input `Method=”Mesh”`, where
the number of knots is then specified using input `n_x`. Both are inputted to
function `FishStatsUtils::make_spatial_info`.

8 For case-by-case features like this, the model structure may vary in the
future and interested users should read the Rhelp documentation for relevant
functions.
9 This decision is again made by specifying the input `FieldConfig` where e.g.,

`FieldConfig = c("Omega1"=4, "Epsilon1"=3, "Omega2"=0, "Epsilon2"=0)`
indicates that VAST should use four factors for spatial variation in the 1st linear
predictor, three factors for spatio-temporal variation in the 1st linear predictor,
and turn off spatial and spatio-temporal variation in the 2nd linear predictor
(this input would only make sense when analyzing data for four or more ca-
tegories).
10 The full rank model estimates +C C0.5 ( 1)covariance parameters, which

scales as C2, while the reduced rank model estimates + +CF F F0.5 ( 1) covar-
iance parameters, which scales as CF .
11 This decision is made by specifying the input `RhoConfig`, which by de-

fault is `RhoConfig = c("Beta1"=0, "Beta2"=0, "Epsilon1"=0, "Epsilon2"=0)`
but where codes for alternative options described in the text are listed in the R
help file, `?VAST::Data_Fn`
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among years, or be constant for all years. Specifying a constant inter-
cept ensures that all changes over time are attributed to spatio-temporal
variation, density, and catchability covariates, and therefore is useful
when using spatio-temporal covariation to define species similarity
(“species ordination”). Similarly, specifying an autoregressive or
random-walk structure on intercepts is useful when interpolating an
abundance index into years when data are not available (which is im-
possible when treating the intercept as a fixed effect), or when fore-
casting abundance in future years (Thorson, In press; see section 6.3
Forecasting species allocations).

Meanwhile, the spatio-temporal component is independent among
years by default, but users can instead specify that it follows an auto-
regressive or random walk process. Estimating a temporal correlation
for spatio-temporal components allows VAST to estimate whether
“hotspots” in population density typically persist from one year to the
next. I recommend estimating a temporal correlation for spatio-tem-
poral variation whenever some areas are not sampled in every year and
the analyst wants to ensure that “hotspots” estimated in sampled areas
are propagated into unsampled areas in adjacent years. For example,
the Bering Arctic Subarctic Integrated Survey sampled the northern but
not the southern portion of their standard sampling area in 2015
(Yasumiishi et al., 2017). However, both northern and southern por-
tions were sampled in 2014 and 2016, so the relative population den-
sity in northern vs. southern areas in those years could be used to
predict the relative density in 2015, despite the lack of sampling data in
the southern portion. Similarly, the Gulf of Alaska bottom trawl survey
is conducted every other year (Von Szalay and Raring, 2016), and to
interpolate density in unsampled years it is necessary to estimate a
temporal correlation for spatio-temporal variation.

4.8. Including density covariates as a semi-parametric model

VAST allows users to specify covariates that affect population den-
sity, and consequently affect expected catch rates (termed “density
covariates”). However, VAST uses density covariates twice: (I) in the
two linear predictors to calculate the probability of each sample, and
(II) in the prediction of population density within the spatial domain, to
be used when calculating derived quantities. Therefore, VAST requires
the value of density covariates at every location within the spatial do-
main. This requirement is notably different from sampling data, which
are not needed at all locations in a given year; the response variable
(sampling data) can be missing for some locations while predictor
variables (the density covariate) cannot be missing for any location. To
simplify this process, VAST requires users to input the value of density
covariates at every knot and in every year, and it uses these values
twice to accomplish steps I and II above12.

Density covariates are particularly useful for three common tasks:
extrapolation, attribution, and variance partitioning. When samples are
not available at a fine spatial scale or in some areas of the modeled
spatial domain, a density covariate can be useful to interpolate/extra-
polate population density. This usage is common in semi-parametric
models, where a biological model (e.g., estimated response to a density
covariate) can improve precision when combined with a non-para-
metric smoother (Shelton et al., 2014; Thorson et al., 2014a). It can also
be useful to compare models with and without covariates to determine
what proportion of variance in a derived quantity is explained by a
given covariate. When there is a strong biological or mechanistic ar-
gument for how the covariate drives variation in population density or
a derived quantity, this approach can attribute observed patterns to one
or more covariates (Thorson et al., 2017b). Finally, including a density

covariate will generally decrease the variance of residual spatial and
spatio-temporal variation, and the degree to which this happens can be
used to determine the variance explained by a given covariate. This
variance explained can then be used to evaluate the strength of evi-
dence for competing biological hypotheses regarding population den-
sity (e.g., Thorson, 2015a).

By incorporating density covariates for each knot and year, VAST
involves an important assumption: that density covariates are effec-
tively constant for all locations associated with a given knot. This im-
plies that users cannot include variation in density covariates that oc-
curs at a finer spatial scale than the scale implied by the number of
knots. Future research could relax this requirement (e.g., by specifying
density covariates at a finer spatial scale than spatial autocorrelation),
but for now users must increase the number of knots if they want to
decrease the spatial scale for density covariates.

4.9. Accounting for catchability covariates and confounding variables

In addition to habitat covariates, users can also specify covariates
that affect expected catch rates that are not associated with changes in
population density (termed “catchability covariates”). VAST requires a
value for catchability covariates for every datum, so the user is required
to specify a matrix of catchability covariates with a row for every
sample13, and catchability covariates are not needed at locations where
sampling is not conducted. This format differs from the input format for
density covariates because density covariates are needed not just for
samples, but also for all locations within the modeled spatial domain.

