Stock Assessment of Brown Shrimp (Farfantepenaeus aztecus) in the U.S. Gulf of Mexico for 2011

Rick A. Hart

SEDAR-PW6-RD02

29 April 2014

NOAA Technical Memorandum NMFS-SEFSC-638

Stock Assessment of Brown Shrimp (Farfantepenaeus aztecus) in the U.S. Gulf of Mexico for 2011

By

Rick A. Hart

U.S. DEPARTMENT OF COMMERCE

National Oceanic and Atmospheric Administration
National Marine Fisheries Service
Southeast Fisheries Science Center
Galveston Laboratory
4700 Avenue U
Galveston, Texas 77551
November 2012

Stock Assessment of Brown Shrimp (Farfantepenaeus aztecus) in the U.S. Gulf of Mexico for 2011

By

Rick A. Hart
NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION
NATIONAL MARINE FISHERIES SERVICE
Southeast Fisheries Science Center
Galveston Laboratory
4700 Avenue U
Galveston, TX 77557

U. S. DEPARTMENT OF COMMERCE Rebecca Blank, Acting Secretary

NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION Jane Lubchenco, Under Secretary for Oceans and Atmosphere

NATIONAL MARINE FISHERIES SERVICE Eric Schwaab, Assistant Administrator for Fisheries

November 2012
This Technical Memorandum series is used for documentation and timely communication of preliminary results, interim reports, or similar special-purpose information. Although the memoranda are not subject to complete formal review, editorial control, or detailed editing, they are expected to reflect sound professional work.

NOTICE
The National Marine Fisheries Service (NMFS) does not approve, recommend or endorse any proprietary product or material mentioned in this publication. No reference shall be made to NMFS or to this publication furnished by NMFS, in any advertising or sales promotion which would imply that NMFS approves, recommends, or endorses any proprietary product or proprietary material mentioned herein which has as its purpose any intent to cause directly or indirectly the advertised product to be used or purchased because of this NMFS publication.

This report should be cited as follows:
Hart, Rick A. 2012. Stock Assessment of Brown Shrimp (Farfantepenaeus aztecus) in the U.S. Gulf of Mexico for 2011. NOAA Technical Memorandum NMFS-SEFSC-638, 37 p.

Copies of this report may be downloaded at:
http://galveston.ssp.nmfs.gov/publications/index.asp
Copies can also be obtained by writing:
Rick A. Hart
National Marine Fisheries Service
Galveston Laboratory
4700 Avenue U
Galveston, TX 77551

National Technical Information Center 5825 Port Royal
Springfield, VA 22161
(800) 553-6847 or
(703) 605-6000
http://www.ntis.gov/numbers.htm

1. ABSTRACT

This new Stock Synthesis (SS-3) stock assessment methodology allowed for the examination of brown shrimp (Farfantepenaeus aztecus) population behavior when parameterized with commercial brown shrimp data from 1984-2011. In the full time series model runs, fits to the CPUE estimates, size selectivity, spawning biomass, numbers of recruits, and fishing mortality estimates (F) were generated. In addition, the incorporation of direct fishery independent surveys (SEAMAP and Louisiana State Shrimp Surveys) of shrimp abundance into the model greatly improves the precision (i.e., tuning) of this and future assessments.

The new Stock Synthesis based shrimp stock assessment model generates spawning stock biomass outputs in terms of pounds of spawning biomass, the number of recruits, and fishing mortality (F) values. Spawning biomass and recruitment for the 2011 fishing season were 55,614 metric tons and 62.45 billion individuals respectively. Fishing mortality has been decreasing in recent years, with an F of 0.63 and 1.14 for the offshore and inshore fishery respectively, being estimated for the 2011 fishing season. Using these results, there is no evidence that the Gulf of Mexico brown shrimp stocks are overfished or undergoing overfishing.

2. INTRODUCTION

Historically the National Marine Fisheries Service (NMFS) applied a Virtual Population Analysis (VPA) developed by Nichols (1984) to assess the status of the Gulf of Mexico (GOM) penaeid shrimp stocks. While this model has been used since the mid-1980s, in 2008 it had been shown to not adequately track the pink shrimp population (Hart and Nance 2010). Upon reviewing the VPA assessment, a NMFS stock assessment panel concluded that the pink shrimp VPA assessment was not suitable for making a status determination for the Gulf pink shrimp stocks and also concluded that new fisheries models need to be investigated for future assessments (see Appendix 1 in Hart and Nance 2010).

Therefore, the NMFS is now assessing the GOM pink shrimp stock with Stock Synthesis (SS-3), a widely used, peer reviewed stock assessment model, (Methot 2009; Schirripa et al. 2009, Methot and Wetzel 2012). In addition, this new modeling approach allows for the inclusion of fisheries independent data into the stock assessment. Southeast Area Monitoring and Assessment Program (SEAMAP) data, consisting of Federal and State survey data, and Louisiana Inshore Shrimp Survey data were also included in this new model to tune recruitment parameters. Due to the concerns and problems with the pink shrimp VPA it was decided that NMFS should also migrate the brown shrimp assessments into the SS-3 framework. Therefore, SS-3 is now being used to assess the GOM brown shrimp stocks.

This report describes the stock assessment of brown shrimp (Farfantepenaeus aztecus) developed as a product of several Gulf of Mexico Fisheries Management Council, SSC Meetings convened in 2011 and 2012, and an SSC Shrimp Assessment workshop held in 2012. This assessment model was chosen as the best available science to model the population dynamics of northern Gulf of Mexico brown shrimp. The modeling methodology uses a generalized stock
assessment model, Stock Synthesis (SS-3), developed by Richard Methot (Methot 2009), and is parameterized with fishery data from 1984-2011, incorporating non-time varying selectivity, an estimated steepness value, and non-time varing R_{0}.

3. METHODS

3.1. Model Overview

For the brown shrimp model, I parameterized Stock Synthesis as an annual model, with 12 seasons. This allowed for a better fit of the highly cyclical recruitment pattern evident in the commercial and survey data. The Stock Synthesis model presented in this report was parameterized with such complexities as a density dependent flexible Q, static recruitment deviations, static R_{0} (unfished recruitment) and estimated steepness in the Beverton-Holt spawner-recruit (Table 3.1.1).

3.2. Data Sources

The model was parameterized with data from 1984 through 2011. Two years of "dummy" data were entered into the model before the actual 1984 data to allow for a burn in period. This burn in period facilitated the development of recruitment deviations or cycles which were initiated prior to the actual starting year data being called into the model.

The Stock Synthesis model was developed using the time period 1984-2011. The model structure included 2 fleets:

1) Commercial Offshore shrimp catch statistics (statistical zones 7-21)
2) Commercial Inshore shrimp catch statistics (statistical zones 7-21)
and 3 indices of abundance:
3) SEAMAP Summer Groundfish Trawls
(Fisheries-independent; 1987-2011)
4) SEAMAP Fall Groundfish Trawls (Fisheries-independent; 1987-2011)
5) Louisiana Monthly Shrimp Trawl Surveys (Fisheries-independent; Western Subset of surveys, 1984-2011)
3.2.1. Commercial Catch Statistics - Scientists have subdivided the U.S. Gulf of Mexico into 21 statistical sub-areas (Patella 1975) used by port agents and the state trip ticket system to assign the location of catches and fishing effort expended by the shrimp fleet on a trip by trip basis. The F. aztecus fishing grounds are located primarily within sub-areas 7-21. Port agents randomly visit fishing ports throughout the GOM to interview fishing captains and/or crews and record data pertaining to trawling activity (effort). These data include; 1) the location and depth fished by statistical sub-area; and 2) the species-specific pounds and sizes of shrimp landed for each individual trip that a vessel has completed (Nance et al. 1989).

The Stock Synthesis assessment model was parameterized with brown shrimp commercial catch data including; directed fishing effort by year and month, i.e., effort for those trips where >90 percent of the catch were brown shrimp, used to calculate monthly CPUE; total catch; and catch by size, i.e., size composition data consisting of count of numbers of shrimp per pound; for statistical zones 7-21 from January 1984 through December 2011. To calculate CPUE catch statistics the methods outlined in Nance et al. (2008) were used. Beginning with pilot studies in 1999, an electronic logbook program (ELB) was initiated to augment shrimp fishing effort measurements. Gallaway et al. (2003a, 2003b) provides an in depth description of this ELB data collection program and data collection procedures. These ELB data have been used to supplement the effort and location data collected by NMFS port agents and state trip tickets since 2006.

Total catch in pounds of shrimp tails by month was a primary input. Eleven count categories from 1984 to 2010 were used. Prior to 1984, shrimp catch was recorded in the 8 standard count categories. Beginning in 1984 shrimp catch data for the smallest sized shrimp, >67 count, were recorded at a finer scale, thus allowing us to partition this size category into four additional count categories, therefore having finer resolution for the smallest sized shrimp in the catch. This resulted in a total of 11 count categories for the data collected from 1984 to present; <15, 15-20, 21-25, 26-30, 31-40, 41-50, 51-67, 68-80, 81-100,101-115, and >115 (Hart and Nance 2010). These data are entered into the model as monthly catch in pounds for each of the eleven size bins for the years 1984-2011.
3.2.2. Growth Curve and other Population Level Rates - The growth parameters k and linf, derived and reported by Parrack (1981), were used as initial parameter values. Data inputs included a growth curve for each gender; natural mortality rate (3.24) per year as previously used in the historical VPA (Nichols 1984); and conversion factors to go from total length to the poundage breaks between the catch count categories (Brunenmeister 1980). These data were entered into SS-3 as parameters.
3.2.3. Size Selectivity - A dome shaped (double normal) selectivity pattern with 4 estimated parameters was used in each of the models. This resulting pattern provided a good fit to the data as will be shown in the results. In these model setups selectivity was not time varying.
3.2.4. Catchability \mathbf{Q} - Catchability was set as a density dependent parameter in the model.
3.2.5. Louisiana Monthly Shrimp Survey Data - Shrimp data collected by the State of Louisiana from 1984 - 2011 were included in the models. These data were collected and provided by staff of the Louisiana Department of Wildlife and Fisheries (LDWF) (Appendix 1).
3.2.6. SEAMAP Data - SEAMAP data collected by both NOAA Fisheries research vessels and State Fisheries agency vessels were used in the Stock Synthesis model. For a complete description of the SEAMAP data collection procedures see Appendix 2. These SEAMAP sampling data inputs were collected from statistical zones 7-21. Sampling index data using the delta log normal index from 1987-2011 were survey model inputs. Size compositions for brown shrimp collected and measured in 1987-2011 during summer and fall cruises were also model inputs.

3.3. Model Configuration and Population Dynamics

3.3.1. Selectivity, Natural Mortality, and F Configurations

For each commercial fishing fleet (i.e., offshore and inshore) I used a double normal selectivity setup with the same selectivity's for all years. For a more detailed technical description of fishery selectivity, natural mortality M, and fishing mortality F settings used in Stock Synthesis, consult Methot and Wetzel (2012).

3.3.2. Time-Varying Parameters

For this model, time varying R_{0} was not allowed. In addition, since recruitment is not continuous for brown shrimp as evidenced by the survey data, I allowed recruitment to occur during the months of February, April, June, July, and August. Catchability varied as a density dependent function.

3.3.3. Parameter Estimation

Stock Synthesis requires the model to be initialized with approximations for certain parameters (e.g., $\mathrm{S}_{\mathrm{g}, \mathrm{a}}, \mathrm{F}_{\mathrm{g}, 1}, \mathrm{Q}_{\mathrm{u}, 1}$, steepness) which are then estimated by the model in preset phases. These initial approximations scale the parameters to biologically reasonable values, and facilitate the evaluation of parameters estimated in subsequent phases (mortality, recruitment deviations, selectivity deviations, etc.) The initial approximations and model phase in which they are subsequently estimated are found in the model control file.

