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Abstract

We revisit the empirical equation of Gislason et al. (2010, Fish and Fisheries 11:149–

158) for predicting natural mortality (M, year)1) of marine fish. We show it to be

equivalent to M ¼ L
L1

h i�1:5

�K, where L¥ (cm) and K (year)1) are the von Bertalanffy

growth equation (VBGE) parameters, and L (cm) is fish length along the growth

trajectory within the species. We then interpret K in terms of the VBGE in mass dW
dT

� �
,

and show that the previous equation is itself equivalent to a )⅓ power function rule

between M and the mass at first reproduction (Wa); this new )⅓ power function

emerges directly from the life history that maximizes Darwinian fitness in non-

growing populations. We merge this M, Wa power function with other power

functions to produce general across-species scaling rules for yearly reproductive

allocation, reproductive effort and age at first reproduction in fish. We then suggest a

new way to classify habitats (or lifestyles) as to the life histories they should contain,

and we contrast our scheme with the widely used Winemiller–Rose fish lifestyle

classification.
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Introduction: what are assembly rules for fish

life histories?

This study addresses life histories in female fish;

what we call ‘assembly rules for fish life histories’

refers to the relationships between mortality rate, an

individual’s growth (production) rate, size (age) at

first reproduction, reproductive allocation thereafter

and egg size. Natural selection mediates these

relationships and favours some very special ones

(Winemiller and Rose 1992; Charnov 1993). These

special ones are what we aim to predict, hence our

use of the term ‘evolutionary’. As a life history

consists basically of a creature surviving and

growing to the optimal size to start offspring

production, we concentrate on the size (age) of first

reproduction. Most fish species have indeterminate

growth, where body size still increases after initia-

tion of reproduction/maturity. We will approximate

fish growth and reproduction with a ‘determinate

growth approximation,’ where growth ceases at the

onset of adulthood. This approximation captures the

essential power function forms we wish to study,

even though the normalization constants generally

differ between determinate and indeterminate

growth.

Our evolutionary optimization scheme yields

relationships that are applicable across species

between mortality, individual growth rate, body

size (age) at maturity and reproductive effort

(Charnov 1993). The scheme suggests how we

should classify habitats with respect to what life

histories they will contain, and we end up

proposing a new way to classify the interaction

of habitat (or lifestyles) and life history. We will

contrast this to the widely used Winemiller–Rose

classification scheme, a variant of ‘r/k’ selection

theory.

Surprisingly, the size of an individual offspring

(egg size) is decoupled from the previous evolu-

tionary optimization, and we can only provide

hints as to what sets optimal egg size (Smith and

Fretwell 1974). Luckily, this decoupling means

that we need not solve the optimal egg size problem

to predict the optimal size at maturity. This

decoupling happens because we use R0, the net

reproductive rate, as an individual’s fitness mea-

sure (Charnov 1993, 1997; see also Appendix 2)

and because we place all density dependence

among the very young (the standard kind of

spawner/recruit assumption in commonly used

fishery models).

Introduction to natural mortality: two distinct

ways for M to be size dependent

Externally imposed mortality plays a key role in the

optimal size (age) for the initiation of reproduction,

so first we study natural mortality in fish and how it

relates to individual body weight and to body weight

at maturity both within and across species.

Opinion about the natural mortality (M) of fish is

polarized into those who believe M, at least near

adulthood, can be treated as an age/size-indepen-

dent constant within the species (e.g. Beverton and

Holt 1957, 1959; Pauly 1980), and those who

believe M often is a strong and well-defined negative

function of body size, up to and perhaps beyond the

length of first reproduction (La) (see Gislason et al.

