

ND ATMOSE

NOAA

Evaluation of APAIS 2013 Design Changes

Descriptive Analysis Part 2: Results for Catch Rates Quasi Design-based Approach for Calibration

> John Foster MRIP Calibration Workshop #2

> > Charleston, South Carolina 8 September 2014

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries

Outline

- Results for MRIP Catch Rates
 - Landings per angler-trip
 - Summary
 - Select Species
- MRIP Red Snapper Landings
 - Gulf of Mexico, Wave 3
- Quasi Design-based Approach for Calibration

MRIP Catch Rates

- Landings per angler-trip (no.)
 - By State, Mode of Fishing, Area Fished, Year, Time Block, and Species
 - Summary 23 spp GOM, 26 spp Atlantic
 - Select individual species
- Comparisons
 - Year effects: Peak 2013 with Peak in prior years (2010-2012)
 - Design change effects: Total (full day) in 2013 with Peak in 2013

Results Mean Landings GOM

Year Effects

Variable differences across species centered around zero

Results Mean Landings South Atlantic

Year Effects

Design Change Effects

Variable differences across species centered around zero

Results Mean Landings Mid-Atlantic

Year Effects

Design Change Effects

• Wide distribution of year effects, more systematic design change effects in CH

Results Mean Landings North Atlantic

Year Effects

Design Change Effects

• Wide distribution of year effects, more systematic year effects in CH

Results Mean Landings Red Snapper - GOM

Year Effects

Design Change Effects

• Consistent year effects, variable and smaller design change effects

Results Mean Landings Striped Bass – Mid, N Atl.

Year Effects

Design Change Effects

Variable effects by sub region, larger effects in CH mode

Results Mean Landings Red Drum – S Atl.

Year Effects

Design Change Effects

Minimal effects except for CH mode in Inland waters

MRIP Catch Rates

- Results for landings per angler-trip highly variable
 - Across species, sub regions, modes, areas
- Support for year and design change effects at individual species level
- Effects in CH mode often larger than in other modes
- Design change effects typically smaller than year effects

MRIP Red Snapper Landings

- Gulf of Mexico
- Wave 3
- By State, Mode of Fishing, and Area fished

MRIP Red Snapper Landings – GOM, Wave 3

• LA-wFL, Wave 3, All Modes, All Areas, 2005-2013

MRIP Wave 3 Estimates - Louisiana

Red Snapper Landings (no.)

Total Angler-Trips

Increases in Evening trips and red snapper landings in 2013

MRIP Wave 3 Estimates - Mississippi

Red Snapper Landings (no.)

MRIP Red Snapper Landings (no.) MS Wave 3 by Mode, Area, and Time Block CH PR STS 0 20000 Landings (no.) 15000 EEZ 10000 5000 0 800 600 Inland 400 200 0 2010 2011 2012 2013 2010 2011 2012 2013 Morning Peak Evening

Total Angler-Trips

Increases in Evening trips and red snapper landings in 2013

MRIP Wave 3 Estimates - Alabama

Red Snapper Landings (no.)

NOAA FISHERIES

Total Angler-Trips

• Small increase in Peak, Large increase in Evening in EEZ 2013

MRIP Wave 3 Estimates – Florida-West

Red Snapper Landings (no.)

Total Angler-Trips

• Differences driven mainly by increases in Peak, trend in Peak from Inland to Ocean trips

MRIP Red Snapper Landings – GOM, Wave 3

- Results at the wave level generally consistent with annual level results
- Increase in Evening trips, predominantly in ocean areas (STS, EEZ)
- Largest increases in red snapper landings in Evening time block in all states except FL where increases typically in Peak time block
- Changes consistent with APAIS temporal coverage design change in 2013

- Effects of design change appear highly variable across sub regions, states, modes of fishing, species, etc.
- A single comprehensive approach could minimize time and effort associated with numerous case-specific adjustments
- Ideal approach could be applied to years prior to MRIP re-estimation years, 2004-2011

- Adjust sample weights of existing MRFSS APAIS data, in years prior to 2013, such that temporal distributions of reweighted intercept data approximate corresponding MRIP APAIS distributions
- Re-calculate catch and effort estimates using updated APAIS sample weights in years prior to 2013

- Challenges
 - Often very few intercepted angler-trips in off-Peak time blocks
 - Upweighting small numbers of intercept records has potential to create unstable estimates
 - Need to estimate MRIP APAIS temporal distributions for years prior to 2013

- Estimating MRIP APAIS temporal distributions
 - CHTS
 - Trip times recorded starting in 1990
 - Distributions fairly consistent over time
 - Higher proportions of Evening trips
 - MRIP APAIS
 - CHTS distributions similar but not exact match to MRIP APAIS
 - Need to adjust CHTS to MRIP APAIS

- Limited off-Peak MRFSS APAIS data
 - Modeling effort to identify characteristics of Morning, Peak, and Evening trips – by sub region, state, mode, and wave
 - Partition existing MRFSS APAIS data among adjustment groups (M,P,E) based on modeling results
 - Approach somewhat similar to propensity score methodology used in survey nonresponse adjustments

- Approach steps
 - Identify characteristics of Morning, Peak, and Evening trips using available MRFSS APAIS and MRIP APAIS data
 - Assign MRFSS APAIS trips to exclusive Morning, Peak, or Evening adjustment groups using trip characteristics (not based solely on trip time)
 - Calculate Morning, Peak, and Evening proportions of total trips from CHTS and MRIP APAIS temporal data

- Approach steps
 - Adjust sample weights in MRFSS APAIS data such that weighted proportions of trips by adjustment group (M,P,E) match the corresponding time block proportions (M,P,E) calculated from CHTS and MRIP APAIS
 - Recalculate catch and effort estimates using the adjusted sample weights

- Standard approach to adjust all catch and effort estimates from 1990-2012
- Dynamic adjustments across space, time, and species
- Approach strengthened as more years of MRIP APAIS data become available
- Revised estimates available would be available from MRIP web queries and datasets
- Revised public-use datasets would be available for custom domain estimation

ND ATMOSE

NOAA

Evaluation of APAIS 2013 Design Changes

Descriptive Analysis Part 2: Results for Catch Rates Quasi Design-based Approach for Calibration

> John Foster MRIP Calibration Workshop #2

> > Charleston, South Carolina 8 September 2014

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries