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Outline

Review Stock Synthesis model update(s) for Webinar 9

Multiple diagnostics implemented for Stock Synthesis model
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Diagnostics Adapted from Previous Examples

Fisheries Research 240 (2021) 105959

Contents lists available at ScienceDirect - - -
Fisheries
) . 'g%’e earch
Fisheries Research P

ELSEVIEI

R journal homepage: www_elsevier.com/locate/fishres

A cookbook for using model diagnostics in integrated stock assessments el

Felipe Carvalho ™ i, Henning Winker b, ! Dean Courtney °, Maia Kapur d, Laurence Kell %,
Massimiliano Cardinale’, Michael Schirripa ¢, Toshihide Kitakado h, Dawit Yemane ',

Kevin R. Piner’, Mark N. Maunder ', Ian Taylor ™, Chantel R. Wetzel ™, Kathryn Doering *,
Kelli F. Johnson "™, Richard D. Methot ™

o
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Diagnostics Implemented with r4ss and ss3diags

 Stock Synthesis model runs evaluated with r4ss
* https://github.com/r4ss/r4ss

 Stock Synthesis diagnostics evaluated with ss3diags and r4ss

 E.g., CAPAM Diagnostics Workshop 2022
* https://github.com/PIFSCstockassessments/ss3diags
* http://www.capamresearch.org/content/diagnostics-workshop-presentations
 The Value of Diagnostics in Stock Assessment
« www.capamresearch.org/sites/default/files/IATTC_Workshop_Final_Felipe.pdf

Motivation, models and data

The Value of Diagnostics in
Stock Assessment

Felipe Carvalho Henning Winker

NOAA Joint Research Centre (JRC)
Pacific Islands Fisheries Science Center European Commission
uropean

&
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Multiple Diagnostics Evaluated

* Multiple diagnostics evaluated together can provide insight
about model plausibility s

[:] ‘Goodness-of- fit

l

ICCAT WGSAM 2021

SCRS/P/2021/022. A cookbook for using model diagnostics in integrated stock assessments (Carvalho et al.,)

SCRS/P/2021/020. Ensemble weighting and projections using model validation and prediction skill with ss3diags (Winker et al., )

P
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Explore alternative
model structure Jaint residual plot

—

Are the residuals
suffieiently random?

o |

e |

wonflict? funetion?
e \ /

i . Eyidence of retrospective patterns?

l

=== Model shows predictive skills?

Any signs of data Prasence of production

Identify data
Hypothesis —
“’"“’;::l":"ﬂ:f‘ L (Model structure)
cOnVergence. K
ok o prsmerr ! Convergence
———mmme  Finalgradient *
Hessian

Explore alternative
model structure

- Madel has eanverged to a
global selution?

I
F 3

SCRS/P/2021/022. A cookbook for using model diagnostics in integrated stock assessments (Carvalho et al.,)
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Convergence

* Parameters estimated at a bound?

* Final gradient is relatively small (e.g., < 1.00E-04)?
* Hessian positive definite?

* Highly correlated parameters?

* Parameters with high variance?

SCRS/P/2021/022. A cookbook for using model diagnostics in integrated stock assessments (Carvalho et al.,)
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Jitter Analysis
* All jitter model runs resulted in total likelihood values equal to
or greater than the continuity analysis model configuration
(894 likelihood units within rounding error)

* The jitter test did not provide evidence to reject the
hypothesis that the continuity analysis model configuration
parameter optimization converged to the global solution

Table C.1. Jitter results for global convergence (100 iterations) obtained as described above for
the Stock Synthesis (GOM + ATL) continuity analysis model configuration.