2010 for a general overview). Both camps agree

that M is very high for larval (and other smaller)

fish, but they disagree as to whether M drops and

then remains approximately constant well before La

or whether it shows some well-defined function of

length, Lx. Following the lead of Beverton and Holt

(1959), Charnov (1979), Pauly (1980), Charnov

(1993) and others (e.g. Cury and Pauly 2000;

Griffiths and Harrod 2007; Andersen et al. 2009)

have shown that M near the age of first reproduc-

tion (a) shows the across-species rule of M = CÆK,

where K is the Bertalanffy growth constant for the

species growth curve; a typical C value for fish

of »1.8. Charnov (1993) showed this rule with

C » 1.5–1.7 in a large sample of indeterminate

growing reptiles, snakes and lizards, so the rule

appears to apply to other organisms with indeter-

minate growth, as well; Charnov (1979) showed it

for marine shrimp. However, M is also known to

decrease with asymptotic length (L¥) across species

(e.g. Cury and Pauly 2000); presumably this M

refers to M near adulthood. But these M, L¥ plots

are often quite noisy.

In apparent opposition to this constant M idea, a

large amount of fish data demonstrate well-defined

M effects of body size, both for factors like predation

risk and total M at some Lx (e.g. McGurk 1986;

Lorenzen 1996). Indeed, models designed to simu-

late the body size spectra of marine fish communi-

ties (e.g. Andersen and Beyer 2006; Pope et al.

2006) predict size-dependent scaling of M during

ontogeny.

This literature intermingles two questions/ideas:

(i) How does M change with L over a growth curve

within a species? Are there general scaling rules

M � L)P?, and (ii) How does M, as some sort of
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average near adulthood (call it Ma), change with

body size (say, L¥) across species? Clearly, if we

know M near maturation size and M � L)P at other

sizes, we can know M at all sizes. But, why should

Ma decline with L¥ across species?

In this study, we first reconcile the within-species

M vs. L with the between-species Ma vs. L¥ puzzle.

We will do this by means of life-history optimization.

First, the data.

M vs. L, within and between species: the data

In a modelling study of the North Sea fish

community, Gislason et al. (2008) found that M

should scale with both L¥ and L to generate

spawner-for-spawner replacement, corresponding

to a net reproductive rate R0 » 1, and hence

coexistence, for large and small species of fish.

They also found that this could explain the strong

negative relationship between the maximum slope

of the stock-recruitment curve at the origin and L¥

observed by Denney et al. (2002). To test this

further, Gislason et al. (2010) made a careful and

critical review of empirical estimates of natural

mortality, M (year)1), in marine (and brackish)

water fish species and found that the observations

could be fit by the following equation (length in

cm):

logeðMÞ¼0:55�1:61logeðLÞþ1:44logeðL1Þ
þ logeðKÞ ðr2¼0:62;n¼168Þ

ð1Þ

The L¥ and K are from fitting the von Bertalanffy

growth equation (VBGE) to size at age (x) data:

L ¼ L1ð1� e�K�xÞ ð2Þ

Although Gislason et al. (2008) provide a biolog-

ical justification for the terms of Equation 1, it

is seemingly a mystery. In particular, the 1.44

scaling of M with L¥ seems puzzling as mortality

rates are expected to decrease with body mass

across species. There is one other puzzle here in that

the authors also fit a version of Equation 1 with an

added Arrhenius term (d/Ta, where d is a constant,

and Ta is absolute temperature) and they expected a

negative d coefficient, but the fit showed no signif-

icant temperature effect when K was also in the

equation.

There are two things to note about this equation.

First, the coefficients of loge(L) and loge(L¥) (1.61

and 1.44, respectively) are not statistically different,

so it seems reasonable to fit the M equation with a

common exponent. This fit is just as good as

Equation 1:

logeðMÞ ¼ �0:05� 1:46 loge

L

L1

� �
þ logeðKÞ

ðr2 ¼ 0:61; n ¼ 168Þ

or, more simply, as the intercept is not different

from 0, nor the exponent from 1.5,

M ¼ L

L1

� ��1:5

�K ð3Þ

(a)

(b)

Figure 1 (a) Plot of M/K vs. L/L¥ in the Gislason et al.