I recommend exploring as catchability covariate any variable that
could plausibly affect catch rates but not reflect variation in population
density. For example, weather conditions and vessel characteristics can
affect bottom trawl gear performance (Stewart et al., 2010; Thorson
and Ward, 2014), hook spacing can affect hook-and-line performance
(Monnahan and Stewart, 2018), and longline characteristics can affect
the vertical distribution of hooks in and outside of a species’ vertical
distribution (Bigelow and Maunder, 2007). These examples all involve
characteristics of fishing operations, and it is therefore easy to argue
that these variables affect catchability but not population density.

However, other covariates could plausibly affect either population
density or catchability. For example, light levels near bottom could be
associated with increased/decreased nutrient concentrations in the
water column, thus affecting habitat suitability and population density,
or alternatively could affect the vertical distribution of visual-foraging
groundfishes (Casey and Myers, 1998). In these cases, I recommend that
analysts explore including these covariates (to determine if they are
associated with variation in catch rates), and it they are significant then
use either experiments, paired sampling of multiple gears, or validated
conceptual models to distinguish between the hypothesis that a given
variable affects catchability or affects population density. To continue
our example, paired acoustic and bottom trawl sampling suggests that
light levels are associated with vertical distribution (and hence bottom
trawl catchability) in walleye pollock in the Eastern Bering Sea
(Kotwicki et al., 2015).

Catchability covariates can be important for two main reasons. First,
ignoring a catchability variable that varies systematically over space or
time will result in a biased estimate of spatio-temporal variation in
population density. This occurs because ignoring systematic variation
in catchability will cause estimates of population density to include
variation in both catchability and density. Second, including a catch-
ability covariate will often reduce the estimate of residual variation in
catch rates. Reducing residual variation will, in turn, result in more

12 Density covariates are inputted as object `X_xtp` passed to
`VAST::Data_Fn`, where the notation indicates that `X_xtp` has three dimensions
with length number of knots (`n_x`), number of years (`n_t`) and number of
covariates (`n_p`)

13 Catchability covariates are inputted as object `Q_ik` passed to
`VAST::Data_Fn`, where the notation indicates that `Q_ik` has two dimensions
with length number of samples (`n_i`) and number of catchability covariates
(`n_k`)
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precise estimates of population density, and therefore improve esti-
mates of any derived quantities (i.e., an index of abundance). However,
including catchability covariates can also make it more complicated to
build, maintain, communicate, or replicate a spatio-temporal model, so
it is generally useful to include only when it explains a substantial
portion of variation in catch rates.

4.10. Treating area swept as a catchability covariate or offset

The most common type of “catchability covariate” is survey effort.
Historically, many fisheries models have analyzed a survey response
(catch in biomass) divided by survey effort (e.g., area swept by a
bottom trawl) as their response variable. If using a conventional delta-
model and a scale-free distribution for the response (i.e., the lognormal
distribution), then this treatment is identical to analyzing the response
(catch in biomass) while treating survey effort as an “offset” for positive
catch rates. However, these two treatments are not identical in many
other cases, e.g., when analyzing “count data” such that dividing a
count by effort will often result in a non-integer number that cannot be
analyzed using standard count-data models.

VAST allows users to include an effort offset and I recommend doing
so whenever effort is measured in units of area14, so that resulting
abundance indices will have units of numbers (for count data) or bio-
mass (for biomass data). This approach is appropriate when analyzing
gears with a known “area swept,” e.g., bottom trawls, acoustic samples,
or visual samples where distance-sampling methods have been used to
estimate an effective area. However, many data sets will involve sam-
pling gears where the area swept is unknown or not measured, e.g., for
hook-and-line or baited visual sampling where the “area of attraction”
is unknown (Runnebaum et al., 2017). In these cases, a user of VAST
can input a value of one for the effort offset. Ignoring the area of at-
traction for a sampling gear implies that some derived quantities will
have a scale that is not directly interpretable (e.g., resulting abundance
indices will be proportional to abundance with an unknown pro-
portionality constant), while others will be unaffected (e.g., indices of
distribution shift are invariant to multiplying area-swept for all samples
by a positive constant). Analysts can divide the abundance-index by its
mean (creating a log-centered index) without loss of information when
an abundance-index has a scale that is not interpretable (e.g., when
derived from sampling data without a meaningful area swept). This log-
centered index can then be compared with other log-centered indices
(e.g., the same abundance-index derived from other techniques) to
evaluate the change in index precision when using VAST.

VAST also allows users to analyze data from multiple sampling gears
and/or designs. When combining data from multiple gears, I re-
commend that analysts estimate a “catchability coefficient” for all but
one gear (e.g., Grüss et al., 2017). When using a delta-model, it may be
necessary to include two “catchability coefficients” for each additional
gear (e.g., for encounter probability and positive catch rates in a con-
ventional delta-model). In most cases, estimating the difference in
catchability will require that both gears sample nearby locations in the
same year, where differences in the survey response at these “calibra-
tion samples” can inform the difference in catchability among gears
(Miller et al., 2010). However, VAST users can use model-based
methods to intercalibrate gears operating at the same location in ad-
jacent years when specifying some temporal structure for model inter-
cepts (Runnebaum et al., 2017). However, the performance of model-
based calibration methods has not received sufficient research or si-
mulation testing to recommend its wide use.

