ASMFC Red Drum Benchmark Assessment Review Workshop: Traffic Light Analysis

Jared Flowers GA DNR 8/14/24

Introduction

- The traffic light analysis (TLA) was first developed for data-limited fisheries (Caddy 1998, Caddy 1999, Caddy et al. 2005, Caddy and Mahon 1995)
- Can provide an information basis for management decisions not constrained by a model-based framework
- Uses traffic light colors to represent the state of a fishery based on appropriate indicators (i.e., an index or time-series of relevant data)
- TLA was explored in the 2022 Red Drum Simulation Assessment
 - Suitable for status determination
 - Outperform the age-structured models in characterizing recruitment condition
 - Could serve as a supplemental method for other assessment approaches
 - Could potentially be used for interim assessments
 - RW recommendation to revise threshold optimization

TLA Approach

- TLA uses reference points to assess status
 - Target- desirable outcomes where a stock status objective has been achieved
 - Limit or threshold unacceptable outcomes such as an indicator value moving from yellow to red
- Reference points are appropriate metrics which:
 - Indicate when stock status moves from fully acceptable to unacceptable
 - Have a buffer zone between the two to provide warning of proximity to unacceptable conditions
- Two common approaches:
 - Strict traffic light -hard boundaries based on reference points to assign a color and uses a binary logic model
 - "Fuzzy" traffic light- fuzzy logic model where the transitional color (yellow) is based on the proportion of adjacent color the indicator is trending towards (e.g., yellow/red or yellow/green)

Fuzzy TLA

Intersection of red and yellow lines occurs at the lower 95% confidence interval and the intersection of yellow and green lines occurs at the upper 95% confidence interval. Figure adapted from ASMFC (2020).

Fuzzy TLA

- Fuzzy method incorporated by setting the expected value of an indicator to a relative proportion of 1 for yellow and 0 for red and green
 - Expected values calculated as the geometric mean of indicator values during the reference period
- Intersection of the color lines at 0.5 relative proportion corresponds to the 95% confidence intervals derived from the threshold values
 - Confidence intervals based on the expected value and standard deviation from the indicator values during the reference period
- Relative proportion of 1 for red and green and 0 for yellow were set to 2 times the confidence intervals
- Corresponding linear regression equations calculated to determine the slope and intercept coefficients used to determine a proportion of red, yellow, and green for each value of an index

Indicator Status

Figure adapted from ASMFC (2020).

Indicators

- Compare recent years with previous years to detect trends
 - Based on population and/or fishery dynamics
- Derived from available fishery-independent or fishery-dependent sources
 - Representative of various phases in the life cycle (e.g., juvenile, sub-adult, adult).
- Should span multiple generations to be representative of population trends
- Multiple indicators of the same characteristic combined into composite "characteristics"
 - Designed to collectively represent a characteristic of interest for management (e.g., abundance, recruitment, fishery performance)
 - Indicators are additive and the resulting combined index was rescaled from 0 to 1 (ASMFC 2020; Halliday et al. 2001)
- Selected indicators based on results from the 2022 Simulation Assessment

Reference Periods

- Relative proportions of each color for each year based on the trends from a selected reference period
- Important to select representative time-series for the reference period
 - Stocks were not overfished based on the previous stock assessment results
 - Long-term averages can be affected by regime shifts in stock productivity and/or fishing pressure
 - Northern: **1996–2013**; Southern **1991-2013**
- Evaluated model sensitivity to reference periods
 - Changed endpoints and length by 3 year increments

Thresholds

Thresholds optimized using a grid search procedure

- Value and number of consecutive years to trigger management action
- Performed for each year in the historic time series for each stock
- Grid matrix consisted of:
 - Potential threshold values ranging from 0.05 to 0.95 by 0.05 increments
 - Number of consecutive years to trigger management action from 1 to 10 years

Action Triggers

- Color proportions were compared to a selected threshold
 - Triggers based on a conditional rule such using developed thresholds
 - Trigger would result in a prescribed management action
- Appropriate number of consecutive years above the threshold for the initiation of management action
 - Short-time frame may be too sensitive to annual variability (stochasticity) in indicator values and can be mistaken for changes in fishing pressure
 - Long-time frame requirement may result in slow responsiveness to significant changes in fishing pressure

Stock Characteristics

Characteristic	Input Data Type	Stock Status
Recruitment	Recruitment (age-1) index of abundance	Recruitment Condition
Adult Abundance	Longline Survey of adult abundance	Spawning Stock Biomass
Fishery Performance	Harvest of slot-sized fish divided by slot-sized index of abundance	Fishing Mortality

Data sources

Characteristic	Northern	Southern
		FL 21.3 Haul Seine
Recruitment	NC Bag Seine	GA Gill Net
		SC Trammel (Age-1)
Adult Abundance	NC Longline	GA Longline SC Longline (contemporary)
Fishery Performance	NC Gill Net	FL 183 Haul Seine SC Trammel (Age 2-3)

Northern Configuration

Characteristic	Years to Trigger Management Action	Threshold
Recruitment	1	0.05
Adult Abundance	10	0.78 (0.39)
Fishery Performance	7	0.76

- Adult abundance set at 50% threshold (0.39) to account for high number of adult age classes
- Reference period was **1996–2013**

Northern

Year	Recruitment	Adult Abundance	Fishery Performance
2018	No Action	No Action	Moderate Action
2019	Moderate Action	No Action	Moderate Action
2020	Moderate Action	No Action	Moderate Action
2021	Moderate Action	No Action	Moderate Action

Northern Annual Status

Northern Reference Period Sensitivity

Recruitment	Adult Abundance	Fishery Performance	Frequency
Moderate Action	No Action	Moderate Action	6
Moderate Action	No Action	Elevated Action	2

Southern Configuration

Characteristic	Years to Trigger Management Action	Threshold
Recruitment	1	0.05
Adult Abundance	9	0.78 (0.39)
Fishery Performance	6	0.52

- Adult abundance set at 50% threshold (0.39) to account for high number of adult age classes
- Reference period was **1991–2013**

Southern Status Results

Year	Recruitment	Adult Abundance	Fishery Performance
2018	Elevated Action	Moderate Action	Elevated Action
2019	Elevated Action	Moderate Action	Elevated Action
2020	Elevated Action	Moderate Action	Elevated Action
2021	Elevated Action	Moderate Action	Elevated Action

Southern Annual Status

Southern Recruitment

Southern Adult Abundance

Southern Fishery Performance

Southern Reference Period Sensitivity

Recruitment	Adult_Abundance	Fishery_Performance	Frequency
Elevated Action	Moderate Action	Elevated Action	4
Elevated Action	No Action	Elevated Action	7

Conclusions

- Stocks status varies in the terminal year
 - Northern- 2 Moderate action, 1 No action
 - Southern- 2 Elevated action, 1 Moderate action
- Status of both stocks may be on a declining trend when looking at successive years
- TLA seems insensitive to changes in reference period
 - Same or +/- one category difference
 - Longer threshold windows may be affected by individual years
- Current framework relatively easy to implement for interim updates

Questions?