2010 data set. See text for discussion. (b) Plot of

loge M vs: loge K L
L1

� �
�1:5

h i
yields a very useful predictive

equation for M; standard error of slope = 0.06 and

standard error of intercept = 0.07.
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The form of Equation 3 is quite interesting;

in Fig. 1a, we show the fitted relation

loge
M
K

� �
¼ ðC0Þ þ ðC2Þ � loge

L
L1

� �
. There is a lot

more scatter here (r2 = 0.48, n = 168), but C0

may be taken as zero (C0 = )0.06; 95% CI: )0.21

to 0.09) and C2 as )1.5. Surprisingly, the fit is

reasonably good down to L/L¥ values of �0.15,

very small fish, about 20% the size of first repro-

duction ðLa=L1 � 2=3Þ. So, Equation 3 predicts the

M vs. ontogenic L at any fixed K value. We also fit

Equation 3 using L/L¥ data for only the post-

maturation period (only L/L¥ > 0.65); this gave the

same parameter values as the full L/L¥ range, so the

M, L/L¥ rule extends into the adult size groups.

Finally, we fit the equation with the 60% of the data

that came from unfished (or lightly fished) popula-

tions, and the answer was again the same.

Second, Equation 1 turned into Equation 3 also

predicts the empirically observed Ma vs. K relation

across species. Setting ðL=L1 � 2=3Þ, the expected

relative maturation size, gives ðMa=K � 1:84Þ, quite

typical for indeterminate growers (i.e. fish, lizards,

and snakes; see Figs. 4.5 and 4.11, pp. 66 and 74 in

Charnov 1993).

So, the Gislason et al. 2010 equation supports

both the M vs. L (over the life history) position, and

the Ma vs. K position. In Fig. 1b, we fit the log/log

form of Equation 3, fixing the exponent at )1.5:

logeðMÞvs: loge K � L
L1

� ��1:5
� �� 	

.

The fit is good (r2 = 0.61), and the residuals here

are normally distributed, so this regression should

be useful in prediction of M from K, L, L¥ data.

K is /W�1=3
‘ /W�1=3

a

To understand what Equation 3 means, we must first

understand what K is. Fishery scientists usually think

of K as the curvature of the growth equation in length

(see Equation 2); fish length-at-age data are usually

very well described by Equation 2. The production

process underlying growth, however, is dW/dt,

where W is mass (or more commonly just called

weight). W = aÆL3 for fish that grow isometrically.

The differential equation for the VBGE is as

follows:

dW

dt
¼ A �W2=3 � B �W ð4Þ

Solving Equation 4 for W(x) and transforming

to L(x) yields Equation 2.

In Appendix 1, we derive several useful properties

of this growth/production equation. In particular,

we can derive W¥ (or L¥) and K from the A and B

parameters.

K ¼ B=3 ð5aÞ

W1=3
1 ¼ A=B ¼ a1=3 � L1 ð5bÞ

and hence that:

K ¼ A

3

� �
W�1=3
1 ð5cÞ

So, in terms of A and B, we have two ways to

answer what K is. First, (Equation 5a) 3 Æ K Æ W is the

term subtracted from a basic production term

(A Æ W⅔); Charnov (1993, 2008) has argued that

3 Æ K Æ W is really mostly a reproductive allocation.

Equation 5c, however, shows that K is also a )⅓

power function of W¥. The intuition here is that if

K is related to reproductive allocation, higher K

exhausts the productive capacity (A Æ W⅔) faster,

and yields smaller asymptotic size (W¥). We will

work with this power function form of K, using it in

two ways. First, we shall write the fitted, empirical

Equation 3 in terms of W¥ (or L¥). Second, we shall

argue that the power function is really about the

size at first reproduction (La or Wa) and not the

asymptotic sizes, because Wa � W¥.

So, using Equation 5c, empirical Equation 3 for M

can be written as:

M ¼ W

W1

� ��1=2

� A

3

� �
�W�1

31 ð6aÞ

or

M ¼ L

L1

� ��1:5

� 1

a1=3

� �
� A

3

� �
� L�1
1 ; ð6bÞ

Beverton and Holt (1959) first showed that

La � L¥ within many fish taxa with a central value

of »⅔. While various taxa differ somewhat (e.g.