I generally recommend that authors analyze “raw” data (e.g., the
survey response) while treating effort as an offset, rather than

transforming data prior to analysis (O’Hara and Kotze, 2010; Warton,
2018). However, I do recommend that analysts explore including effort
as a catchability covariate in addition to using it as an effort offset. This
can be important whenever expected catch is a nonlinear function of
survey effort, e.g., due to different rates of gear saturation in hook-and-
line gears, or different rates of fish falling into the codend of bottom
trawl gears for short vs. long trawl tows.

4.11. Including vessel effects as overdispersion

VAST allows users to specify random variation in catchability
among different levels of a grouping variable. When the grouping
variable identifies different survey and/or commercial sampling ves-
sels, then this random variation is typically called a “vessel effect”
(Helser et al., 2004), and research suggests that vessel effects can be
substantial even when using standardized sampling gears within a de-
signed survey (Thorson et al., 2015b). VAST requires users to specify a
level of this grouping variable for each sample, and it uses a factor
modelling approach to model covariation in vessel effects, where ana-
lysts can specify = …F C{0,1, 2, , } factors when modelling C categories
in a multivariate model15. Covariation in vessel effects can be useful to
distinguish vessel targeting (due to differences in fishing location at fine
scales or unmeasured differences in gear operations) from covariation
in species densities (Thorson et al., 2017a).

4.12. Choosing among link functions and distributions

VAST typically estimates two linear predictors, and transforms
linear predictors to predict encounter probability and positive catch
rates (in a delta model) or zero-inflation probability and count rates (in
a zero-inflated model). By default, VAST uses a logit link function to
calculate encounter or zero-inflation probability, and a log link function
to calculate positive catch and count rates (Eq. 2.3). However, analysts
can instead specify a log-link for both linear predictors when using the
Foster and Bravington (2013) parameterization of the Tweedie dis-
tribution, although this distribution is computationally expensive (and
therefore slow) to estimate. Similarly, analysts can specify a “Poisson
link delta model,” which approximates the Tweedie distribution
without requiring additional computational resources relative to the
conventional delta-model (Eq. 2.4). Recent research suggests that the
Poisson-link often provides a better fit to bottom trawl data than the
conventional delta-model, and this model also allows easier inter-
pretation of covariate effects and effort offsets (Thorson, 2017). I
therefore recommend comparing performance of the Poisson-link and
conventional delta models for biomass-sampling data.

It is necessary to specify a probability distribution for available
data16. Options for count data include a Poisson, negative-binomial,
Conway-Maxwell Poisson, or lognormal-Poisson. The Poisson distribu-
tion is a “null” model for count data, while the negative binomial is
useful to account for overdispersion (Lindén and Mäntyniemi, 2011)
and the Conway-Maxwell Poisson accounts for both under- and over-
dispersion (Lynch et al., 2014). In our experience, a lognormal-Poisson
distribution is more computationally stable than the negative binomial
when estimating overdispersion, so I recommend using it by default
when fitting count data. Options for continuous data include the
normal, lognormal, and gamma distributions. For both data types, I

14 The area offset for each sample is inputted as object `a_i` passed to
`VAST::Data_Fn`, where the notation indicates that `a_i` has one dimension with
length number of samples (`n_i`)

15 The level of an “overdispersion factor” (e.g., vessel effect) for each sample
is inputted as object `v_i` passed to `VAST::Data_Fn`, where the notation in-
dicates that `v_i` has one dimension with length number of samples (`n_i`). The
covariance in the overdispersion factor is inputted as object `
OverdispersionConfig`, which by default is turned off using `
OverdispersionConfig = c("Eta1"=0, "Eta2"=0)`.
16 Users specify both the link function and distribution for data using input `

ObsModel` passed to `VAST::Data_Fn`, and codes for different options can be
found in the R help file `?VAST::Data_Fn`.
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recommend exploring multiple distributions. If it is necessary to iden-
tify a single model, I recommend using standard model selection tools
(see section 4.15 Model Selection) to identify the distribution that re-
sults in a parsimonious fit to the data (e.g., Dick, 2004).

4.13. Derived quantities

By default, VAST estimates population density at each knot and year
for every category, and also estimates an index of abundance for each
modeled category. However, VAST can be used to generate many other
derived quantities that can be useful in specific circumstances17.

When conducting climate assessments, VAST can be configured to
estimate the biomass-weighted average for a variable defined at each
knot. This is typically used to estimate the centroid of the population’s
distribution (“center of gravity”, COG), measured as kilometers in
Eastings and Northings, to identify distribution shifts. While sample-
based measures of COG area also available, these sample-based mea-
sures confound shifts in the location of sampling (whether random or
systematic) with shifts in population density. By contrast, VAST ac-
counts for spatially unbalanced designs during parameter estimation,
and therefore avoids this source of potential bias (Thorson et al.,
2016b). Similarly, VAST estimates the area needed to contain each
category given its average density (termed “effective area occupied”),
and changes in effective area indicate range expansion/contraction e.g.
for species that are expanding into a given ecosystem (Thorson et al.,
2016c).

VAST can be configured to calculate the proportion of total popu-
lation biomass that belongs to each modeled category in a multivariate
model. This could be useful in stock assessments, e.g., when applied to
biomass for multiple size/age categories to estimate the proportion of
total biomass within each size/age class (Hocking et al., 2018; Thorson
and Haltuch, In press). It is also possible to specify multiple spatial
strata, and VAST will estimate the total population biomass within each
specified stratum. Specifying spatial strata has no effect on parameter
estimates, and only affects the portion of the spatial domain that is used
when calculating each abundance index (see case study #3 below).