4. RESULTS

4.1. Parameter Estimates, Model Setups, and Model Fits

The model estimated parameters are provided in the parameter files. An overview of the model is shown in table 3.1.1. Log likelihood values for the model run are shown in table 4.1.1.

4.2. CPUE

Catch rate fluctuations, both within and between years, were revealed with a close fit of expected to observed catch rates for the modes. Figures 4.2.1 illustrate the catch rate model fits for each fleet and also show how the density dependent Q setups perform in the model.

The increase in the commercial fishery CPUE during the later portion of the time period evident in the commercial fishing fleet is also visible in the CPUE indices measured in the fishery independent SEAMAP and Louisiana survey data. Model fits to the Louisiana survey data are shown in Figure 4.2.2.

4.3. Generalized Size Comps

The model fit to the size composition of the catch for the commercial offshore fishing fleet is shown in figure 4.3.1. A seasonal pattern in the sizes of shrimp catch is evident in these monthly plots as well as the residual plots of the fits to the offshore catch size composition (Figure 4.3.2). Similarly, the inshore fleet size composition data show a seasonal pattern to the catch (Figures 4.3.1 and Figure 4.3.3). These figures illustrate how the inshore fleet catches predominately smaller sized shrimp compared to the offshore fleet.

Fits to the size composition catch data from the Louisiana survey are shown in figures 4.3.4 4.3.5. These data fits are most similar to the commercial inshore fleet.

4.4. Fishery Selectivity for the Commercial Fleet and Louisiana Surveys

Selectivity curves were developed for each of the commercial fishery fleets. These curves were fit to the seasonal harvest of smaller shrimp inshore and the larger shrimp harvested offshore (Figure 4.4.1). Size selectivity fits for the Louisiana survey are shown in figure 4.4.2, illustrating the higher selectivity for those smallest sized shrimp. These curves are shown with the SEAMAP selectivity fits to better illustrate the selectivity patterns exhibited by these two different surveys.

4.5. SEAMAP Selectivity, CPUE, and Size Composition

Selectivity fits are shown for summer and fall SEAMAP data are shown alongside of the Louisiana survey data in figure 4.4.2. The summer and fall SEAMAP cruises reveal a recent increase in CPUE, similar to the commercial fishery (Figure 4.5.1). Figures 4.5.2 - 4.5.4 show the good model fit to the size composition data for 1987-2010 for summer and fall SEAMAP surveys. The use of these fisheries independent data, in concert with the Louisiana surveys, have provided added information on some of the trends which were evident in the commercial shrimp fishery, thus allowing us to better tune the model's recruitment parameters.

4.6. Fishing Mortality

Stock Synthesis outputs F values by age and year. These rates were discussed at length during the workshop. Since this model is an annual model with seasons, it was parameterized with two age groups, age 1 group, which is the equivalent to ages 1-12 months, and age 2 group which is the equivalent to ages $13-24$ month shrimp. Therefore, the model can only calculate an F-rate for age 1 group shrimp because age 2 contains the terminal age. The model is also parameterized with two fleets, an offshore and an inshore fleet. This results in two F streams, one for each fleet for the age 1 group shrimp. The first instinct is to somehow combine these rates. However, this is not advised since the inshore fleet has very different sized shrimp and selectivity patterns relative to the offshore fleet. Therefore, as was discussed during the workshop, I have chosen to present the apical F by year and fleet separately (Figures 4.6.1). Both fleets for all of the models show a similar trend of decreasing F during the later portion of the time series. The Apical F values for 2011 are 0.63 and 1.14 for the offshore and inshore fisheries respectively.

4.7. Steepness, Spawning Biomass, and Recruitment

The model estimated a steepness value of about 0.99 . The total annual spawning biomass and recruitment values have shown an increase in recent years. Spawning biomass estimates and recruitment estimates for the 2011 fishing season were 55,614 metric tons and 62.45 billion individuals respectively (Figures 4.7.1 and 4.7.2). While recruitment values in 2011 appear to have decreased relative to 2010, this is a function of 2011 being the terminal year in the model.

5. CONCLUSIONS

The Stock Synthesis models developed provide outputs for new overfished and overfishing definitions for the Gulf of Mexico brown shrimp fishery. This assessment reveal an increasing trend in spawning biomass and recruitment in recent years, and a decreasing trend in fishing mortality (F) during the later portion of the time series. This assessment also provides evidence that the Gulf of Mexico brown shrimp stocks are not overfished or undergoing overfishing.

6. REFERENCES

Brunenmeister, S.L. 1980. Commercial brown, white and pink shrimp size: total size conversions. NOAA Technical Memorandum NMFS-SEFSC-20, 7pp.

Gallaway, B. J., J. G. Cole L. M. Martin, J. M. Nance, and M. Longnecker. 2003a. An evaluation of an electronic logbook as a more accurate method of estimating spatial patterns of trawling effort and bycatch in the Gulf of Mexico shrimp fishery. North American Journal of Fisheries Management 23:787-809.

Gallaway, B. J., J. G. Cole, L. R. Martin, J. M. Nance, and M. Longnecker. 2003b. Description of a simple electronic logbook designed to measure effort in the Gulf of Mexico shrimp fishery. North American Journal of Fisheries Management 23:581-589.

Hart, R.A., and J.M. Nance. 2010. Gulf of Mexico pink shrimp assessment modeling update: from a static VPA to an integrated assessment model, Stock Synthesis. NOAA Technical Memorandum NMFS-SEFSC-604. 32 pp.

Methot, R.D. 2009. Stock assessment: operational models in support of fisheries management. In Beamish and Rothschild (ed) Future of Fishery Science. Proceedings of the 50th Anniversary Symposium of the American Institute of Fishery Research Biologists, Seattle, WA. Springer. Fish \& Fisheries Series, Vol. 31: Pg. 137-165.

Methot, R.D. and C. Wetzel. 2012. Stock Synthesis: a biological and statistical framework for fish stock assessment and fishery management. Fisheries Research in Press.

Nance, J. M., E. F. Klima, and T. E. Czapla. 1989. Gulf of Mexico shrimp stock assessment workshop. NOAA Technical Memorandum NMFS-SEFSC-239, 41p.

Nance, J., W. Keithly Jr., C. Caillouet Jr., J. Cole, W. Gaidry, B. Gallaway, W. Griffin, R. Hart, and M. Travis. 2008. Estimation of effort, maximum sustainable yield, and maximum economic yield in the shrimp fishery of the Gulf of Mexico. NOAA Technical Memorandum NMFS-SEFSC-570, 71 p.

Nichols, S. 1984. Updated assessments of brown, white, and pink shrimp in the U.S. Gulf of Mexico. Paper presented the Workshop on Stock Assessment. Miami, Florida, May 1984.

Patella, F. 1975. Water surface area within statistical subareas used in reporting gulf coast shrimp data. Mar. Fish. Rev. 37(12):22-24.

Parrack, M.L. 1981. Some aspects of brown shrimp exploitation in the Northern Gulf of Mexico. NMFS. 50 pp, figures, tables, and appendices.

Schirripa, M. J., C. P. Goodyear, and R. D. Methot. 2009. Testing differentmethods of incorporating climate data into the assessment of US West Coast sablefish. ICES Journal of Marine Science: Journal du Conseil 2009 66(7):1605-1613.

Table 3.1.1. 2012 Brown shrimp Stock Synthesis stock assessment model configuration and parameter overview.

Model Number	Selectivity Setup	Q Setup	Steepness	R_{0}	Recruitment Deviations	Mortality Setup	Control File Name
2	Not Time Varying	Density Dependent	Estimated at 0.99	Not Time Varying	6 Months/ Year	Constant	Brown_2011_annual_2c.ctl

Figure 4.2.1. Brown shrimp CPUE and Q fits for Inshore and Offshore Fleets. Panel a is Inshore and panel b is Offshore.

Figure 4.3.1. Size composition fits for the brown shrimp offshore and inshore fleets aggregated across years, 1984-2011.

Figure 4.2.2 Brown shrimp Louisiana West Survey delta log normal fits.

Figure 4.3.2. Residual fits for the offshore brown shrimp fishery, 1984-2011.

Figure 4.3.3. Residual fits for the inshore brown shrimp fishery, 1984-2011.

Figure 4.3.5. Residual fits for the Louisiana West survey, 1984-2011.

Figure 4.3.4. Residual fits for the Louisiana West survey, 1984-2011.

Figure 4.4.1. Brown shrimp commercial fishery size selectivity for the Inshore and Offshore fleets.

Figure 4.5.1 Brown shrimp SEAMAP Summer and Fall Survey Delta Lognormal fits for Run 1. Panel a is Summer and panel b is Fall.

Figure 4.5.3. Residual fits for the Summer SEAMAP survey, 1987-2011.

Figure 4.5.2. Size composition fits for the summer and fall SEAMAP surveys, 1987-2011.

Figure 4.5.4. Residual fits for the Fall SEAMAP survey, 1987-2011.

Figure 4.7.1. Brown shrimp spawning biomass estimates.

Figure 4.6.1. Brown shrimp annual apical F-values values by fleet.

Figure 4.7.2. Brown shrimp recruitment model estimates.

Table 4.1.1. Log likelihood values for the 2012 brown shrimp
Stock Synthesis stock assessment model runs

		Run 2
Survey Likelihoods	Inshore Fishery	-67.9953
	Offshore Fishery	-300.981
	LA Survey	324.767
	Seamap Summer	77.1309
	Seamap Fall	25.0987
Size Composition		
Likelihood		
	Inshore Fishery	2804.77
	Offshore Fishery	2607.41
	LA West	8727.68
	Seamap Summer	360.839
	Seamap Fall	344.42
Vather Likelihood	Inshore Catch	$5.81 \mathrm{E}-06$
	Offshore Catch	$1.48 \mathrm{E}-08$
	Parameter Priors	17.5928
	Recruitment	-19.7121
	Total Likelihood	15136.6

Appendix 1. Louisiana state shrimp survey methodology.

Fishery-independent catch rates of brown and white shrimp from the Louisiana Department of Wildlife and Fisheries 16' marine trawl survey, 1967-2011

Joe West and Harry Blanchet
Office of Fisheries
Louisiana Department of Wildlife and Fisheries

Introduction

The Louisiana Department of Wildlife and Fisheries (LDWF) Marine Fisheries Section conducts routine standardized sampling as part of long-term comprehensive monitoring programs to collect life-history information and measure relative abundance/size composition of recreationally and commercially important species (LDWF 2002). These programs include the 16' marine trawl survey, 1967-present. This survey uses a standardized design and is conducted throughout the year at fixed sampling locations.

Methods

Brown and white shrimp (Farfantepenaeus aztecus and Litopenaeus setiferus) abundance indices are developed from the LDWF fishery-independent 16 ' marine trawl survey. Sampling gear is a 4.9 m flat otter trawl with a body and cod-end consisting of 19 mm and 6.4 mm bar meshes, respectively. Samples are 10 minute tows. All captured shrimp are enumerated and a maximum of 50 randomly selected shrimp per species per sample are measured (i.e., total length in 5 mm bins). When more than 50 shrimp per species per sample are captured, catch-at-size is derived as the product of total catch and proportional p_{l} subsample at size, i.e. $\sum_{l} p_{l}=1$.