Clupeidae »0.8), ⅔ is widely accepted and used in

the fishery literature. It seems less well appreciated

that La/L¥ = 2/3 means that Wa/W¥ = (2/3)3 =

0.296, the inflection point for the VBGE in mass (see

Appendix 1). When we describe fish growth with

equations like the VBGE, our fitting puts the mass at

first reproduction (Wa) approximately at the size of

the fastest growth. Why? The answer is probably as

follows. Although the VBGE well describes fish

growth, Equation 4 is somewhat simplistic; the

Natural mortality in fish life-history evolution E L Charnov et al.
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underlying growth process really has two phases:

before maturation, fish grow their self; after matu-

ration, they grow slower because production also is

given to reproduction. Almost any body mass power

function for growth has dW/dt increasing with W at

small W. Thus, if the growth rate decreases because

of the initiation of allocation to reproduction (size

La, Wa), the fastest growth – highest dW/dt – will

just be at that size. If we fit a VBGE to fish data,

we will be putting La near the highest dW/dt.

And, the inflection point – the highest dW/dt in the

VBGE – is at 0.296ÆW¥, or La = 2/3 Æ L¥.

Using these two rules allows us to write Equation

6 in terms of Wa or La, the size at first reproduction.

Substituting Wa/(0.296) for W¥ in Equation 6a

yields:

M ¼ 0:41
W

Wa

� ��1=2

�A �W�1=3
a ð7Þ

Body size (Wa) at first reproduction

Equation 7 is the most basic equation of all; set

W = Wa, then:

Ma ¼ 0:41 � A �W�1=3
a ð8Þ

Remember that Equation 7 (or Equation 8) is just

the original fitted Equation 3 transformed to Wa

under the most plausible of assumptions that Wa is

0.296ÆW¥, the maximum of dW/dt, as represented

by the VBGE, an equation that well describes the

underlying two-part growth/reproduction process.

We call these Equations 7 and 8 the most basic

of all because they predict M versus Wa across

species, and adjust M to the relative size along the

growth trajectory W/Wa within a species. Writing

them this way focuses our attention on Wa, which

is the most basic of life-history size variables, when

an individual begins to allocate production to

offspring and thus slows, if not stops, its growth.

We will now show how life-history evolution sets

Wa and how that relates to Ma.

The evolutionary optimal size at first

reproduction (Wa) in a non-growing

population

Four main problems dominate the study of life-

history evolution (e.g. Stearns 1992): the size or age

of first reproduction (Wa or a), the schedule for the

allocation of personal production to reproduction

after a, the size of an individual offspring (egg size in

most fish) and ageing (senescence). If all personal

production is devoted to reproduction at size Wa,

growth ceases, and Wa is the adult size (called

determinate growth). If only some of the personal

production is devoted to reproduction at size Wa,

growth (albeit slower) continues after age a (called

indeterminate growth), generally leading to some W¥

size. The relation between Wa and W¥ depends

upon the reproductive allocation schedule. Evolu-

tionary models for optimal indeterminate growth

are very complicated (e.g. Perrin and Sibly 1993;

Charnov et al. 2001; Thygesen et al. 2005; Quince

et al. 2008), and most trade-off assumptions do not

favour indeterminate growth as the optimal life

history. These numerous cases favour all production

at Wa to be given to reproduction, resulting in Wa

being the final adult size. The issue of determinate

versus indeterminate growth is a complex one, and

we will not develop it here.

What we will do is use life-history optimization to

predict Wa in the face of a simple pre-reproductive

growth function and size dependence for pre-repro-

ductive mortality. Let us derive the optimal adult

body size, Wa, for a very simple, determinate growth

life history. Of course, fish are not this simple, but

the model has several fundamental features in

common with more complex, indeterminate growth

cases, and this model is very simple to understand.

Suppose juvenile growth follows the production law
dW
dt ¼ A �W0:67. Suppose an individual grows until

some size Wa, when it then gives all of dW/dt to

offspring production and thus stops growing; Wa is

the adult size. dWa/dt, the mass given to reproduc-

tion per year, is usually called the reproductive

allocation (RA).