VAST can also be configured to rotate estimated spatial and spatio-
temporal factors to identify dominant modes of community dynamics,
and this could be useful in ecosystem assessments. This rotation has no
impact on parameter estimates or model parsimony, and instead is
useful to visualize important features of the resulting model.
Specifically, a “varimax rotation” is useful to identify factors that are
associated with a small subset of species (so that the spatial distribution
or spatio-temporal variation in each subset can be visualized and in-
terpreted). Alternatively, a “PCA rotation” is defined such that the first
axis represents the maximum proportion of community-level variation,
and is therefore useful to visualize the dominant pattern of spatio-
temporal dynamics within a given ecosystem (Thorson et al., 2016a). I
recommend using “PCA rotation” to summarize and visualize commu-
nity-level patterns of covariation, so that analysts can identify a factor
that explain the maximum proportion of variance possible (McClatchie
et al., In press). By contrast, I recommend using “varimax rotation”
when conducting species ordination, so that analysts can identify
groups of species that strongly covary.

Finally, analysts may want to visualize the standard error of pre-
dicted density for each category at each knot and year by plotting them
on a map. Estimating many standard errors is somewhat time-con-
suming, but can be useful to identify areas where estimates are rela-
tively more or less precise. Each of these derived quantities can also be
calculated using alternative techniques (e.g., generalized linear models
for index standardization; non-metric multidimensional scaling to

identify modes of community dynamics). I recommend ongoing studies
to compare model performance, and note a growing literature sugges-
tion model-based inference for these different types of analysis (e.g.,
Warton et al., 2015b).

4.14. Bias correction for derived quantities

VAST uses maximum-likelihood methods to identify an optimal
estimate for model parameters. VAST then predicts random-effects
based on maximum-likelihood estimates for parameters, and calculates
derived quantities via nonlinear transformation of fixed and random
effects. However, any nonlinear transformation of a random effect will
result in a biased estimator, known as “retransformation bias” when it
occurs within spatial models. Although VAST implements the “epsilon
bias-correction estimator” (Thorson and Kristensen, 2016) to correct for
retransformation bias, this bias-corrected estimator is computationally
expensive to calculate. Analysts must therefore decide which variables
to bias-correct. I recommend bias-correcting any derived quantity that
is interpreted for ecological or management purposes, including abun-
dance indices, center-of-gravity, and effective area occupied. However,
time can be saved by not bias-correcting other variables (e.g., local
predictions of density) that are not used to make decisions. The mag-
nitude of bias-correction depends on (1) how nonlinear is the trans-
formation being applied to random effects, and (2) how uncertain are
the estimates of random effects being transformed. Therefore, it is
particularly important to use bias-correction when derived quantities
have large differences in standard error, e.g., when estimating an
abundance index for years where the survey samples a different pro-
portion of the spatial domain in different years.

4.15. Model selection

Given the many decisions that must be made when applying VAST
to a new data set, I envision that analysts will sometimes identify
multiple models that could be appropriate. In these cases, I recommend
exploring each model in detail, including diagnostics of model fit and
numerical experiments fitting to new data that are simulated with ei-
ther the correct or a mis-specified model. After discarding models that
have poor fit, I recommend presenting results from multiple models,
perhaps within a model ensemble (Stewart and Martell, 2015). How-
ever, if it is necessary to select only a single model, I recommend using
conventional model selection tools to identify the optimal model, in-
cluding the Akaike Information Criterion (Burnham and Anderson,
2002), k-fold crossvalidation (Gelman et al., 2014; Hooten and Hobbs,
2015), retrospective skill-testing (Thorson, In press), or a simulation
experiment conditioned upon estimated parameters for each model.
This latter options is available in VAST using a “bootstrap simulator”
that simulates new random effects and data based on the maximum-
likelihood estimate of fixed effects, where this new data set can then be
fitted again within a replicated experiment to explore likely model
performance.

5. Model structure

Having read guidance for these fifteen decisions, some readers will
be curious about how these decisions are translated into statistical
model structure. I therefore provide a high-level outline of the VAST
model, and readers are directed to the User Manual for additional de-
tails.

At its core, VAST estimates fixed and random effects that govern
two linear predictors. The two linear predictors each include the impact
of annual intercepts, density covariates, catchability covariates, vessel
effects, spatial random effects, and spatio-temporal random effects for
one or more category. For example, the first linear predictor p i( )1 for
sample i is calculated as:

17 Calculating derived quantities such as COG and effective area is done by
specifying object `Options`, e.g., ` Options = c("Calculate_Range"=1,
"Calculate_effective_area"=1)` passed to `VAST::Data_Fn`.
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where ci is the category sampled, ti is the year, and si is the knot for
sample i, the second linear predictor p i( )2 is defined similarly, and
other symbols are defined in Table 3. This linear predictor includes the
summation across np density covariates X s t p( , , ) defined at every lo-
cation and year, and nk catchability covariates Q i k( , ) defined at every
sample. However, it also includes a “factor model” for spatial, spatio-
temporal, and vessel terms, and these terms are likely unfamiliar for
many analysts who do not commonly conduct multivariate analysis.
Looking at the spatial term = L c f s f( , ) ( , )f

n
i i1 1 1

1 in detail, f( )1 is a
vector of random effects that has a mean of zero and standard deviation
of 1.0, representing unmeasured spatial variation s f( , )1 in the first
linear predictor for location s as represented by factor f , and the impact
of each factor on species c is estimated as a parameter L c f( , )1 in
loadings matrix L 1. Spatial and spatio-temporal random effects are
shrunk towards a spatial (and optionally temporal; see section 4.7)
correlation function that is specified by the analyst. When specifying a
univariate model, the model can only include one factor and the no-
tation reduces to 1 1 such that =L c f( , )i1