Only those fixed stations sampled regularly through time are included in index development. Due to the addition of stations in 1980, separate indices are developed for each survey era: 1967-1979 and 19802011 (Figures 1, 2). Catch per unit effort is defined as the number of individuals caught per 10 minute trawl tow.

A delta approach (Pennington 1983; Pennington 1996) is used to estimate catch rates of each shrimp species in each month and year as:

$$
\begin{equation*}
I_{m y}=c_{m y} p_{m y} \tag{1}
\end{equation*}
$$

where $c_{m y}$ are estimated mean CPUE of positive catches in each month and year (assumed as lognormal distributions) and $p_{m y}$ are estimated mean probabilities of capturing the species of interest in each month and year (assumed as binomial distributions). The lognormal and binomial means are estimated, in this case, as sample means (i.e., generalized linear models were not used). The lognormal component considers only those samples in which species of interest were captured (i.e. the geometric mean of successful trawl tows only). The binomial component considers all samples (i.e. the proportion of trawl tows capturing the species of interest). Each index is then computed from equation [1] with variances for each month and year approximated as:

$$
\begin{equation*}
V\left(I_{m y}\right) \approx V\left(c_{m y}\right) p_{m y}^{2}+V\left(p_{m y}\right) c_{m y}^{2}+2 c_{m y} p_{m y} \operatorname{Cov}\left(c_{m}, p_{m}\right) \tag{2}
\end{equation*}
$$

where $\operatorname{Cov}\left(c_{m}, p_{m}\right) \approx \rho_{c, p}\left[S E\left(c_{m y}\right) S E\left(p_{m y}\right)\right]$ and $\rho_{c, p}$ represents the correlation between $c_{m y}$ and $p_{m y}$ among years. Lognormal variances $V\left(c_{m y}\right)$ are converted from arithmetic scale coefficient of variations as $\ln \left(C V^{2}+1\right)$. Index coefficient of variations $C V_{m y}$ are derived as $\sqrt{V\left(I_{m y}\right)} / I_{m y}$.

Results/Discussion

White Shrimp $p_{m y}, I_{m y}$, and $C V_{m y}$ are summarized in Tables 1-3; catch-at-size by year and month is provided in White.xlsx.

Brown shrimp $p_{m y}, I_{m y}$, and $C V_{m y}$ are summarized in Tables 4-6; catch-at-size by year and month is provided in Brown.xlsx.

Literature Cited

LDWF. 2002. Marine Fisheries Division Field Procedures Manual. Louisiana Department of Wildlife and Fisheries, Version 02-1, Baton Rouge, LA.

Pennington, M. 1983. Efficient estimators of abundance, for fish and plankton surveys. Biometrics 46: 1185-1192.

Pennington, M. 1996. Estimating the mean and variance from highly skewed marine data. National Marine Fisheries Service Fishery Bulletin 94: 498-505.

Tables

Table 1: Proportion of tows capturing white shrimp Litopenaeus setiferus derived from the Louisiana Department of Wildlife and Fisheries 16' marine trawl survey (1967-1979 and 1980-2011).

Proportion positive trawl tows by year/month												
	1	2	3	4	5	6	7	8	9	10	11	12
1967	0.67	0.57	0.89	0.81	0.67	0.06	0.75	0.91	0.93	1.00	1.00	1.00
1968	0.18	0.75	0.22	0.78	0.63	0.36	0.57	0.77	0.75	0.83	0.92	0.75
1969	0.30	0.29	0.55	0.77	0.67	0.31	0.60	0.86	0.86	1.00	1.00	0.85
1970	0.18	0.53	0.93	1.00	0.80	0.24	0.55	0.81	0.91	0.90	0.94	1.00
1971	0.63	0.60	0.91	0.94	0.94	0.32	0.24	0.64	0.79	0.83	0.92	0.78
1972	0.54	0.59	0.94	0.88	0.73	0.16	0.24	0.54	0.68	0.83	0.86	0.50
1973	0.17	0.04	0.65	0.62	0.62	0.33	0.57	0.78	0.94	0.85	1.00	0.61
1974	0.41	0.33	0.83	0.91	0.60	0.17	0.37	0.57	0.86	0.93	1.00	0.75
1975	0.68	0.79	0.81	0.90	0.85	0.47	0.51	0.75	0.73	0.92	0.92	0.81
1976	0.31	0.59	0.90	0.97	0.78	0.49	0.67	0.67	0.73	0.83	0.76	0.56
1977	0.20	0.00	0.38	0.69	0.38	0.36	0.69	0.72	0.77	0.84	0.90	0.88
1978	0.27	0.00	0.44	0.85	0.80	0.54	0.79	0.97	0.97	0.94	0.92	0.90
1979	0.17	0.33	0.59	0.86	0.61	0.10	0.58	0.82	0.91	0.97	0.86	0.82
1980	0.41	0.25	0.44	0.59	0.66	0.49	0.60	0.80	0.88	0.92	0.95	0.91
1981	0.50	0.50	0.62	0.65	0.62	0.37	0.58	0.77	0.78	0.89	0.83	0.77
1982	0.44	0.37	0.51	0.66	0.58	0.28	0.52	0.76	0.77	0.85	0.89	0.89
1983	0.60	0.40	0.72	0.74	0.74	0.50	0.55	0.75	0.77	0.83	0.88	0.89
1984	0.25	0.40	0.59	0.73	0.62	0.17	0.57	0.86	0.82	0.89	0.84	0.83
1985	0.37	0.44	0.81	0.78	0.63	0.40	0.62	0.75	0.81	0.94	0.95	0.93
1986	0.54	0.68	0.81	0.70	0.61	0.47	0.81	0.88	0.69	0.95	0.97	0.76
1987	0.72	0.69	0.82	0.81	0.71	0.46	0.82	0.76	0.72	0.78	0.81	0.75
1988	0.21	0.17	0.54	0.66	0.51	0.08	0.40	0.66	0.75	0.86	0.81	0.62
1989	0.58	0.42	0.59	0.64	0.44	0.30	0.67	0.73	0.68	0.88	0.85	0.48
1990	0.30	0.46	0.52	0.51	0.28	0.35	0.72	0.74	0.71	0.81	0.74	0.74
1991	0.56	0.56	0.66	0.85	0.71	0.59	0.61	0.66	0.74	0.82	0.77	0.62
1992	0.43	0.45	0.61	0.67	0.56	0.37	0.62	0.66	0.79	0.83	0.83	0.68
1993	0.55	0.54	0.45	0.74	0.77	0.48	0.73	0.69	0.75	0.89	0.93	0.77
1994	0.36	0.34	0.66	0.76	0.74	0.60	0.75	0.79	0.78	0.87	0.80	0.78
1995	0.66	0.68	0.70	0.75	0.66	0.64	0.68	0.77	0.73	0.86	0.84	0.61
1996	0.36	0.31	0.50	0.58	0.57	0.33	0.58	0.69	0.64	0.83	0.74	0.78
1997	0.41	0.45	0.65	0.63	0.61	0.41	0.54	0.61	0.58	0.92	0.90	0.72
1998	0.64	0.76	0.67	0.79	0.74	0.56	0.62	0.69	0.80	0.89	0.88	0.88
1999	0.50	0.76	0.69	0.67	0.50	0.40	0.58	0.62	0.61	0.81	0.76	0.86
2000	0.58	0.55	0.63	0.62	0.59	0.50	0.64	0.83	0.87	0.87	0.89	0.41
2001	0.21	0.41	0.66	0.64	0.47	0.39	0.63	0.62	0.71	0.87	0.93	0.83
2002	0.40	0.64	0.52	0.71	0.55	0.47	0.66	0.71	0.73	0.92	0.95	0.76
2003	0.41	0.55	0.52	0.70	0.58	0.52	0.83	0.68	0.75	0.82	0.81	0.83
2004	0.64	0.54	0.73	0.79	0.71	0.73	0.85	0.81	0.85	0.89	0.94	0.79
2005	0.44	0.49	0.71	0.78	0.78	0.66	0.84	0.73	0.89	0.92	0.90	0.90
2006	0.89	0.79	0.85	0.81	0.76	0.80	0.84	0.82	0.83	0.90	0.91	0.79
2007	0.74	0.58	0.73	0.74	0.78	0.65	0.83	0.78	0.86	0.92	0.84	0.81
2008	0.58	0.75	0.82	0.85	0.81	0.78	0.81	0.91	0.90	0.95	0.87	0.85
2009	0.87	0.84	0.81	0.91	0.84	0.75	0.76	0.77	0.86	0.97	0.90	0.85
2010	0.43	0.39	0.52	0.77	0.80	0.75	0.74	0.85	0.91	0.86	0.99	0.84
2011	0.56	0.42	0.74	0.83	0.70	0.53	0.67	0.73	0.80	0.89	0.93	0.86

Table 2: Delta lognormal mean catch per tow of white shrimp Litopenaeus setiferus derived from the Louisiana Department of Wildlife and Fisheries 16' marine trawl survey (1967-1979 and 1980-2011).