What determines the optimal Wa? It’s mortality

and growth, of course. The mortality rate of young

immatures is generally very high; suppose that,

after an initial burst of density-dependent death that

stabilizes recruitment, the mortality rate declines

with increasing immature body mass according to

the rule M ¼ Di �W�hi , where i refers to species i

(this size rule may apply only after some small size is

reached). We allow various species to have differing

D and h variables, but all have some size dependence

(h = 0 is okay, too). Notice that this mortality is

imposed externally to the organism (its predators,

competitors, etc.); we leave unspecified where it

comes from. All that a growing organism can do is

decide at what size (age) to quit growing and begin

reproducing (Wa). On the one hand, the longer

it delays initiating reproduction, the greater its

Natural mortality in fish life-history evolution E L Charnov et al.
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cumulative chance of dying without reproducing at

all (a cost). On the other hand, however, the longer

it delays, the greater its reproductive ability, as it

gives dW/dt to reproduction, its own growth

capacity, which is A Æ W0.67 (a benefit). The optimal

Wa balances this cost (risk of death) and benefit

(reproduction rate).

Life-history theory (Stearns 1992) requires us

to choose a measure of Darwinian fitness to carry

out this optimization. Numerous possibilities exist

(Stearns 1992; see also Metz et al. 2008), but the

choice really mostly depends upon our population

dynamics assumptions (e.g. Charnov 2009). Non-

growing populations lead to the net reproductive rate

(R0) being the appropriate fitness measure, and

growing populations lead to the intrinsic rate of

increase, labelled ‘r,’ being the fitness measure;

populations in highly variable environments may

require stochastic versions of R0 or ‘r. Here we

assume non-growing populations and use R0 as

fitness. R0 here has some very general and unusual

multiplicative properties, which we derive and discuss

in Appendix 2. For the simple determinate growth life

history modelled here, R0 takes a very simple form:

R0 ¼
b � e�

R a

0
MðxÞdx

Ma
ð9Þ

where the exponential is the chance of living to

reproduce at age a (often called S(a)), the 1/Ma is

the average adult lifespan, and b is the egg

production per unit of time while an adult.

b ¼ A �W0:67
a

C1
; ð10aÞ

because offspring production is just diverted self-

growth and C1 is the mass of each egg. Of course,

Ma ¼ D �W�h
a ð10bÞ

(dropping the i subscript).

R0 can now be written as:

R0 ¼
A �W0:67

a � e�
R a

0
MðxÞdx

C1 � D �W�h
a

ð11aÞ

or

loge R0¼ loge

A

D �C1

� �
þð0:67þhÞ�logeðWaÞ

�
Z a

0

MðxÞdx:

ð11bÞ

The optimal Wa is where @ loge R0=@a¼0.

This is when

@logeR0=@a ¼
ð0:67þ hÞdWa

da

Wa
�Ma ¼ 0;

as
d½
R a

0 MðxÞdx�
da

¼ Ma

and loge
A

D � C1

� �
is just a constant.

As dWa
da ¼ A �W2=3

a we have ð0:67þhÞA�W2=3
a

Wa
�Ma

¼ 0, which gives

Ma ¼ ð0:67þ hÞA �W�1=3
a ð12Þ

Equation 12 is equivalent in form to empirical

Equation 8, excepting the constant multiplier of A,

which is (0.67 + h) here and 0.41 fitted for the

indeterminate growing fish; our model assumption

of determinate growth causes this numeric differ-

ence in the normalization constant. Equation 12

may, of course, be solved for Wa.

Notice that the only mortality (M) appearing in the

final answer (Equation 12) is Ma; all the earlier

mortality, including density-dependent mortality

very early in life, has gone away. This is a generic

feature of R0 maximization, which sets up this special

relation between Ma and Wa (e.g. Charnov 1993).

However, we can recover M values at some earlier

ages/sizes through the M = D Æ W)h function. If we

pick some other W, say Wy, we have as follows:

My ¼ D �W�h
y and

Ma ¼ D �W�h
a giving

My

Ma
¼ Wy

Wa

� ��h

or My ¼
Wy

Wa

� ��h

�Ma

or, from Equation 12:

My ¼ ð0:67þ hÞ Wy

Wa

� ��h

�A �W�1=3
a ð13Þ

Equation 13 is the same form as empirical Equation

7; we predict My at sizes other than Wa by multiplying

the Ma equation by
Wy

Wa

� ��h

, the relative mass ratio

raised to the power –h, the exponent of M vs. W along

the growth trajectory. For determinate growers, this

applies to the smaller W. A similar principle for

adjustment of My to Wy would apply for other

My ¼ g Wy

� �
functional forms.