2
1

2 . When specifying a
multivariate model, the estimated loadings matrix and factors (e.g., L 1
and f( )1 for spatial variation in the 1st linear predictor) can be rotated
to ease interpretation without otherwise impacting the model like-
lihood (see section 4.13).

Linear predictors are then transformed to predict sample data. When
using a conventional delta-model, for example, they are transformed to
predict encounter probability r i( )1 and positive catch rates r i( )2 :
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where ai is the effort offset. When using a lognormal distribution to
continue our example, the probability of biomass sampling data is
calculated as:
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where bi is observed biomass, and c( )m i
2 is the residual variance in

positive catch rates.
Finally, VAST predicts population density d s c t( , , ) for each loca-

tion, category, and time from both transformed linear predictors when
dropping terms affecting catchability. Continuing our example with the
conventional-delta model, density is predicted as:
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VAST then calculates derived quantities from its predictions of local
density d s c t( , , ). For example, an abundance index I c t l( , , ) for cate-
gory c in time t for spatial stratum l is calculated as:

= ×
=

I c t l a s l d s c t( , , ) ( ( , ) ( , , ))
s

n

1

s

(5)

where a s l( , ) is the area associated with knot s that is within that
stratum l. This area a s l( , ) is used to weight the relative weighting of
density estimates at different knots when calculating derived quantities,
and depends upon the spatial domain defined for the model, hence
explaining the importance of carefully defining the spatial domain (see
section 4.1). For the calculation of other derived quantities please see
Table 2. Standard errors for any derived quantity are calculated by TMB
using the delta-method (Kass and Steffey, 1989), and this approach
propagates uncertainty about predictions of density d s c t( , , ) as well as
estimated parameters; previous simulation experiments suggest that
these standard errors accurately represent predictive uncertainty
(Thorson et al., 2015b; Thorson and Haltuch, In press).

6. Applying the decision-tree to three hypothetical assessments

Here I provide three worked examples of this decision-tree for hy-
pothetical applications for use in stock, ecosystem, and climate as-
sessments. These three examples involve publicly available survey data
from the North Pacific. Code to replicate these analyses is available
online (Supporting Information 1), and data are downloaded from re-
gional databases and harmonized to follow a common data format using
package FishData (Thorson, 2015b).

6.1. Index standardization

Many analysts seek to estimate an index of abundance that is pro-
portional to population biomass, and default settings are generally
appropriate for this usage. I therefore illustrate how to estimate an
abundance index using data from the Eastern Bering Sea shelf bottom
trawl survey, conducted annually since 1982 (Lauth and Conner, 2016).
This survey uses a fixed station design, and I use as ‘spatial domain’ the
496,000 square-kilometer area of ocean habitat that is also considered
when applying design-based estimators to this data set. I analyze bio-
mass-sampling data for a single species, arrowtooth founder (Ather-
esthes stomias), and include both spatial and spatio-temporal variation
for both linear predictors in a Poisson-link delta model, while using a
gamma distribution for positive catch rates (i.e., replacing the con-
ventional delta-model with different link-functions in Eqs. (2) and (4).
Given that this is a univariate data set, it is computationally practical to
analyze density changes at a relatively fine spatial scale. I therefore use
the “2D mesh” smoother including geometric anisotropy, with 1,000
knots that are located to minimize the average distance between a grid
overlaid on the spatial domain and the 1,000 knots. Given that analysts
often use the resulting abundance index as data within a stock assess-
ment model, I minimize covariance in the estimated index by excluding
any temporal correlation on model components (i.e., the intercept is a
fixed effect in each year, and the spatio-temporal term is independent in
each year). For simplicity of presentation, I do not include any density
or catchability covariates (i.e., removing those terms from Eq. (1), but
do include the area-swept by the bottom trawl as an effort offset
(specify ai in Eq. (2). Following standard practice when analyzing data
from this survey, I do not include survey vessel as a source of over-
dispersion, and calculate three main derived quantities (abundance
index, center of gravity, and effective area occupied) while bias-cor-
recting each of these18 (i.e., using Eq. (5), and 2.15/2.17 in Table 2).

Inspection of the resulting abundance index, center-of-gravity, and

18 These decisions are implemented using the following inputs (with # in-
dicating comments in R):

J.T. Thorson Fisheries Research 210 (2019) 143–161

154



effective area occupied for arrowtooth flounder in the Eastern Bering
Sea (Fig. 2) illustrates tremendous changes in this stock over the past 30
years. Its estimated survey biomass has risen from<100,000 to nearly
500,000 metric tons, while the population has increased its effective
area occupied from 120,000 to 180,000 square kilometers, and the
centroid of the population has shifted over 100 km northward. These
derived quantities all highlight the expansion of this predatory species
into the Eastern Bering Sea shelf ecosystem (e.g., Spencer et al., 2016).