Likelithood Frequency

1 894 2! 4
2 894 32 79
3 895.0 3
4 8953 2
5 8954 10
6 900.5 1
7 911.2 1

Total 100

Min 8942

IContinuity analysis model configuration 8943
I runs at a converged solution
: *”“"NMW‘X
§V@F§ NOAA FISHERIES U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries | Page 8
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Diagnostic-1 (Convergence and Jitter)
(except final gradient 3.6x10* > 1.00e-04)

B
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Identify data | =
il 3_;';" ot {Model structure)
Chack for paramatars 11 Run
with high gradient —
L Final gradient
Hessian
Explare atternative : Explore alternative
model structure Joint residual plot model structure
Are the residuals
C sufficiently randam?
| Goodness-of-fit

SCRS/P/2021/022. A cookbook for using model diagnostics in integrated stock assessments (Carvalho et al.,)
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Runs test
CPUE indices
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Runs test

Age-0 CPUE indices
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Runs test
Mean length standardized residuals
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Runs test
Age-0 mean length standardized residuals
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Joint residual plots
CPUE time series (RMSE =70.1%)
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Joint residual plots
Mean length time series (RMSE 10.1%)

RMSE = 10.1%
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Diagnostic-2 (Runs test of CPUE and mean length residuals)
The results for this diagnostic were mixed.

There was evidence (p < 0.05) to reject the hypothesis of randomly distributed residuals for one
survey CPUE index (S1_PLL_Obs) and two age-0 recruitment CPUE indices
(R2_GULFSPAN_GNS, R3_COASTSPAN_BLLS)

There was evidence (p < 0.09) to reject the hypothesis of randomly distributed residuals for two
time series (F3_Com_PLL and F4_Rec)

Diagnostic-3 (Joint residual plots and RMSE of CPUE and mean length)
The results for this diagnostic were mixed.

The overall model fit to CPUE was imprecise (root mean square error of all residuals combined, RMSE
>>().3)

In contrast the overall model fit to mean length was relatively more precise (RMSE < 0.3)

There were also trends in overall residuals for fits to CPUE and mean length, indicated by a loess
smoother through all residuals, except for age-0 mean length time series

"@j NOAA FISHERIES U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries | Page 17
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dantity data

Hypothesis e —
""""’;’;m"ﬂf"“ {Mode structure)
s . J
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e i Final gradient
Hessian
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Explore alternative i 1 Explore alternative
model structure | Joint residual plot model structure
e N ey Ui R,
Are the residuals
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=0 =N

BAny signs of data Prasance of production
conflict? function?

=—— \ / ———

E] Model consistency

44— —=— Evidence of retrospective patterns?

l

SCRS/P/2021/022. A cookbook for using model diagnostics in integrated stock assessments (Carvalho et al.,)
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Diagnostic-4 (Log-likelihood component profiles for R)
The results for this diagnostic were mixed

Magnitude of the R, profiles indicated that estimation of the recruitment deviations, length
composition, and CPUE were about equally informative within the likelihood

Relatively large changes in the magnitude of the RO profiles for two CPUE time series
(S5_SEFSC_BLLS, R1_TXPED_GNS) and two length compositions (F1_COM_BLL,
S5_SEFSC_BLLS) indicated that these data sources were relatively more informative than the
other data components included in the RO profile

The location of the minimum negative log-likelihood along the RO profile for length composition
and recruitment were similar (about 4.0)

However, a minimum value was not identified for indices of relative abundance, indicating that 1)
the scale of the population is driven by fit to length composition, and 2) there is conflict in the
minimum likelihood for the Ro profile between data components

A flat profile likelihood or a profile likelihood with its minimum value occurring at a
bound suggests that there is an inability to estimate the parameter from any of the data sets
and that the parameter should potentially be fixed (Karp et al. 2022).