Suppose A is greatly affected by temperature (or,

say, diet or foraging mode); then that A will simply

match Wa to the prevailing M function. In a basic

sense, temperature or diet effects on the optimal Wa

are already accounted for in A (Charnov and

Natural mortality in fish life-history evolution E L Charnov et al.
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Gillooly 2004). The temperature term was not

significant when added to Equation 1, most likely

because temperature was already present when K

was in the equation recall; K ¼ A
3

� �
W�1=3
1

� �
.

Mortality (M) need not have a particular size-based

form during growth, and our optimal life-history

scheme works just as well if the M is independent of

size; simply set h = 0 in Equation 13. So, the theory

does not predict h, and it simply takes it as an input

from the environment. For each species, natural

selection matches Wa to the environmentally given

Ma (or M schedule) based on A, the height of the

production function. Thus, Ma and Wa are brought

into a very special relation with each other (Equation

12). Both A and ‘h’ may vary among species/habitats,

and this will introduce between-species variation into

the multiplier of W
�1=3
a in Equations. 12 and 13. We

suspect that pooling species with various (h) in a

single data fit will reduce the correlation and simply

predict some sort of average h.

Expanding this fitness optimization model to full

indeterminate growth is a formidable task, and we

will not do it here. Charnov et al. (2001) and

Charnov and Gillooly (2004) show that A enters the

Ma, Wa power function in exactly the same way as

in Equation 12 in a model that yields indeterminate

growth as the optimum. What is expected to differ

between determinate and indeterminate growth is

the multiplier of A �W�1=3
a , the ‘non-A’ part of the

normalization constant.

Discussion: Ma/K » 1.8 implies a general MaÆa
rule for indeterminate growers

Charnov (1993, p. 61) noted the following

identity for the VBGE, where age of first reproduc-

tion, a, is measured from size zero: La
L1
¼ 1�

e�K�a ¼ 1� e� K=Mað Þða�MaÞ. Any life-history optimiza-

tion model where the resulting lifetime growth is

adequately described by the VBGE (thus setting
La
L1
� 2=3) and which sets a Æ Ma » 2, the typically

observed fish (and reptile) value (Charnov 1993,

Chapter 4), makes the following prediction:

ða �MaÞ �
K

Ma

� �
¼ 1:1

or
Ma

K
¼ 2

1:1
¼ 1:82

We may not understand just what trade-offs

favour indeterminate growth in fish, but a Æ Ma » 2

is the necessary result to predict the correct Ma/K

number. This is worth remembering.

Discussion: across-species life histories,

power functions are not (always) allometries

In this section, we further use the determinate

growth approximation for fish. Let dW
dT ¼ A �W0:67.

At maturation size Wa, the organism will be giving
dWa
dT ¼ A �W2=3

a mass to reproduction per unit of

time (its reproductive allocation, RA). Reproductive

effort (RE) is usually defined as RA divided by body

mass (e.g. Stearns 1992; Charnov et al. 2007),

so RE ¼ dWa
Wa �dT ¼ A �W�1=3

a . Integrating the determi-

nate growth equation from W = 0 at T = 0 shows

that 3=A½ � �W�1=3
a ¼ a, where a is the age of first

reproduction; Appendix 1 shows that solving the

VBGE for the age at first reproduction when

Wa=W1 ¼ 0:296 gives a similar result: a / W
1=3
a
A .