6.2. Species ordination

Analysts may instead use VAST to identify groups of species that
have similar or different spatio-temporal dynamics (called “species
ordination”), such that these assemblages could be studied or managed
differently. Therefore, I next illustrate model settings for species ordi-
nation by using data for eight groundfishes from the Gulf of Alaska
bottom trawl survey, which has been conducted every third year from
1984 to 1999 and every second year from 1999-2017. As spatial do-
main, I select all areas that are within the sampling-frame for the
survey. I model biomass for each species separately using a multivariate
model with eight categories. However, I fix the intercept for each
species to be constant over time, and eliminate spatial and spatio-
temporal variation in the 2nd linear predictor of the Poisson-link delta
model while using a gamma distribution for positive catch rates. I avoid
including density or catchability covariates, and analyze biomass di-
vided by area swept as the response without an effort offset (this is the
form in which data are publicly available). This model specification
ensures that variation among sites and years is explained entirely by
spatial and spatio-temporal variation in the “numbers density” of the
Poisson-link model, such that species can be “ordinated” by interpreting
these two model components, which represent differences in long-term
distribution (spatial niche) vs. short-term patterns (shared response to
environmental variation). I again use the 2D mesh smoother with
geometric anisotropy, and this time use 500 knots. I include two factors
for spatial and spatio-temporal variation in the 1st linear predictor,
because this is as many factors as can be easily displayed on a 2-di-
mensional ordination plot, and specify a 1st order autoregressive pro-
cess on spatio-temporal variation.19 As a derived quantity, I apply a
“varimax rotation” to the 8-by-2 loadings matrices (for spatial and
spatio-temporal variation) to visualize associations of each species with
the two estimated spatial and spatio-temporal terms. I also apply the
inverse-rotation matrix to spatial and spatio-temporal factors, so that I
can visualize patterns in average spatial distribution (represented by
spatial variation) and changes in density among years (represented by
spatio-temporal variation). Given that the loadings matrix is only a
function of fixed effects and visualizing rotated factors does not require
a nonlinear transformation, bias-correction is not necessary and I skip it
to conserve computational resources.

Species ordination results show that the average spatial distribution
of Hippoglossoides elassodon (flathead sole), which is positively asso-
ciated with factor 1, is largely independent of the average spatial dis-
tribution of Microstomus pacificus (Dover sole), Anoplopoma fimbria
(sablefish), and Glyptocephalus zachirus (rex sole), which are positively
associated with factor 2 (Fig. 3 top panel). Factor 1 is associated with
increased population densities inshore from Kodiak island to the start of
the Aleutian Islands and decreased densities in Southeast Alaska (Fig. 4
left panel), while factor 2 is associated with increased densities from
Prince William Sound to Southeast Alaska. Meanwhile, species ordi-
nation based on spatio-temporal variation (Fig. 3 bottom panel) shows
that Hippoglossus stenolepis (Pacific halibut) and Gadus microcephalus
(Pacific cod) have correlated dynamics from a shared, positive asso-
ciation with factor 2, while other species have strongly correlated dy-
namics (from a positive association with factor 1). Visualizing these
factors shows, e.g., that densities of H. stenolepis and G. microcephalus
were elevated (relative to their average density) to the east of Kodiak
Island in 1984 (Fig. 5; red area in top-right panel), and were depressed
relative to their long-term average from Prince William Sound to
Southeast Alaska in 2001 and again in 2017. These estimates highlight
how patterns of elevated or depressed densities are correlated among
multiple species, and could be used to communicate with local com-
munities regarding fishing opportunities for groundfish assemblages

Fig. 2. Abundance index (panel A; representing total biomass in the chosen
spatial domain), effective area occupied (panel B; representing area needed to
contain the population at average biomass-density), and northward center-of-
gravity (panel C; representing centroid of the population), each showing bias-
corrected maximum likelihood estimate (circles) and +/− one standard error
(whisker) for each year of survey data 1982–2017 for arrowtooth flounder
(Atheresthes stomias) when using the default configuration for VAST.

19 These decisions are implemented using the following inputs (with # in-
dicating comments in R):
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that have similar dynamics.

6.3. Forecasting spatial allocations

Finally, I envision that analysts may seek to forecast changes in
species distribution and how that impacts the optimal allocation of
fishing quota among multiple spatial strata (e.g., Thorson, In press). I
therefore illustrate model settings when using VAST to forecast the
proportion of coastwide abundance that occurs within different spatial

strata. Output from such an analysis could be used to inform the allo-
cation of allowable catch to fleets based in different strata, while using
the forecasts to account for distribution changes that are likely to occur
during a lag between scientific advice and management implementa-
tion. Specifically, I fit to survey data for five commercially important
groundfishes off the US West Coast, obtained using the West Coast
groundfish bottom trawl survey, WCGBTS (Keller et al., 2017). As of
writing (June 19, 2018), data were publicly available from 2003 to
2015, and I envision a hypothetical scenario where fisheries managers
might want information on the proportion of coastwide biomass within
federal waters for each of three states in 2016 and 2017. This activity
therefore involves fitting data for 13 years and then forecasting future
changes over the following two years.