Delta lognormal mean catch per tow by year/month												
	1	2	3	4	5	6	7	8	9	10	11	12
1967	1.4	1.5	3.1	11.8	3.6	0.3	3.2	13.4	18.4	50.4	80.3	24.7
1968	1.2	0.9	2.3	6.3	12.6	0.5	3.3	10.8	7.0	11.2	25.8	10.9
1969	0.6	0.5	1.4	5.5	7.4	1.5	2.5	13.7	15.6	35.1	15.8	5.7
1970	0.2	1.7	10.6	37.1	13.3	0.8	4.4	18.1	17.0	23.3	57.3	11.6
1971	1.6	4.3	12.5	23.3	18.3	1.1	0.6	9.9	8.9	16.8	31.4	8.1
1972	3.0	6.7	11.6	27.2	10.3	0.4	0.6	3.0	6.0	18.1	19.7	1.9
1973	0.6	0.0	4.4	5.5	6.5	1.2	4.2	8.7	18.1	16.7	23.1	6.5
1974	3.8	2.6	7.5	11.6	3.1	0.3	2.0	13.3	9.3	25.3	54.8	4.6
1975	5.1	7.5	11.0	16.7	11.3	1.8	3.7	5.9	9.7	21.5	44.7	3.8
1976	1.4	5.7	15.3	24.4	9.5	1.9	18.8	19.6	9.8	30.0	5.7	2.7
1977	0.3		0.7	2.2	1.4	1.2	11.2	43.6	32.6	33.9	56.6	19.6
1978	0.8		2.7	11.0	4.7	2.7	18.8	27.2	11.3	16.8	27.9	12.4
1979	2.0	0.9	12.7	4.1	3.6	0.2	6.7	8.9	6.0	33.4	16.9	2.0
1980	1.4	0.6	1.8	4.3	6.0	1.3	4.9	13.6	13.2	23.9	37.3	15.3
1981	1.4	3.2	3.7	7.4	3.5	1.0	5.2	13.6	8.6	19.8	16.0	12.3
1982	2.2	1.2	3.4	6.2	5.4	0.5	3.4	8.6	8.6	16.5	14.8	15.5
1983	2.9	3.0	4.6	9.7	10.3	1.7	2.8	8.3	7.2	9.6	19.5	19.7
1984	1.9	2.6	3.4	7.9	4.4	0.3	5.7	16.2	11.8	15.0	22.7	9.0
1985	4.5	5.6	7.3	6.3	3.9	1.0	5.4	7.9	11.2	16.1	22.	15.7
1986	2.4	4.3	10.9	11.4	3.8	6.4	17.1	10.5	5.5	27.8	22.2	8.4
1987	5.0	5.6	12.0	13.5	6.1	1.5	11.0	12.5	3.6	11.4	10.2	2.0
1988	0.3	0.3	3.5	3.0	3.1	0.1	7.0	6.2	5.0	9.8	8.0	2.0
1989	3.7	2.3	2.7	6.5	3.0	0.8	3.7	5.6	3.6	9.7	4.7	14.6
1990	1.0	1.7	2.2	2.6	0.8	1.8	8.2	6.3	3.9	15.4	13.7	13.3
1991	5.6	5.6	6.8	19.6	4.6	2.6	5.2	3.8	4.9	11.8	12.5	5.7
1992	6.6	4.5	6.0	6.8	5.8	1.1	6.3	5.4	14.7	10.8	17.3	5.0
1993	6.5	4.5	2.1	7.1	8.4	2.3	7.2	7.0	8.5	29.6	32.5	7.3
1994	3.3	1.0	6.8	10.8	8.7	2.5	6.2	9.6	8.2	27.3	29.0	17.4
1995	5.4	7.7	6.2	17.2	7.0	3.4	11.3	9.2	7.4	18.6	15.9	3.0
1996	2.9	2.0	2.1	4.1	3.2	0.7	5.4	11.6	8.9	13.8	12.8	11.9
1997	2.8	3.6	3.5	4.0	4.6	1.1	5.4	6.5	4.6	34.3	18.4	15.1
1998	9.1	8.1	6.8	10.1	6.8	2.7	6.3	5.8	14.7	17.1	15.5	18.1
1999	2.4	11.8	5.7	9.4	3.3	1.5	9.0	6.0	7.2	22.2	10.4	11.2
2000	4.5	5.1	7.6	8.7	4.8	2.1	9.0	9.9	16.7	15.3	19.2	3.9
2001	0.7	2.5	3.6	3.2	2.0	1.5	6.4	8.4	12.4	15.9	10.0	15.1
2002	2.4	3.6	2.4	4.3	2.1	1.0	5.0	4.4	6.6	13.6	21.5	5.6
2003	3.9	2.1	2.0	6.8	2.4	3.0	12.9	5.2	6.9	17.3	9.6	16.1
2004	3.4	2.4	5.5	8.3	6.3	5.2	13.8	8.8	11.3	22.9	19.0	29.8
2005	2.3	2.7	7.9	11.7	5.2	3.2	10.3	5.6	16.3	48.6	33.3	18.9
2006	11.6	16.0	13.7	11.0	6.4	5.7	20.7	13.8	17.0	29.0	47.1	13.0
2007	10.3	7.8	9.7	7.3	6.6	5.7	10.6	16.5	17.2	32.5	21.9	27.5
2008	5.7	8.9	10.7	8.3	5.3	6.7	9.8	10.2	16.2	29.4	32.9	30.8
2009	37.3	25.4	23.1	26.4	12.7	9.8	15.5	6.3	8.8	25.8	18.2	20.3
2010	6.2	5.0	6.9	10.5	5.5	3.3	12.1	12.5	19.4	16.7	39.7	31.8
2011	10.6	2.4	8.2	10.8	4.6	2.2	5.9	6.1	11.0	11.1	21.8	16.5

Table 3: Coefficient of variation of delta lognormal mean catch per tow of white shrimp Litopenaeus setiferus derived from the Louisiana Department of Wildlife and Fisheries 16' marine trawl survey (1967-1979 and 19802011).

CV of delta lognormal mean catch per tow by year/month												
	1	2	3	4	5	6	7	8	9	10	11	12
1967	0.24	0.30	0.11	0.13	0.20		0.18	0.10	0.08	0.00	0.00	0.00
1968	0.65	0.81	0.65	0.14	0.20	0.62	0.26	0.15	0.18	0.13	0.08	0.21
1969	0.48	0.89	0.36	0.17	0.22	0.44	0.45	0.11	0.09	0.00	0.01	0.11
1970		0.26	0.05	0.00	0.09	0.37	0.16	0.09	0.06	0.08	0.06	0.02
1971	0.23	0.18	0.06	0.05	0.04	0.27	0.40	0.13	0.10	0.09	0.06	0.11
1972	0.20	0.15	0.04	0.07	0.11	0.51	0.44	0.15	0.12	0.09	0.09	0.31
1973	0.49		0.14	0.14	0.12	0.26	0.14	0.09	0.05	0.07	0.00	0.17
1974	0.22	0.32	0.08	0.05	0.16	0.51	0.24	0.14	0.07	0.04	0.00	0.14
1975	0.14	0.11	0.08	0.05	0.08	0.19	0.17	0.11	0.10	0.06	0.09	0.17
1976	0.38	0.18	0.06	0.03	0.10	0.18	0.12	0.14	0.11	0.09	0.14	0.25
1977	0.89		0.42	0.17	0.24	0.27	0.13	0.11	0.12	0.09	0.06	0.10
1978	0.53		0.30	0.09	0.12	0.21	0.11	0.03	0.03	0.04	0.06	0.11
1979	0.65	0.51	0.18	0.13	0.16	0.57	0.17	0.09	0.06	0.03	0.11	0.28
1980	0.23	0.37	0.17	0.10	0.08	0.15	0.08	0.06	0.04	0.03	0.04	0.04
1981	0.21	0.28	0.09	0.07	0.09	0.17	0.08	0.06	0.06	0.04	0.07	0.08
1982	0.20	0.24	0.10	0.07	0.08	0.23	0.10	0.05	0.06	0.04	0.05	0.05
1983	0.14	0.20	0.07	0.07	0.05	0.11	0.09	0.06	0.07	0.05	0.05	0.09
1984	0.34	0.18	0.10	0.06	0.09	0.36	0.09	0.04	0.06	0.04	0.06	0.11
1985	0.19	0.16	0.05	0.05	0.08	0.18	0.07	0.07	0.05	0.03	0.03	0.05
1986	0.15	0.09	0.06	0.06	0.09	0.11	0.05	0.05	0.08	0.03	0.03	0.12
1987	0.10	0.12	0.05	0.04	0.06	0.13	0.05	0.06	0.07	0.06	0.08	0.20
1988	0.54	0.51	0.10	0.08	0.10		0.13	0.07	0.07	0.04	0.07	0.16
1989	0.12	0.19	0.10	0.07	0.12	0.25	0.08	0.06	0.09	0.04	0.08	0.18
1990	0.21	0.19	0.12	0.09	0.19	0.14	0.06	0.06	0.08	0.05	0.09	0.09
1991	0.12	0.11	0.08	0.04	0.07	0.09	0.08	0.08	0.07	0.05	0.08	0.12
1992	0.15	0.16	0.08	0.06	0.09	0.15	0.08	0.08	0.06	0.05	0.06	0.12
1993	0.13	0.14	0.13	0.06	0.06	0.11	0.07	0.06	0.06	0.04	0.03	0.08
1994	0.17	0.27	0.08	0.06	0.06	0.09	0.06	0.05	0.06	0.04	0.07	0.07
1995	0.09	0.10	0.07	0.05	0.07	0.08	0.07	0.05	0.07	0.04	0.05	0.14
1996	0.18	0.20	0.12	0.08	0.09	0.20	0.08	0.07	0.08	0.05	0.09	0.08
1997	0.18	0.16	0.09	0.08	0.08	0.14	0.09	0.08	0.08	0.03	0.04	0.07
1998	0.09	0.07	0.07	0.05	0.06	0.10	0.08	0.07	0.06	0.03	0.04	0.04
1999	0.14	0.07	0.06	0.07	0.10	0.14	0.09	0.07	0.08	0.05	0.07	0.05
2000	0.11	0.11	0.08	0.08	0.08	0.11	0.07	0.04	0.04	0.04	0.04	0.16
2001	0.27	0.16	0.08	0.08	0.11	0.16	0.07	0.08	0.06	0.04	0.03	0.05
2002	0.16	0.10	0.10	0.06	0.10	0.16	0.06	0.07	0.07	0.03	0.03	0.08
2003	0.15	0.14	0.11	0.06	0.09	0.10	0.04	0.07	0.06	0.04	0.06	0.05
2004	0.11	0.13	0.06	0.05	0.07	0.06	0.04	0.05	0.05	0.03	0.03	0.06
2005	0.15	0.13	0.06	0.05	0.06	0.08	0.04	0.07	0.05	0.03	0.04	0.04
2006	0.04	0.06	0.04	0.05	0.06	0.06	0.04	0.05	0.05	0.03	0.04	0.06
2007	0.07	0.10	0.06	0.06	0.06	0.08	0.04	0.06	0.04	0.03	0.05	0.06
2008	0.10	0.07	0.05	0.04	0.05	0.05	0.05	0.03	0.03	0.02	0.04	0.05
2009	0.05	0.05	0.05	0.03	0.04	0.05	0.06	0.06	0.04	0.02	0.04	0.05
2010	0.14	0.16	0.09	0.06	0.05	0.08	0.07	0.04	0.03	0.05	0.01	0.05
2011	0.11	0.18	0.08	0.04	0.06	0.10	0.07	0.08	0.07	0.05	0.03	0.05

Table 4: Proportion of tows capturing brown shrimp Farfantepenaeus aztecus derived from the Louisiana Department of Wildlife and Fisheries 16' marine trawl survey (1967-1979 and 1980-2011).