So, we have power functions for three key life-

history variables (a, Ma, RE):

Ma / A �W�1=3
a ð14aÞ

RE ¼ A �W�1=3
a ð14bÞ

a ¼ 3

A
�W1=3

a ð14cÞ

Equations 14a, b and c are three of the four

central variables used to describe fish life histories: a
is just the accumulated growth function, RE is just

the turning of personal growth at Wa into produc-

tion of offspring and Ma is because of the optimi-

zation of Wa in the face of mortality. To obtain

yearly offspring production (call it b), just divide

RA ¼ A �W2=3
a by the mass of an egg, C1:

b ¼ A �W2=3
a

C1
ð14dÞ

Each of the four power functions that sit at the

centre of how we describe life histories generalizes to

indeterminate growth life histories (with generally

different multipliers of A). Every one of them

contains A. Thus, they will form across-species ⅓,

⅔ allometries only if all the species in the data set

have the same A. If the species differ a lot in A,

across-species plots may not look much like ()⅓, ⅓,

⅔) power functions; the ⅔ scaling of yearly clutch

size also requires that egg size be similar across

species (or at least uncorrelated with Wa across

species). In all cases, we expect good allometries

(across-species ⅓, ⅔ power functions) if we correct

Natural mortality in fish life-history evolution E L Charnov et al.
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a, RE, Ma, or b by dividing (for a multiplying) by A.

Of course, if A is itself a power function of Wa,

across-species plots will be allometries that combine

the two exponents. The plotting of Ma vs. K is

equivalent to correcting Ma by A across species,

which is why plots of Ma vs. K are so much tighter

than plots of Ma vs. L¥ (or W¥) (e.g. Cury and Pauly

2000), where A varies among the data points.

Clearly, understanding A is a central question in

the study of fish life histories; fortunately, we can

estimate A as 3 � K �W1=3
1 (Equation 5c) whenever

we describe fish growth with the VBGE. We should

plot A versus foraging mode, food type and temper-

ature; we should determine whether A varies

consistently with other habitat features, body size

itself or perhaps phylogeny. Various scaling rules

are known for how K varies with L1 or W�1=3
1

� �
within pelagic and demersal fish (Gislason et al.

2008, 2010), and we will develop these in relation

to A in a later study. Perhaps A and M are

themselves interrelated; if higher A often requires

more foraging movement, then perhaps M will be

driven up too.

Pauly (1981), reviewed in Cury and Pauly 2000)

suggests that O2 is the resource limiting growth in

water-breathing animals, and thus, gill surface area

and function determines ‘A’. While we think this

unlikely as a universal limiting factor, perhaps the

morphology of gills can be used to estimate A, as

gill structure is likely to be adjusted to ensure

delivery of the needed quantity of oxygen for

production, independent of what actually limits

production.

Discussion: egg size, C1

Egg size (individual offspring size, C1, in mass) was

dropped out of the optimization of R0 argument,

leading to Equation 12. This is why we could ignore

egg size in this evolutionary scheme; egg size and

{a, Ma or reproductive effort (RE)} are effectively

uncoupled. What determines C1 is very complicated.

The key trade-off is clearly that of egg size and egg

number; larger eggs mean fewer of them (Smith and

Fretwell 1974). We know how to solve for the

optimum (Smith and Fretwell 1974), and we know

that optimal C1 is expected to be usually indepen-

dent of the total resources being devoted to eggs.

What we do not know is how the trade-off structure

for individual performance vs. egg size maps to the

environment in which the eggs and young juveniles

develop, although Wootton (1994) has made a

splendid attempt to predict optimal egg size for

pelagic marine fishes using these principles. Having

said that, we do know many things about egg sizes

in nature; for example, they are small for pelagic

fish, larger in freshwater, larger with male parental

care, sometimes changes seasonally and so forth

(excellent review in Freedman and Noakes 2002).

Generally, across species, they do not correlate with

adult size except when adult size itself correlates

with the spawning/larval development environment

(e.g. spawning season), and the same rules probably

apply to egg size vs. body size within a species

(Fleming and Gross 1990). We have every reason to

believe that natural selection can easily change egg

size to match a local optimum (e.g. Fleming and

Gross 1990; for salmon). Downhower and Charnov

(1998) found that the average egg size in Gambusia

hubbsi in the Bahamas was a constant with adult

size within populations, but the average egg size

(volume, mass) varied by a multiplier of five

between isolated populations – remarkable size

variation that is yet unexplained. We are lucky

that the decoupling of egg size from evolutionary

optimization of Wa allows us to treat egg size as a

constant that drops out when we set d logeR0ð Þ
da ¼ 0.