As spatial domain, I select the US West Coast waters from 55m to
1280m depth while specifying three spatial strata (California: 32–42°N;
Oregon: 42–46°N; Washington: 46–49°N Latitude) to use when calcu-
lating derived quantities. I apply a multivariate model with five cate-
gories, and fit to biomass-sampling data for each using a Poisson-link
delta model and a gamma distribution. I include both spatial and spatio-
temporal variation in both linear predictors, and use a “saturated”
factor model (5 factors) for each component such that VAST estimates
the full 5-by-5 covariance matrix for each spatial and spatio-temporal
component. To accommodate data for five species, I use a relatively
coarse spatial resolution (100 knots), and again use a 2D mesh
smoother with geometric anisotropy. To allow VAST to forecast bio-
mass in years with no data, I specify a temporal structure on model
intercepts, i.e., a random walk process. I also specify a 1st-order auto-
regressive process for spatio-temporal variation, such that hotspots in
population density decay towards the average spatial distribution
during forecast years, where the rate of decay (a.k.a. strength of spatio-
temporal autocorrelation) is estimated based on dynamics during years
with available data. This autoregressive process for spatio-temporal
variation means that hotspots in population density in 2015 will decay
towards the average density for that species during forecast years. I do
not include density or catchability covariates, but do include area-swept
by the bottom trawl as an effort offset. Importantly, the WCGBTS
contracts 3–4 commercial fishing vessels to conduct survey operations
in each year, and previous research suggests that it is important to in-
clude a random effect for each unique combination of vessel and year,
called a “vessel-year effect” (Helser et al., 2004; Thorson and Ward,
2014). I therefore include each vessel-year combination as an over-
dispersion term, using five factors to approximate the full covariance
among species in vessel-year effects for each linear predictor. To save
computational resources, I do not calculate any derived quantities ex-
cept an abundance index for each species, which I bias-correct for each
spatial stratum.20

Forecasts of groundfish distribution (Fig. 6) show considerable
variability in the proportion of coastwide abundance in state waters for
Eopsetta jordani (Petrale sole) and Ophiodon elongatus (lingcod), and
little variability for Sebastolobus alascanus (shortspine thornyhead). As
expected, the proportion in each state’s waters during forecast years
(2016–2017) decays towards its average value over years when data are
available (2003–2015). This is particularly evident for O. elongatus, e.g.,
where the proportion in Washington waters is high in 2014, but de-
clines in 2015 and is forecasted to continue declining in 2016–2017.
Also as expected, the predictive interval for each species increases in
the 1st and then 2nd forecast year relative to the period with available
data. This increase in uncertainty is appropriate, as the model is fore-
casting future distribution shifts during these years, and the increase in
interval width is greatest for species with highly variable distributions
(i.e., O. elongatus and E. jordani).

Fig. 3. Loadings matrix after varimax rotation (which rotates the loadings
matrix L in Eq. (1) such that each factor has strong loadings for as few species
as possible, see decision 4.13)for spatial variation (top panel) or spatio-tem-
poral variation (bottom panel) affecting the 1st linear predictor of a Poisson-
link delta model (representing variation in log-numbers density) for eight
groundfishes in the Gulf of Alaska bottom trawl survey 1984–2017 (1: Ather-
esthes stomias, arrowtooth flounder; 2: Hippoglossus stenolepis, Pacific halibut; 3:
Gadus chalcogrammus, Walleye pollock; 4: Glyptocephalus zachirus, rex sole; 5:
Gadus microcephalus, Pacific cod; 6: Hippoglossoides elassodon, flathead sole; 7:
Microstomus pacificus, Dover sole; 8: Anoplopoma fimbria, sablefish). The abso-
lute-value of each element of the loadings matrix represents the standard de-
viation for the associated spatial or spatio-temporal process, and the sign in-
dicates whether it has a positive or negative association with a given spatial or
spatio-temporal process.

20 These decisions are implemented using the following inputs (with # in-
dicating comments in R):
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7. Limitations and future developments

There are many potential applications of spatio-temporal models to
common activities within fisheries science and management. I therefore
conclude by briefly summarizing a few potential directions that have
not been extensively investigated in hopes of stimulating future

research, and also discuss ongoing limitations.

7.1. Optimal survey design

Fisheries scientists are often tasked with prioritizing funding for a
portfolio of different field-sampling programs. This task could be

Fig. 4. Plot of two factors for spatial variation in the 1st linear predictor of a Poisson-link delta model ( f( )1 from Eq. (1), representing log-numbers-density) for ten
groundfishes in the Gulf of Alaska bottom trawl survey, visualized after varimax rotation (see Fig. 3 for association of each factor with each species and description of
varimax rotation).

Fig. 5. Plot of two factors for spatio-temporal variation ( f t( , )1 from Eq. (1) in five years when bottom trawl sampling was conducted (1984, 1993, 2001, 2009,
2017), visualized after varimax rotation (see Fig. 4 caption for details) (For interpretation of the references to colour in the text, the reader is referred to the web
version of this article).
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informed by using spatio-temporal models to optimize sampling designs
given funding constraints and management goals, or at least to elim-
inate designs that are clearly suboptimal relative to some multi-objec-
tive criteria. This activity requires three main tasks: (1) estimate spatial
variation in biomass (and associated uncertainty) for multiple species/
stages across the spatial domain; (2) develop multiple potential survey
designs, or some constraints defining a feasible set of survey protocols;
(3) define one or more performance criteria that can be used to assess
relative performance of these different survey designs. Critically, eval-
uating these performance criteria requires simulating new data sets
(based on estimates of population density and its uncertainty from Step
#1), applying candidate survey designs to each simulated data set, and
evaluating the performance of survey designs while averaging across all
simulation replicates (Reich et al., 2018). Useful performance criteria
range from relatively simple (e.g., precision for resulting abundance
indices) to complex (e.g., risk of poor economic performance due to
mis-allocating quota among different spatial regions). In particular, I
recommend future research to explore the use of spatio-temporal
models within a closed-loop simulation context, where previous model

estimates and management decisions can impact future performance
outcomes. This is conceptually similar to management strategy eva-
luation (Sainsbury et al., 2000), although survey optimization could
include a wide range of closed-loop simulations without explicitly
modelling a management procedure.