However, diagnosing which of many confounded model processes lead to the data
conflicts 1s difficult even for stock assessments of targeted species. In particular, the R,
likelihood component profile by itself performed poorly as a diagnostic to identify
model misspecification in a simulation study (Carvalho et al. 2017)
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ASPM

Spawning output relative to its MSY value
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Diagnostic-5 (ASPM)
The results of this diagnostic were mixed

The large asymptotic 95% confidence intervals of relative spawning stock size for the
ASPMs did not overlap the full integrated stock assessment model for recent years,
indicating highly divergent results between the reference model and the ASPMs

Consequently, the ASPM results indicate that the observed catches alone could not explain
the trend 1n the indices of abundance and hence that the data available to the ASPM (i.e.,
the indices of abundance and the catch) did not provide enough information to estimate the
scale of the population (e.g., see Punt 2023).

The differences observed between the full integrated stock assessment model compared to the
ASPMs indicate that the fit to length composition data inform the estimated stock size.

As discussed in Minta-Vera et al. (2017), there is a trade-off within the fully integrated model
between the fit to composition data (in general used to estimate recruitment) and the
influence of fits to length composition on absolute abundance through a catch-curve type
process.

The tradeoff was addressed in this assessment by right weighting the data following A
Francis (2011) two-stage data weighting approach implemented in the base model
configuration.

o
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Retrospective patterns and Mohn’s Rho test

Derived Quantity Estimates and Approximate 95% Confidence Intervals
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Diagnostic-6 (Retrospective patterns and Mohn’s Rho test)

Mohn’s rho was calculated for spawning biomass with a five year peel

The severity of the retrospective pattern was based on the range provided by Hurtado-
Ferro et al. (2015), with values higher than 0.20 and lower than -0.15 used as an
indication for problematic retrospective patterns

The model exhibited a retrospective pattern in recent years, with Mohn’s rho values for
spawning biomass (2.5) > 0.20

This result indicates that there is an apparent tendency to overestimate spawning biomass
in recent years 2014, 2015, and 2016, but not 2017, and 2018
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SCRS/P/2021/022. A cookbook for using model diagnostics in integrated stock assessments (Carvalho et al.,)
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Hindcasting cross validation (HCxva
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The most accurate CPUE index predictions were observed for S5_SEFSC_BLLS (MASE 0.5)

Four CPUE indices failed the diagnostic and four CPUE indices passed the diagnostic

Predictions for CPUE time series were all relatively flat (neither increasing nor decreasing within the

period 2014 - 2018
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Hindcasting cross validation (HCxval) age-0 CPUE indices
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Hindcasting cross validation (HCxval) mean length time series
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Hindcasting cross validation (HCxval) mean length time series
R1_THPWD_GNS: MASE = 0.87 (0.85) RZ_GULFSPAM_GNS: MASE = 1.07 (0.44)
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Hindcasting cross validation (HCxval) mean length time series

Mean length
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Diagnostic-7 (Hindcasting cross validation)
The results for this diagnostic were mixed for CPIE indices.
The model passed this diagnostic for mean length time series.

The hind-cast cross-validation diagnostic identified that four CPUE indices failed
the diagnostic and four CPUE indices passed the diagnostic. CPUE indices which
failed the diagnostic had poor prediction skill. An explanation may be that either the
indices are not proportional to relative abundance or that there are processes that are
not being accounted for in the model structure.

In the latter case fits to length composition may be driving trends in abundance. This
interpretation is consistent with the RO likelihood component profile, which
indicated that the minimum RO profile of the population 1s driven by fit to fit to
length composition data and that there 1s conflict in the minimum likelihood for the
Ro profile between data components.

This could be investigated further by considering a range of scenarios based on
alternative datasets and model structures. Hindcasting could then be used to i1dentify
the best performing scenarios (e.g., choice of models and data which inform
abundance from CPUE data and inform recruitment from length composition data)
by comparing predictions with observations in the updated models with updated
hind-cast cross-validation.
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Diagnostic-1 (Convergence and Jitter)

The model passed this diagnostic (except final gradient 3.6x104 > 1.00e-04)

Diagnostic-2 (Runs test of CPUE and mean length residuals)
The results for this diagnostic were mixed.