Proportion positive trawl tows by year/month												
	1	2	3	4	5	6	7	8	9	10	11	12
1967	0.17	0.29	0.37	0.81	1.00	1.00	1.00	0.82	0.86	0.92	0.80	1.00
1968	0.09	0.00	0.00	0.61	0.88	1.00	0.93	0.85	0.75	0.58	0.69	0.63
1969	0.30	0.14	0.33	0.31	0.92	1.00	1.00	1.00	0.68	0.74	0.50	0.60
1970	0.36	0.16	0.07	0.48	0.97	1.00	0.92	0.77	0.50	0.60	0.56	0.29
1971	0.38	0.20	0.48	0.72	1.00	1.00	0.88	0.89	0.46	0.62	0.42	0.48
1972	0.54	0.53	0.28	0.91	0.97	0.88	0.94	0.61	0.50	0.45	0.48	0.13
1973	0.04	0.00	0.10	0.32	0.76	0.83	0.82	0.81	0.66	0.60	0.62	0.30
1974	0.24	0.43	0.40	0.86	0.97	1.00	0.63	0.35	0.42	0.44	0.75	0.40
1975	0.36	0.21	0.46	0.60	0.91	0.86	0.82	0.59	0.47	0.50	0.75	0.25
1976	0.06	0.14	0.68	0.97	1.00	1.00	0.92	0.63	0.48	0.63	0.24	0.31
1977	0.10	0.00	0.00	0.85	1.00	0.94	0.79	0.69	0.59	0.72	0.60	0.44
1978	0.00	0.00	0.00	0.56	1.00	1.00	0.92	0.68	0.50	0.92	0.84	0.60
1979	0.17	0.08	0.00	0.50	0.94	0.90	0.92	0.71	0.72	0.91	0.79	0.45
1980	0.26	0.18	0.09	0.35	0.76	0.96	0.89	0.76	0.54	0.52	0.56	0.56
1981	0.22	0.13	0.10	0.57	0.98	0.98	0.91	0.76	0.54	0.62	0.56	0.43
1982	0.33	0.16	0.15	0.61	0.90	0.94	0.91	0.75	0.64	0.57	0.49	0.54
1983	0.33	0.28	0.25	0.45	0.76	0.89	0.87	0.88	0.69	0.49	0.57	0.61
1984	0.07	0.02	0.08	0.43	0.91	0.88	0.89	0.84	0.50	0.62	0.36	0.06
1985	0.06	0.06	0.08	0.65	0.97	0.97	0.92	0.49	0.50	0.66	0.54	0.43
1986	0.18	0.04	0.27	0.76	0.96	0.98	0.96	0.67	0.72	0.84	0.69	0.48
1987	0.39	0.03	0.11	0.43	0.96	0.95	0.90	0.71	0.56	0.73	0.41	0.13
1988	0.12	0.00	0.14	0.46	0.91	0.88	0.78	0.48	0.43	0.43	0.34	0.12
1989	0.34	0.26	0.26	0.60	0.93	0.91	0.80	0.66	0.54	0.68	0.55	0.21
1990	0.01	0.04	0.27	0.65	0.97	0.90	0.85	0.58	0.55	0.67	0.53	0.20
1991	0.39	0.31	0.37	0.63	0.81	0.75	0.77	0.45	0.54	0.57	0.31	0.28
1992	0.33	0.15	0.30	0.58	0.91	0.90	0.87	0.56	0.78	0.59	0.47	0.33
1993	0.32	0.26	0.15	0.36	0.84	0.91	0.77	0.70	0.51	0.74	0.66	0.38
1994	0.30	0.24	0.40	0.52	0.85	0.76	0.84	0.56	0.46	0.64	0.51	0.30
1995	0.29	0.21	0.22	0.61	0.96	0.96	0.81	0.59	0.57	0.57	0.34	0.17
1996	0.05	0.03	0.01	0.30	0.92	0.92	0.82	0.65	0.65	0.67	0.57	0.31
1997	0.17	0.09	0.13	0.69	0.80	0.84	0.85	0.62	0.66	0.70	0.32	0.30
1998	0.07	0.11	0.07	0.52	0.93	0.96	0.80	0.58	0.49	0.52	0.54	0.40
1999	0.20	0.23	0.45	0.82	0.98	0.96	0.77	0.43	0.44	0.72	0.46	0.40
2000	0.35	0.34	0.66	0.96	0.98	0.95	0.81	0.69	0.70	0.64	0.51	0.21
2001	0.04	0.00	0.18	0.70	0.97	0.93	0.72	0.58	0.64	0.59	0.55	0.63
2002	0.06	0.04	0.09	0.57	0.94	0.86	0.75	0.54	0.59	0.66	0.49	0.21
2003	0.07	0.10	0.13	0.75	0.97	0.95	0.77	0.43	0.61	0.41	0.34	0.23
2004	0.12	0.18	0.25	0.77	0.95	0.91	0.75	0.52	0.59	0.80	0.67	0.48
2005	0.15	0.17	0.14	0.78	0.98	0.96	0.88	0.62	0.81	0.70	0.58	0.21
2006	0.23	0.33	0.49	0.92	0.97	0.93	0.76	0.55	0.62	0.66	0.50	0.31
2007	0.25	0.11	0.28	0.82	0.99	0.95	0.87	0.67	0.61	0.62	0.51	0.28
2008	0.20	0.30	0.38	0.77	0.88	0.84	0.79	0.60	0.68	0.70	0.65	0.41
2009	0.34	0.25	0.52	0.95	1.00	0.95	0.81	0.59	0.71	0.66	0.26	0.23
2010	0.04	0.06	0.03	0.36	0.96	0.97	0.88	0.63	0.44	0.38	0.38	0.11
2011	0.06	0.00	0.18	0.93	0.98	0.92	0.71	0.51	0.49	0.53	0.46	0.33

Table 5: Delta lognormal mean catch per tow of brown shrimp Farfantepenaeus aztecus derived from the Louisiana Department of Wildlife and Fisheries 16' marine trawl survey (1967-1979 and 1980-2011).

Delta lognormal mean catch per tow by year/month												
	1	2	3	4	5	6	7	8	9	10	11	12
1967	0.2	0.3	0.6	12.4	127.2	101.9	62.4	7.5	4.3	4.0	4.7	5.2
1968	0.1			6.9	60.4	86.7	21.2	7.6	2.9	1.2	2.0	1.9
1969	0.5	0.1	0.4	2.8	66.1	80.6	10.5	7.7	2.3	6.0	2.2	1.3
1970	0.4	0.2	0.1	2.8	61.2	56.8	40.6	6.6	1.9	1.7	1.9	0.4
1971	0.5	0.4	1.2	17.0	105.0	49.8	16.5	7.2	1.3	1.5	1.0	1.1
1972	1.8	1.2	1.5	18.6	32.5	12.6	6.9	1.3	1.0	1.7	1.2	0.3
1973	0.0		0.1	1.5	25.1	24.8	12.3	4.5	2.3	2.0	2.6	1.2
1974	0.4	0.7	1.3	21.4	48.0	34.6	3.9	1.1	0.9	1.0	2.5	0.9
1975	0.7	0.7	1.3	4.2	23.4	26.0	11.1	2.9	0.9	1.1	3.7	0.3
1976	0.1	0.1	3.6	47.0	124.8	69.3	11.5	2.6	1.1	1.6	0.3	0.4
1977	0.1			12.9	101.2	56.1	7.5	3.5	2.8	3.6	2.0	1.2
1978				13.9	450.3	157.6	11.6	3.6	1.7	3.6	3.2	1.1
1979	0.2	0.1		2.4	49.8	54.4	24.4	3.7	4.2	5.1	1.7	0.6
1980	0.4	0.2	0.2	1.5	15.3	46.7	18.5	4.0	2.3	2.4	1.4	2.1
1981	0.5	0.1	0.3	6.5	66.8	43.8	9.4	3.3	1.9	3.5	1.5	1.1
1982	1.0	0.5	1.6	18.7	37.3	49.3	16.1	5.7	2.4	2.4	1.5	2.4
1983	0.7	1.1	0.8	2.0	18.3	38.2	21.8	7.3	2.2	1.8	2.6	5.0
1984	0.1	0.0	0.1	5.8	54.2	46.9	23.0	4.5	1.6	2.7	1.3	0.1
1985	0.1	0.1	0.3	13.9	68.2	45.9	13.7	1.4	2.1	2.1	1.6	1.1
1986	0.3	0.1	1.2	29.9	84.4	59.1	11.3	2.7	4.4	7.9	3.5	2.1
1987	0.9	0.0	0.2	2.9	70.3	46.4	10.2	2.7	3.3	5.6	1.9	0.6
1988	0.1		0.5	4.3	30.3	18.5	8.5	1.7	1.7	1.5	1.0	0.2
1989	0.8	0.4	0.8	5.7	52.9	39.9	13.1	3.9	3.4	2.6	1.8	0.4
1990	0.0	0.0	1.1	20.2	55.7	26.3	9.9	3.1	2.9	4.0	1.8	1.2
1991	2.8	1.5	1.3	12.0	31.7	14.5	5.3	1.2	3.2	2.2	0.8	0.9
1992	0.6	0.5	2.6	8.9	28.8	28.9	14.6	4.0	6.6	3.4	1.6	1.0
1993	0.8	0.8	0.3	1.7	27.5	56.1	21.9	4.4	3.4	4.1	2.4	1.3
1994	0.6	0.5	1.0	5.4	28.3	19.1	13.0	3.3	2.1	2.7	2.0	0.5
1995	0.5	0.3	0.8	9.5	47.7	27.2	8.7	2.7	2.6	2.0	0.9	0.3
1996	0.1	0.0	0.0	2.2	77.7	53.8	15.3	4.0	2.8	2.8	3.3	1.0
1997	0.7	0.1	0.3	12.9	43.9	55.6	16.8	4.8	3.4	5.4	0.7	0.6
1998	0.2	0.2	0.3	6.3	77.0	58.9	7.5	2.1	2.0	1.5	1.6	1.4
1999	0.3	0.5	2.9	34.2	64.6	27.2	10.0	2.0	2.4	3.4	1.9	1.2
2000	0.6	1.2	3.1	21.9	54.1	23.5	9.3	4.8	4.1	3.5	1.6	0.6
2001	0.1	.	0.5	12.0	41.1	22.3	6.0	3.9	4.3	2.3	2.0	2.1
2002	0.1	0.0	0.1	10.7	39.2	10.5	4.6	2.4	2.6	3.1	1.8	0.4
2003	0.2	0.2	0.4	10.7	65.3	23.0	5.8	1.7	3.0	1.1	0.6	0.4
2004	0.3	0.3	0.9	21.5	79.1	25.0	4.6	2.4	3.8	6.5	4.0	1.9
2005	0.4	0.3	0.3	7.9	69.5	37.6	11.3	2.4	3.7	3.7	2.6	0.5
2006	0.4	0.8	2.5	40.3	100.0	33.0	5.8	2.0	2.6	3.6	2.0	0.8
2007	0.5	0.2	2.2	17.1	77.2	41.5	11.3	4.7	3.2	3.5	1.4	1.1
2008	0.4	0.4	1.7	26.2	72.5	31.4	7.9	3.7	2.9	4.4	2.9	1.1
2009	0.7	0.6	3.7	33.5	59.4	41.3	7.1	2.6	3.3	2.6	0.7	0.5
2010	0.1	0.2	0.1	6.5	61.2	62.0	9.0	3.2	1.7	0.9	0.9	0.2
2011	0.1	.	3.1	45.5	110.2	60.5	10.1	2.6	1.7	2.3	1.6	0.8

Table 6: Coefficient of variation of delta lognormal mean catch per tow of brown shrimp Farfantepenaeus aztecus derived from the Louisiana Department of Wildlife and Fisheries 16' marine trawl survey (1967-1979 and 19802011).