7.2. Economic assessment

Similarly, there has been surprisingly little previous research ap-
plying spatio-temporal models to economic assessments of fishery
performance, despite the many clear avenues for research (e.g., Abbott
et al., 2015; Thorson et al., 2018). Expanding upon our third case-study
example (section 3.3), spatio-temporal models could be used to esti-
mate the proportion of population biomass that was within the spatial
domain fished by a given fleet or fishing port. This proportion could
then be compared with port-specific landings to identify the degree to
which fishing fleets can buffer against resource availability while
seeking positive economic outcomes. Recent research has shown the
importance of species portfolios when analyzing economic performance

Fig. 6. Estimates of the proportion of coastwide biomass within
federal waters of three states (y-axis) in each year 2003–2017 (x-
axis) for five groundfishes (figure panels) as estimated using the
US West Coast groundfish bottom trawl survey for years with
publicly available survey data (2003–2015) as well as forecasted
years without publicly available data (2016–2017; indicated by a
grey shaded area), where each panel shows the estimated pro-
portion (lines) in each state (red: California; green: Oregon; blue:
Washington) as well as +/− one standard error (shaded area)
(For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article).
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for different fleet segments (Anderson et al., 2017), but this work
generally has not involved estimates of resource density at the fine
spatial scales that are available for targeting by local fishing fleets. Si-
milarly, spatio-temporal methods could be used to generate short-term
forecasts of resource distribution, and this information could be used
when forecasting impacts of alternative management actions on profits
and employment.

7.3. Analyzing opportunistic data

There is growing interest in using spatio-temporal methods to syn-
thesize data from one or more opportunistic data sources, e.g., to
combine catch-per-unit-effort (CPUE) data from fishers with sampling
data from resource surveys. Recent research has developed several
news ways to analyze fisher targeting (Winker et al., 2013; Thorson
et al., 2017a; Okamura et al., 2017), so I am hopeful that methods could
be developed to estimate resource density by simultaneously analyzing
both fishery-dependent and –independent data sources. Similarly, po-
pulations will sometimes range across the spatial domain sampled by
different resource surveys, e.g., by latitude (sablefish in US West Coast,
Canadian, and Gulf of Alaska waters) or by vertical distribution (Alaska
pollock in areas accessed by both bottom trawl and acoustic sampling
gears; (Kotwicki et al., 2015)). Although some studies have integrated
data from multiple surveys with overlapping spatial footprints (Dolder
et al., 2018; Grüss et al., 2018a), there is a need for more methods to
account for spatial differences in catchability between different surveys
and to diagnose instances when data should or should not be combined.

7.4. Limitations

There are many avenues for improving inference when estimating
spatio-temporal variation using VAST, and I hope that these will be
resolved after further development and testing. For example, popula-
tion density may vary over smaller spatial scales in some habitats than
others; however, VAST smooths spatial variation using a spatial cor-
relation function that is constant spatially. Recent statistical research
has developed new approaches to model spatial variation wherein
covariates could be used to identify areas where spatial correlations
decay rapidly or slowly with distance (Risser and Calder, 2015), and
VAST contributors are currently exploring these options for inclusion in
VAST (J. Best, pers. comm.). If computationally efficient, these methods
could be used to specify that spatial correlations decay quickly over
land, e.g., such that two locations on separate sides of an island are
correlated only via the distance separating them along the coastline and
not by distance over land. Analysts have also noted instances where
estimates of biomass are consistently greater or less than design-based
estimators for a sequence of years. As a result, there are ongoing
questions about the magnitude of bias arising when the model structure
in VAST (e.g., the distribution of residual variation, spatial smoother,
etc.) is highly mis-specified relative to the data-generating process.
Therefore, I highly recommend further simulation testing in the pre-
sence model mis-specification. Relatedly, there is a pressing need for
better statistical diagnostics of model fit, which could hopefully identify
cases where the model is sufficiently mis-specified that resulting esti-
mates should not be trusted.

7.5. Synopsis

I have argued that estimates of local density for multiple locations,
years, and species can serve as a common currency to unify disparate
approaches to stock, ecosystem, habitat, and climate assessments. This
common currency can be estimated using multivariate spatio-temporal
models, such as the package VAST that I have highlighted here.
However, spatio-temporal models are a relatively new tool, and involve
many unfamiliar decisions for analysts. For this reason, I described
fifteen major decisions that must be made when applying VAST, and

demonstrated these decisions using three novel, real-world case studies.
These case studies illustrate that a common currency can be used to

hindcast and forecast changes in abundance, distribution, area occu-
pied, covariation among species, and dominant patterns of community
variation, and these derived quantities can address many different
questions for fisheries management. Such questions have previously
been addressed using many distinct models, within different teams,
with different vocabulary and communication methods. I hypothesize
that increased adoption of a spatio-temporal modelling framework will
help to integrate these disparate assessment communities over the next
10 years.
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