Diagnostic-3 (Joint residual plots and RMSE of CPUE and mean length)
The results for this diagnostic were mixed.

Diagnostic-4 (Log-likelihood component profiles for R,)
The results for this diagnostic were mixed.

Diagnostic-5 (ASPM)
The results of this diagnostic were mixed.

Diagnostic-6 (Retrospective patterns and Mohn’s Rho test)

Diagnostic-7 (Hindcasting cross validation)
The results for this diagnostic were mixed for CPIE indices.
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Fisheries Research 261 (2023) 106642

Contents lists available at SeienceDirect - —y
Fisheries
Research

Fisheries Research

ELSEVIER journal homepage: www.elseviar.com/locate/fishres

Those who fail to learn from history are condemned to repeat it: A
perspective on current stock assessment good practices and the
consequences of not following them

Andreé E. Punt ™™

* School of Aquatic and Fishery Sciences, University of Washingion, Seardle, WA 98185-5030, UISA

* CSIRO Oceans and Atmosphere, GPO Box 1538, Hobart, TAS 7001, Australia
Overall, a model would be considered adequate for providing management advice if the optimization was successful, the model fits the data
adequately (e.2., based on residual analysis), the model provides reliable estimates of trends and scale, the results of the model are consistent
when updated with new data (e.g., retrospective analysis), and the model iz able to make adequate future predictions (e.g.. hindcasting)
{Carvalhio et al | 2021). It iz generally best practice to apply a range of diagnostics. The diagnostics uzed most commonly are:
Convergence diagnostics.
Residual diagrnostics.
Retrospective analysis.
Hindoast cross-validation.
Likelthood profiling.
Other diagnostics. Some diagnostics (e.g.. the Age-structured Production Model, ASPM, diagnostic; ... the catch curve diagnostic ... ASPM
diagnostic was developed to assess whether surplus production and observed catches alone could explain the trend in the index of abundance
and hence whether the data (i.e., the indices of abundance) provide information on the scale of the population. ...
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Those who fail to learn from history are condemned to repeat it: A
perspective on current stock assessment good practices and the
consequences of not following them

André E. Punt ™™

* School of Agquaotic and Fishery Sciences, University of Woshimgton, Seantle. WA 95155-5020, USA
* CHIRO Oceans and Ammosphere, GO Box 1538, Hobart, TAS 7001, Ausrelia

Orverall, the ideal 15 to apply as many diagnostic analyses as possible, along with running zensitivity analyses to explore sensitivity even
within a model that exhibits no obvious problems, recognizing that currently available diagnostics are not guaranteed to identify all
problems or wncertainties. Carvalho et al. (2017) found that applying multiple diagnostics was likely to identify more problems without a
major increase in “Type [ error’, ie incorrect reject of a correctly specified model Few assessments apply all of the above diagnostics
and the minimum set would seem to be to evaluate convergence and model fit (as summarized using residuals) and to conduct a
retrospective analysis and construet likelihood profiles. The hindcagt and the ASPM diagnostics can be used to better understand the
“value” of the asseszment (for example, iz it any better than a simple AR-1 process) and itz properties. Weighting of alternative model

configurations using diagnostics remains a research area unfortunately.
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PROJECTIONS TO CREATE KOBE 2 STRATEGY MATRIX USING THE
MULTIVARIATE LOG-NORMAL APPROXIMATION FOR ATLANTIC
YELLOWFIN TUNA

John Walter! & Henning Winker?
SUMMARY

I0TC-2019-WPTT21-51

A multivariate lognormal Monte-Carlo approach for estimating structural
uncertainty about the stock status and future projections for Indian Ocean
Yellowfin tuna

Henning Winker"" John Walter®, Massimiliano Cardinale®, and Dan Fu’

ICCAT _WGSAM 2021
SCRS/P/2021/020. Ensemble weighting and projections using model validation and prediction skill with ss3diags (Winker et al., )
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