CV of delta lognormal mean catch per tow by year/month												
	1	2	3	4	5	6	7	8	9	10	11	12
1967			0.46	0.13	0.00	0.00	0.00	0.15	0.13	0.11	0.17	0.03
1968				0.20	0.10	0.00	0.08	0.13	0.22	0.42	0.24	0.39
1969	0.86		0.91	0.44	0.09	0.00	0.02	0.02	0.19	0.13	0.32	0.28
1970	1.01			0.22	0.03	0.00	0.05	0.11	0.22	0.23	0.26	0.68
1971	0.94	0.56	0.25	0.11	0.00	0.00	0.07	0.07	0.25	0.23	0.29	0.28
1972	0.24	0.26	0.29	0.06	0.03	0.07	0.05	0.20	0.26	0.24	0.31	0.66
1973			1.05	0.28	0.09	0.08	0.07	0.09	0.17	0.16	0.18	0.34
1974	0.58	0.45	0.25	0.06	0.03	0.00	0.13	0.28	0.32	0.24	0.14	0.33
1975	0.40	0.42	0.22	0.14	0.06	0.07	0.08	0.18	0.29	0.30	0.19	0.96
1976			0.14	0.03	0.00	0.00	0.05	0.19	0.29	0.22	0.95	0.67
1977				0.09	0.00	0.04	0.10	0.15	0.21	0.14	0.18	0.35
1978				0.18	0.00	0.00	0.06	0.13	0.22	0.07	0.11	0.39
1979				0.25	0.05	0.06	0.06	0.15	0.13	0.07	0.27	0.86
1980	0.48	0.70	0.52	0.17	0.06	0.02	0.03	0.08	0.11	0.12	0.19	0.14
1981	0.41		0.38	0.08	0.01	0.01	0.03	0.07	0.11	0.09	0.15	0.21
1982	0.25	0.43	0.23	0.08	0.03	0.03	0.03	0.05	0.08	0.10	0.16	0.14
1983	0.29	0.28	0.18	0.14	0.05	0.03	0.04	0.04	0.09	0.14	0.13	0.20
1984			0.70	0.12	0.03	0.04	0.04	0.05	0.14	0.10	0.24	
1985		0.96	0.38	0.06	0.02	0.02	0.03	0.14	0.11	0.10	0.15	0.24
1986	0.46	1.03	0.20	0.06	0.02	0.02	0.02	0.10	0.08	0.05	0.13	0.24
1987	0.24		0.44	0.11	0.02	0.02	0.04	0.08	0.09	0.07	0.22	0.75
1988	0.93		0.28	0.11	0.03	0.04	0.06	0.12	0.13	0.14	0.21	0.68
1989	0.23	0.35	0.21	0.08	0.03	0.04	0.05	0.08	0.11	0.09	0.17	0.46
1990			0.19	0.06	0.02	0.03	0.04	0.09	0.10	0.08	0.16	0.30
1991	0.17	0.19	0.15	0.07	0.05	0.05	0.06	0.14	0.10	0.11	0.28	0.27
1992	0.27	0.35	0.15	0.08	0.03	0.03	0.04	0.10	0.06	0.10	0.17	0.28
1993	0.23	0.27	0.38	0.14	0.04	0.03	0.06	0.06	0.11	0.07	0.11	0.21
1994	0.24	0.37	0.17	0.10	0.04	0.05	0.05	0.09	0.12	0.10	0.16	0.31
1995	0.29	0.47	0.22	0.07	0.02	0.02	0.05	0.09	0.10	0.11	0.20	0.49
1996	0.68	1.08		0.15	0.03	0.03	0.04	0.08	0.08	0.09	0.14	0.23
1997	0.35		0.34	0.07	0.05	0.04	0.04	0.08	0.07	0.07	0.22	0.25
1998	0.48	0.50	0.38	0.09	0.03	0.02	0.05	0.10	0.12	0.12	0.13	0.15
1999	0.44	0.31	0.10	0.05	0.01	0.02	0.06	0.12	0.11	0.08	0.14	0.16
2000	0.24	0.18	0.08	0.02	0.01	0.02	0.05	0.07	0.07	0.08	0.14	0.29
2001	0.69		0.26	0.06	0.02	0.03	0.06	0.09	0.07	0.09	0.12	0.11
2002	0.79		0.95	0.08	0.02	0.04	0.05	0.10	0.09	0.08	0.15	0.40
2003	0.50	0.48	0.27	0.05	0.02	0.02	0.05	0.13	0.08	0.14	0.28	0.31
2004	0.41	0.46	0.18	0.05	0.02	0.03	0.06	0.10	0.09	0.06	0.09	0.13
2005	0.33	0.47	0.28	0.05	0.01	0.02	0.04	0.09	0.07	0.08	0.11	0.32
2006	0.33	0.21	0.10	0.03	0.02	0.03	0.06	0.10	0.09	0.08	0.13	0.23
2007	0.23	0.44	0.16	0.04	0.01	0.02	0.04	0.08	0.09	0.08	0.14	0.21
2008	0.30	0.37	0.14	0.05	0.04	0.04	0.05	0.08	0.08	0.07	0.09	0.17
2009	0.24	0.26	0.09	0.02	0.00	0.02	0.05	0.09	0.07	0.09	0.23	0.31
2010	0.69	0.61	0.58	0.14	0.02	0.02	0.05	0.08	0.12	0.22	0.19	0.43
2011			0.28	0.03	0.01	0.02	0.06	0.13	0.14	0.14	0.14	0.20

Figures

Figure 1: Sampling locations of the Louisiana Department of Wildlife and Fisheries 16' marine trawl survey used in shrimp abundance index development, 1967-1979.

Figure 2: Sampling locations of the Louisiana Department of Wildlife and Fisheries 16' marine trawl survey used in shrimp abundance index development, 1980-2011.

Abundance Indices for Brown and White Shrimp Collected in the Northern Gulf of Mexico During the Summer and Fall SEAMAP Groundfish Surveys

Adam G. Pollack and G. Walter Ingram, Jr.
NOAA Fisheries, Southeast Fisheries Science Center, Mississippi Laboratories, Pascagoula, MS

Survey Design

The basic structure of the SEAMAP groundfish surveys (i.e. 1987- summer of 2008) follows a stratified random station location assignment with strata derived from depth zones (5-6, $6-7,7-8,8-9,9-10,10-11,11-12,12-13,13-14,14-15,15-16,16-17,17-18,18-19,19-20,20-22$, $22-25,25-30,30-35,35-40,40-45,45-50$ and 50-60 fathoms), shrimp statistical zones (between 88° and $97^{\circ} \mathrm{W}$ longitude, statistical zones from west to east: 21-20, 19-18, 17-16, 15-13 and 1210), and time of day (i.e. day or night). Tows were made perpendicular to the depth zone and tow time was dependent on the length of time needed to cover the depth zone. However, a single tow never exceeded 55 minutes, if additional coverage was needed multiple tows were made to cover the depth zone. In the fall of 2008 there was a change in the groundfish survey design. The major changes included a standardized tow time of 30 minutes which no longer had to cover an entire depth zone. The time of day stratification was also dropped and stations could be sampled whenever the survey vessel arrived. The depth zone strata were dropped in favor of a randomized design within each shrimp statistical zone

Dataset

There were 8,962 stations sampled from 1987-2009, with 4,274 and 4,688 stations sampled in the summer and fall, respectively. An annual breakdown of number of stations sampled by season and shrimp statistical zone is presented in Table 1. One caveat to this dataset is that during the summer survey, the waters off of Texas and closed to commercial shrimping,
which leads to a significantly higher catch rate, than is seen in the fall when the waters are open to commercial shrimping.

Indices of Abundance Methods

Delta-lognormal modeling methods were used to estimate relative abundance indices for brown and white shrimp. The index computed by this method is a mathematical combination of yearly abundance estimates from two distinct generalized linear models: a binomial (logistic) model which describes proportion of positive abundance values (i.e. presence/absence) and a lognormal model which describes variability in only the nonzero abundance data.

The delta-lognormal index of relative abundance $\left(I_{y}\right)$ as described by Lo et al. (1992) was estimated as:
(1) $I_{y}=c_{y} p_{y}$,
where c_{y} is the estimate of mean CPUE for positive catches only for year y, and p_{y} is the estimate of mean probability of occurrence during year y. Both c_{y} and p_{y} were estimated using generalized linear models. Data used to estimate abundance for positive catches (c) and probability of occurrence (p) were assumed to have a lognormal distribution and a binomial distribution, respectively, and modeled using the following equations:
(2) $\ln (c)=X \beta+\varepsilon$
and
(3) $p=\frac{e^{\mathrm{X} \beta+\varepsilon}}{1+e^{\mathrm{X} \beta+\varepsilon}}$,
respectively, where c is a vector of the positive catch data, p is a vector of the presence/absence data, X is the design matrix for main effects, β is the parameter vector for main effects, and ε is a vector of independent normally distributed errors with expectation zero and variance σ^{2}.

Therefore, c_{y} and p_{y} were estimated as least-squares means for each year along with their corresponding standard errors, $\operatorname{SE}\left(c_{y}\right)$ and $\operatorname{SE}\left(p_{y}\right)$, respectively. From these estimates, I_{y} was calculated, as in equation (1), and its variance calculated as:

$$
\begin{equation*}
V\left(I_{y}\right) \approx V\left(c_{y}\right) p_{y}^{2}+c_{y}^{2} V\left(p_{y}\right)+2 c_{y} p_{y} \operatorname{Cov}(c, p) \tag{4}
\end{equation*}
$$

where:
(5) $\left.\operatorname{Cov}(c, p) \approx \rho_{c, p} \mid \operatorname{SE}\left(c_{y}\right) \operatorname{SE}\left(p_{y}\right)\right\rfloor$,
and $\rho_{c, p}$ denotes correlation of c and p among years.
The submodels of the delta-lognormal model were built using a backward selection procedure based on type 3 analyses with an inclusion level of significance of $\alpha=0.05$. Binomial submodel performance was evaluated using AIC, while the performance of the lognormal submodel was evaluated based on analyses of residual scatter and QQ plots in addition to AIC. Factors that could be included in the submodels were year, shrimp statistical zone, depth zone, time of day and season (only in annual models). For shrimp statistical zone, only zones 11 and 13-21 were included in the submodels, due to extremely low or nonexistent sampling in the other zones Due to the change in survey design, there was less coverage in all of the original depth zones, therefore the zones were consolidated based upon depths Zimmerman and Nance (2001).

The new depth zones were 5-10, 10-15, 15-20, 20-25, 25-30, 35-40, 40-45 and 45-60 fathoms.

Indices of Abundance Results

Brown Shrimp

For the delta-lognormal model built for the summer groundfish survey, all variables were significant in both submodels, therefore no additional model runs were necessary. The annual
abundance index is presented in Table 2. The model tables are in Appendix Table 1 and show the significance of each factor in the model.

For the delta-lognormal model built for the fall groundfish survey, all variables were significant in both submodels, therefore no additional model runs were necessary. The annual abundance index is presented in Table 3. The model tables are in Appendix Table 2 and show the significance of each factor in the model.

For the delta-lognormal model built for the annual groundfish survey, all variables were significant in both submodels, therefore no additional model runs were necessary. The annual abundance index is presented in Table 4. The model tables are in Appendix Table 3 and show the significance of each factor in the model.

White Shrimp

For the delta-lognormal model built for the summer groundfish survey, all variables were significant in both submodels, therefore no additional model runs were necessary. The annual abundance index is presented in Table 5. The model tables are in Appendix Table 4 and show the significance of each factor in the model.

For the delta-lognormal model built for the fall groundfish survey, all variables were significant in both submodels, therefore no additional model runs were necessary. The annual abundance index is presented in Table 6. The model tables are in Appendix Table 5 and show the significance of each factor in the model.

For the delta-lognormal model built for the annual groundfish survey, all variables were significant in both submodels, therefore no additional model runs were necessary. The annual abundance index is presented in Table 7. The model tables are in Appendix Table 6 and show the significance of each factor in the model.

Literature Cited

Lo, N.C.H., L.D. Jacobson, and J.L. Squire. 1992. Indices of relative abundance from fish spotter data based on delta-lognormal models. Canadian Journal of Fisheries and Aquatic Science 49:2515-2526.

Zimmerman, R.J., J.M. Nance and J. Williams. 2001. Effects of hypoxia on the shrimp fishery off Louisiana and Texas. Pages 293-310 in N.N. Rabalais and R.E. Turner, editors. Coastal hypoxia consequences for living resources and ecosystems. Coastal and Estuarine Studies 58. American Geophysical Union, Washington, D.C.

Table 1. Annual breakdown of stations sampled by shrimp statistical zone and season.

Year	Summer											Fall											Annual Total
	11	13	14	15	16	17	18	19	20	21	Seasonal Total	11	13	14	15	16	17	18	19	20	21	Seasonal Total	
1987	14	6	20	19	25	20	16	25	28	19	192	17	15	14	16	17	15	15	15	18	3	145	337
1988	15	5	4	3	19	24	14	25	28	23	160	9	7	22	17	18	26	19	21	31	20	190	350
1989	6	0	3	18	25	7	15	20	29	24	147	22	12	19	17	22	20	17	22	25	26	202	349
1990	26	11	20	15	23	16	20	23	24	20	198	29	14	12	23	22	19	18	22	19	27	205	403
1991	16	12	21	13	23	22	24	18	23	26	198	19	6	24	14	20	25	24	19	25	22	198	396
1992	11	2	20	24	20	25	12	31	26	20	191	15	7	23	14	25	18	17	27	30	18	194	385
1993	14	10	19	17	24	19	14	29	24	22	192	44	10	19	17	26	18	16	25	28	18	221	413
1994	29	6	17	22	25	17	20	22	26	22	206	34	9	16	21	25	20	21	23	24	20	213	419
1995	10	10	16	18	22	23	13	27	26	21	186	19	10	17	18	24	19	14	26	30	19	196	382
1996	12	14	12	19	22	18	17	21	26	25	186	17	9	18	19	17	28	13	25	29	24	199	385
1997	10	0	12	16	22	23	10	28	26	26	173	12	10	17	20	26	19	18	23	22	24	191	364
1998	5	2	14	21	25	18	14	22	36	17	174	14	10	22	14	34	11	15	24	29	22	195	369
1999	14	7	20	19	20	23	13	25	32	20	193	14	9	17	18	29	18	12	28	29	22	196	389
2000	20	2	19	15	19	27	8	29	31	21	191	12	10	14	22	20	26	12	30	25	21	192	383
2001	3	7	18	18	13	3	10	9	17	21	119	12	10	17	19	26	20	14	27	28	23	196	315
2002	11	11	14	21	27	19	15	25	29	22	194	20	10	13	22	22	23	14	26	30	21	201	395
2003	17	9	10	8	2	17	20	22	26	23	154	43	9	16	21	24	22	20	23	25	23	226	380
2004	12	11	18	17	20	25	21	19	25	21	189	8	0	11	18	17	27	14	24	30	21	170	359
2005	10	10	9	11	16	21	5	28	22	27	159	40	11	20	16	33	18	14	23	24	27	226	385
2006	17	11	21	12	20	23	17	23	31	18	193	17	7	22	14	18	28	13	23	32	19	193	386
2007	12	0	6	15	22	23	7	29	32	21	167	0	9	20	17	18	28	17	20	18	26	173	340
2008	15	12	17	17	23	22	17	24	21	29	197	26	8	22	32	42	46	44	19	36	20	295	492
2009	33	11	18	30	39	46	53	33	29	23	315	22	7	12	15	30	49	47	31	36	22	271	586
Total	332	169	348	388	496	481	375	557	617	511	4274	465	209	407	424	555	543	428	546	623	488	4688	8962

Table 2. Indices of brown shrimp developed using the delta-lognormal model for 1987-2009 for the summer groundfish survey. The nominal frequency of occurrence, the number of samples (N), the DL Index (number per trawl-hour), the DL indices scaled to a mean of one for the time series, the coefficient of variation on the mean (CV), and lower and upper confidence limits (LCL and UCL) for the scaled index are listed.

Survey Year	Frequency	N	DL Index	Scaled Index	CV	LCL	UCL
1987	0.80208	192	93.968	0.43208	0.12190	0.33890	0.55087
1988	0.71875	160	90.367	0.41552	0.17801	0.29186	0.59157
1989	0.76871	147	149.950	0.68949	0.15338	0.50824	0.93536
1990	0.78788	198	146.991	0.67588	0.12339	0.52857	0.86425
1991	0.76263	198	231.146	1.06283	0.12995	0.82047	1.37680
1992	0.78534	191	45.981	0.21143	0.11658	0.16759	0.26673
1993	0.73958	192	112.783	0.51859	0.13298	0.39794	0.67581
1994	0.78641	206	98.867	0.45460	0.11875	0.35879	0.57600
1995	0.75806	186	181.061	0.83254	0.11503	0.66194	1.04710
1996	0.75806	186	127.468	0.58611	0.15063	0.43439	0.79084
1997	0.79769	173	93.627	0.43051	0.12747	0.33397	0.55495
1998	0.90805	174	158.454	0.72859	0.13063	0.56170	0.94507
1999	0.85492	193	216.321	0.99467	0.12120	0.78125	1.26640
2000	0.86911	191	211.114	0.97073	0.10615	0.78551	1.19962
2001	0.80672	119	109.987	0.50573	0.13746	0.38466	0.66491
2002	0.85567	194	177.824	0.81766	0.12356	0.63923	1.04589
2003	0.90260	154	183.131	0.84206	0.13490	0.64372	1.10150
2004	0.84127	189	264.616	1.21674	0.12336	0.95159	1.55576
2005	0.81132	159	181.711	0.83553	0.13664	0.63655	1.09672
2006	0.89637	193	752.690	3.46095	0.12333	2.70694	4.42499
2007	0.85030	167	300.528	1.38186	0.13288	1.06060	1.80045
2008	0.75127	197	383.772	1.76463	0.15760	1.29004	2.41381
2009	0.93016	315	689.691	3.17128	0.09295	2.63432	3.81769

Table 3. Indices of brown shrimp developed using the delta-lognormal model for 1987-2009 for the fall groundfish survey. The nominal frequency of occurrence, the number of samples (N), the DL Index (number per trawl-hour), the DL indices scaled to a mean of one for the time series, the coefficient of variation on the mean (CV), and lower and upper confidence limits (LCL and UCL) for the scaled index are listed.

Survey Year	Frequency	N	DL Index	Scaled Index	CV	LCL	UCL
1987	0.77931	145	54.715	0.57054	0.13407	0.43687	0.74512
1988	0.68947	190	34.371	0.35841	0.12481	0.27950	0.45959
1989	0.79703	202	68.713	0.71651	0.10862	0.57697	0.88981
1990	0.80488	205	96.879	1.01021	0.11519	0.80295	1.27098
1991	0.83333	198	84.743	0.88366	0.10461	0.71725	1.08869
1992	0.87629	194	83.437	0.87004	0.10558	0.70484	1.07397
1993	0.81448	221	76.419	0.79687	0.10697	0.64378	0.98636
1994	0.81221	213	76.709	0.79989	0.09564	0.66092	0.96809
1995	0.89286	196	101.124	1.05448	0.10373	0.85739	1.29688
1996	0.91960	199	72.055	0.75136	0.09785	0.61810	0.91335
1997	0.87435	191	81.662	0.85154	0.11439	0.67790	1.06965
1998	0.88205	195	83.215	0.86773	0.10362	0.70570	1.06695
1999	0.84694	196	77.262	0.80565	0.09338	0.66868	0.97069
2000	0.86979	192	116.432	1.21410	0.10657	0.98163	1.50163
2001	0.84184	196	93.205	0.97190	0.10951	0.78125	1.20908
2002	0.87065	201	88.996	0.92802	0.09378	0.76961	1.11902
2003	0.86283	226	81.847	0.85347	0.09759	0.70247	1.03693
2004	0.85882	170	93.439	0.97434	0.10568	0.78917	1.20296
2005	0.85398	226	109.496	1.14178	0.10655	0.92319	1.41212
2006	0.92228	193	179.113	1.86772	0.10512	1.51445	2.30339
2007	0.86705	173	84.525	0.88139	0.10849	0.70993	1.09427
2008	0.91864	295	178.074	1.85689	0.08644	1.56259	2.20661
2009	0.86716	271	189.257	1.97349	0.08378	1.66952	2.33282

Table 4. Indices of brown shrimp developed using the delta-lognormal model for 1987-2009 for the annual groundfish survey. The nominal frequency of occurrence, the number of samples (N), the DL Index (number per trawl-hour), the DL indices scaled to a mean of one for the time series, the coefficient of variation on the mean (CV), and lower and upper confidence limits (LCL and UCL) for the scaled index are listed.

Survey Year	Frequency	N	DL Index	Scaled Index	CV	LCL	UCL
1987	0.79228	337	78.531	0.53132	0.09474	0.43979	0.64189
1988	0.70286	350	56.869	0.38476	0.10656	0.31109	0.47587
1989	0.78510	349	105.196	0.71173	0.09298	0.59119	0.85685
1990	0.79653	403	120.154	0.81293	0.08598	0.68471	0.96517
1991	0.79798	396	139.723	0.94533	0.08470	0.79827	1.11948
1992	0.83117	385	76.070	0.51467	0.08652	0.43303	0.61170
1993	0.77966	413	90.131	0.60980	0.08315	0.51652	0.71993
1994	0.79952	419	87.636	0.59293	0.07796	0.50745	0.69281
1995	0.82723	382	147.177	0.99576	0.08226	0.84494	1.17350
1996	0.84156	385	98.779	0.66832	0.08839	0.56022	0.79727
1997	0.83791	364	88.790	0.60073	0.08592	0.50604	0.71314
1998	0.89431	369	132.271	0.89491	0.08899	0.74927	1.06887
1999	0.85090	389	139.933	0.94675	0.08086	0.80559	1.11265
2000	0.86945	383	158.039	1.06926	0.07706	0.91674	1.24715
2001	0.82857	315	109.112	0.73823	0.08915	0.61789	0.88200
2002	0.86329	395	134.095	0.90725	0.08114	0.77155	1.06682
2003	0.87895	380	131.739	0.89131	0.08420	0.75340	1.05447
2004	0.84958	359	172.900	1.16980	0.08696	0.98339	1.39155
2005	0.83636	385	151.775	1.02687	0.08706	0.86306	1.22177
2006	0.90933	386	365.265	2.47129	0.08245	2.09620	2.91351
2007	0.85882	340	167.770	1.13509	0.08957	0.94926	1.35731
2008	0.85163	492	300.182	2.03096	0.08418	1.71677	2.40265
2009	0.90102	586	347.337	2.35000	0.06236	2.07471	2.66181

Table 5. Indices of white shrimp developed using the delta-lognormal model for 1987-2009 for the summer groundfish survey. The nominal frequency of occurrence, the number of samples (N), the DL Index (number per trawl-hour), the DL indices scaled to a mean of one for the time series, the coefficient of variation on the mean (CV), and lower and upper confidence limits (LCL and UCL) for the scaled index are listed.

Survey Year	Frequency	N	DL Index	Scaled Index	CV	LCL	UCL
1987	0.13021	192	0.66187	0.44330	0.45347	0.18667	1.05272
1988	0.09375	160	0.28793	0.19285	0.62182	0.06146	0.60510
1989	0.20408	147	1.13854	0.76256	0.41394	0.34423	1.68926
1990	0.11111	198	0.35910	0.24052	0.51535	0.09112	0.63487
1991	0.23232	198	1.75383	1.17465	0.34449	0.60122	2.29501
1992	0.11518	191	0.83967	0.56238	0.46411	0.23249	1.36039
1993	0.15104	192	1.03593	0.69383	0.41564	0.31226	1.54166
1994	0.11650	206	0.55636	0.37263	0.46769	0.15310	0.90697
1995	0.16667	186	1.37975	0.92411	0.39676	0.43015	1.98530
1996	0.14516	186	0.51229	0.34311	0.45841	0.14325	0.82182
1997	0.15029	173	0.48654	0.32587	0.46810	0.13379	0.79371
1998	0.22414	174	1.29468	0.86713	0.36966	0.42387	1.77395
1999	0.24870	193	2.26853	1.51938	0.33869	0.78602	2.93699
2000	0.14660	191	0.52677	0.35282	0.44881	0.14978	0.83107
2001	0.18487	119	0.52694	0.35293	0.49553	0.13825	0.90094
2002	0.15979	194	1.14146	0.76451	0.40213	0.35246	1.65831
2003	0.16234	154	0.73823	0.49444	0.45188	0.20878	1.17092
2004	0.21164	189	1.47579	0.98843	0.36571	0.48664	2.00763
2005	0.28931	159	2.47101	1.65500	0.34454	0.84701	3.23376
2006	0.30052	193	3.53457	2.36734	0.31272	1.28513	4.36088
2007	0.29940	167	5.12958	3.43562	0.32776	1.81363	6.50823
2008	0.16751	197	1.59702	1.06963	0.38657	0.50709	2.25622
2009	0.29841	315	4.62394	3.09696	0.27324	1.81078	5.29671

Table 6. Indices of white shrimp developed using the delta-lognormal model for 1987-2009 for the fall groundfish survey. The nominal frequency of occurrence, the number of samples (N), the DL Index (number per trawl-hour), the DL indices scaled to a mean of one for the time series, the coefficient of variation on the mean (CV), and lower and upper confidence limits (LCL and UCL) for the scaled index are listed.

Survey Year	Frequency	N	DL Index	Scaled Index	CV	LCL	UCL
1987	0.33103	145	1.9058	0.32738	0.33007	0.17208	0.62283
1988	0.37368	190	4.3707	0.75082	0.29201	0.42371	1.33046
1989	0.27228	202	4.1382	0.71087	0.39833	0.32996	1.53151
1990	0.27805	205	1.6746	0.28766	0.58117	0.09780	0.84612
1991	0.25758	198	3.0327	0.52097	0.39778	0.24205	1.12127
1992	0.34021	194	5.0883	0.87408	0.45318	0.36826	2.07466
1993	0.39819	221	7.2817	1.25087	0.29913	0.69652	2.24640
1994	0.34742	213	2.8005	0.48107	0.26566	0.28535	0.81103
1995	0.34184	196	7.2001	1.23685	0.30168	0.68543	2.23188
1996	0.32161	199	5.6405	0.96894	0.31413	0.52462	1.78959
1997	0.29843	191	2.6804	0.46045	0.25582	0.27829	0.76185
1998	0.41026	195	13.3271	2.28936	0.27386	1.33699	3.92011
1999	0.33673	196	2.1736	0.37339	0.32814	0.19697	0.70784
2000	0.40625	192	10.6025	1.82132	0.32532	0.96581	3.43461
2001	0.42857	196	8.4734	1.45558	0.29757	0.81289	2.60639
2002	0.42786	201	9.3967	1.61419	0.32982	0.84886	3.06952
2003	0.28319	226	2.6878	0.46172	0.33269	0.24152	0.88268
2004	0.31765	170	4.3168	0.74155	0.27697	0.43052	1.27727
2005	0.36726	226	5.3686	0.92224	0.30368	0.50918	1.67039
2006	0.36788	193	6.8866	1.18300	0.27473	0.68974	2.02899
2007	0.38150	173	4.9526	0.85076	0.28502	0.48647	1.48784
2008	0.31864	295	9.0771	1.55928	0.23174	0.98688	2.46368
2009	0.39114	271	10.8141	1.85766	0.23149	1.17630	2.93370

Table 7. Indices of white shrimp developed using the delta-lognormal model for 1987-2009 for the annual groundfish survey. The nominal frequency of occurrence, the number of samples (N), the DL Index (number per trawl-hour), the DL indices scaled to a mean of one for the time series, the coefficient of variation on the mean (CV), and lower and upper confidence limits (LCL and UCL) for the scaled index are listed.

Survey Year	Frequency	N	DL Index	Scaled Index	CV	LCL	UCL
1987	0.21662	337	1.43406	0.35425	0.23395	0.22325	0.56210
1988	0.24571	350	1.73856	0.42947	0.20782	0.28466	0.64794
1989	0.24355	349	2.97593	0.73513	0.24412	0.45434	1.18944
1990	0.19603	403	1.10804	0.27371	0.27008	0.16100	0.46534
1991	0.24495	396	3.58548	0.88570	0.24588	0.54557	1.43789
1992	0.22857	385	3.25537	0.80415	0.25745	0.48450	1.33470
1993	0.28329	413	4.02487	0.99424	0.22187	0.64134	1.54132
1994	0.23389	419	1.78289	0.44042	0.21114	0.29004	0.66875
1995	0.25654	382	5.13225	1.26779	0.21350	0.83112	1.93387
1996	0.23636	385	2.34643	0.57962	0.20661	0.38509	0.87243
1997	0.22802	364	1.92590	0.47574	0.24543	0.29329	0.77169
1998	0.32249	369	6.77947	1.67469	0.17774	1.17693	2.38298
1999	0.29306	389	3.15180	0.77857	0.25324	0.47287	1.28189
2000	0.27676	383	4.44796	1.09875	0.21498	0.71825	1.68083
2001	0.33651	315	4.13747	1.02205	0.20883	0.67611	1.54501
2002	0.29620	395	5.15714	1.27394	0.20236	0.85338	1.90176
2003	0.23421	380	2.40230	0.59343	0.23208	0.37534	0.93824
2004	0.26184	359	3.55814	0.87895	0.21891	0.57021	1.35484
2005	0.33506	385	4.94382	1.22124	0.20372	0.81592	1.82792
2006	0.33420	386	7.99301	1.97446	0.19756	1.33503	2.92016
2007	0.34118	340	6.78114	1.67510	0.19815	1.13131	2.48027
2008	0.25813	492	4.90864	1.21255	0.19313	0.82695	1.77795
2009	0.34130	586	9.53773	2.35605	0.14873	1.75267	3.16714

APPENDIX

Appendix Table 1. Summary of backward selection procedure for building delta-lognormal submodels for brown shrimp index of relative abundance from 1987 to 2009 for summer groundfish.

Model Run \#1	Binomial Submodel Type 3 Tests (AIC 24523.9)						Lognormal Submodel Type 3 Tests (AIC 12929.4)			
Effect	Num $D F$	Den $D F$	Chi- Square	F Value	Pr $>$ ChiSq	$\operatorname{Pr}>F$	Num DF	Den DF	F Value	Pr $>$ F
Year	22	1479	112.96	5.09	$<.0001$	$<.0001$	22	3456	27.72	$<.0001$
Time of Day	1	3212	139.76	139.76	$<.0001$	$<.0001$	1	3456	1203.42	<. 0001
Shrimp Statistical Zone	9	3151	293.72	32.63	<. 0001	<. 0001	9	3456	36.90	<. 0001
Depth Zone	8	3021	453.76	56.72	<. 0001	$<.0001$	8	3456	59.39	<. 0001

Appendix Table 2. Summary of backward selection procedure for building delta-lognormal submodels for brown shrimp index of relative abundance from 1987 to 2009 for fall groundfish.

Model Run \#1	Binomial Submodel Type 3 Tests (AIC 25693.7)						Lognormal Submodel Type 3 Tests (AIC 13738.5)			
Effect	Num $D F$	Den $D F$	Chi- Square	F Value	Pr $>$ ChiSq	$\operatorname{Pr}>F$	Num DF	Den DF	F Value	Pr $>$ F
Year	22	1641	102.03	4.60	$<.0001$	$<.0001$	22	3955	13.18	$<.0001$
Time of Day	1	4171	240.63	240.63	<. 0001	$<.0001$	1	3955	1007.53	<. 0001
Shrimp Statistical Zone	9	4126	190.44	21.16	<. 0001	<. 0001	9	3955	17.52	<. 0001
Depth Zone	8	4003	456.80	57.10	<. 0001	<. 0001	8	3955	41.79	<. 0001

Appendix Table 3. Summary of backward selection procedure for building delta-lognormal submodels for brown shrimp index of relative abundance from 1987 to 2009 for annual groundfish.

Model Run \#1	Binomial Submodel Type 3 Tests (AIC 47381.7)						Lognormal Submodel Type 3 Tests (AIC 27215.6)			
Effect	$\begin{gathered} \text { Num } \\ D F \end{gathered}$	$\begin{gathered} \text { Den } \\ D F \end{gathered}$	Chi- Square	F Value	Pr $>$ ChiSq	$\operatorname{Pr}>F$	Num DF	Den DF	F Value	Pr $>$ F
Year	22	3180	159.08	7.20	$<.0001$	$<.0001$	22	7451	34.40	<. 0001
Season	1	8391	36.14	36.14	$<.0001$	$<.0001$	1	7451	162.89	$<.0001$
Time of Day	1	8364	363.31	363.31	<. 0001	$<.0001$	1	7451	1988.63	$<.0001$
Shrimp Statistical Zone	9	8305	352.59	39.18	<. 0001	$<.0001$	9	7451	35.35	<. 0001
Depth Zone	8	8111	881.64	110.20	$<.0001$	$<.0001$	8	7451	70.44	$<.0001$

Appendix Table 4. Summary of backward selection procedure for building delta-lognormal submodels for white shrimp index of relative abundance from 1987 to 2009 for summer groundfish.

Model Run \#1	Binomial Submodel Type 3 Tests (AIC 23982.1)						Lognormal Submodel Type 3 Tests (AIC 2830.0)			
Effect	Num DF	Den $D F$	Chi- Square	F Value	Pr $>$ ChiSq	$\operatorname{Pr}>F$	Num DF	Den $D F$	F Value	Pr $>\mathrm{F}$
Year	22	4233	144.05	6.55	$<.0001$	$<.0001$	22	770	2.64	<. 0001
Time of Day	1	4233	27.76	27.76	<. 0001	<. 0001	1	770	19.97	<. 0001
Shrimp Statistical Zone	9	4233	60.74	6.75	<. 0001	<. 0001	9	770	8.96	<. 0001
Depth Zone	8	4233	496.87	62.11	<. 0001	<. 0001	8	770	13.65	<. 0001

Appendix Table 5. Summary of backward selection procedure for building delta-lognormal submodels for white shrimp index of relative abundance from 1987 to 2009 for fall groundfish.

Model Run \#1	Binomial Submodel Type 3 Tests (AIC 28462.3)						Lognormal Submodel Type 3 Tests (AIC 5568.3)			
Effect	Num DF	Den DF	ChiSquare	F Value	Pr $>$ ChiSq	Pr $>F$	Num DF	Den DF	F Value	Pr $>\mathrm{F}$
Year	22	1646	95.26	4.29	$<.0001$	$<.0001$	22	1589	4.41	<. 0001
Time of Day	1	3431	4.45	4.45	0.0350	0.0350	1	1589	3.71	0.0543
Shrimp Statistical Zone	9	3292	423.79	47.08	$<.0001$	$<.0001$	9	1589	26.32	<. 0001
Depth Zone	8	3384	892.65	111.57	<. 0001	<. 0001	8	1589	40.32	<. 0001

Appendix Table 6. Summary of backward selection procedure for building delta-lognormal submodels for white shrimp index of relative abundance from 1987 to 2009 for annual groundfish.

Model Run \#1	Binomial Submodel Type 3 Tests (AIC 49627.9)						Lognormal Submodel Type 3 Tests (AIC 8518.1)			
Effect	$\begin{gathered} \text { Num } \\ D F \end{gathered}$	$\begin{gathered} \text { Den } \\ D F \end{gathered}$	Chi- Square	F Value	Pr > ChiSq	$\operatorname{Pr}>F$	Num DF	Den DF	F Value	Pr $>$ F
Year	22	3179	162.32	7.35	$<.0001$	$<.0001$	22	2399	3.98	$<.0001$
Season	1	8275	429.17	429.17	<. 0001	<. 0001	1	2399	150.26	<. 0001
Time of Day	1	8296	23.54	23.54	<. 0001	$<.0001$	1	2399	16.03	<. 0001
Shrimp Statistical Zone	9	8124	487.21	54.13	<. 0001	<. 0001	9	2399	28.54	<. 0001
Depth Zone	8	7469	1653.45	206.68	<. 0001	<. 0001	8	2399	55.25	<. 0001