Discussion: how shall we classify life

histories, lifestyles and habitats?

The mostly widely used scheme to classify habitats

(and lifestyles) with respect to fish life histories is

that of Winemiller and Rose (1992), a variant of r/k

selection theory. All such classification schemes

map the habitat to the expected life history through

assumptions about how natural selection operates

there to favour that particular life history. Our life-

history assembly rules in Equation 14a–c suggest

that to map the environment to the life history, we

need to know A, the height of the individual’s

production function, and M, the externally imposed

mortality risk. As M (or more precisely Ma) must be

very hard to know, it is not too surprising that it is

not generally included as a feature of the habitat; it

should be.

Equations 14 suggest a classification scheme with

M on one axis and A on the other, illustrated in

Fig. 2a. Each ray from the origin corresponds to a

fixed value of W
1=3
a , as Equation 14a has

W
1=3
a / A

Ma
; this is the optimal Wa in the face of A

& Ma. Notice that for fish of the same body shape,

W
1=3
a / La, so body length at first reproduction is

the same along each ray. And, of course, steeper

Natural mortality in fish life-history evolution E L Charnov et al.
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rays correspond to bigger La W
1=3
a

� �
. Equations 14a

and 14b together imply that reproductive effort, RE,

is � Ma independent of A or Wa. Thus, lines of equal

RE are just vertical lines (parallel to the A axis);

high Ma means high RE, and low Ma means low RE.

Fig. 2a is a schematic of this classification scheme.

Different environments/habitats/foraging modes

may impose different ranges for A and M. Fig. 2b

shows how this scheme might work between

habitats to predict life histories. In this hypothetical

example, Habitat 1 has low A and low M, while

Habitat 2 has high A and high M. Both habitats will

have similar size ranges for W
1=3
a ð¼ LaÞ, but all the

reproductive efforts will be low in Habitat 1 and

high in Habitat 2. Clearly, the distribution of life

histories we see depends upon how A and M are

correlated with each other across habitats; Fig. 2b

illustrates a positive A and M correlation.

The scheme of Equations 14a–c and Fig. 2 has

one very unusual feature; suppose the average

length of the adult life span is � 1
Ma

, then (repro-

ductive effort) (average adult life span) is RE/Ma

and, by Equations 14a and b, is predicted to be

approximately constant for all fish, independent of

Wa or A. Lifetime reproductive effort (LRE) obeys the

rule (approximately) among mammals and lizards

(Charnov et al. 2007). Gunderson (1997) found the

same relation in a diverse collection of 28 marine

fish species, although his numeric LRE value is

different from the mammals and reptiles.

Of course, Fig. 2 is incomplete to fully classify fish

life histories; there is a third axis, extending into the

plane to plot the size of an egg (or newborn). But

without a better understanding of the egg and larval

environment, that axis/dimension is the most diffi-

cult of all to predict using natural selection argu-

ments.

Charnov et al. (2001) aggregated the yearly

offspring production in the Winemiller and Rose

(1992) data set to estimate the average yearly mass

given to reproduction as a function of Wa across

species (essentially reproductive allocation, RA). The

data plot was uncontrolled for variation in A among

the species, yet it showed a very strong (r2 = 0.74,

n = 139) power function form with a slope of » 0.8.

Thus, the species viewed as very different by

Winemiller and Rose (1992) satisfy a RA vs. Wa

scaling rule similar to that predicted by Equation 14;

the species differ mainly in how the RA is divided

among spawning batches, and of course, egg size.

We agree with W–R that large-bodied species

usually have long lifespans and much reproductive

allocation when compared with small-bodied spe-

cies and that offspring size relates to many identified

features of the parental care/larval development

environment. We believe that much of this

between-species variation can be best understood

in the context of Fig. 2: production rates (A) in the

face of mortality rates (M) determine Wa, and then,

the RA divided by individual offspring size sets the

yearly offspring number. Species only grow to large

body size if external mortality rates are low; hence,

their lifespan is long. All the variables in this study

can be treated as ‘average annual’ values, and thus,

(a)

(b)

Figure 2. A scheme to classify life histories. (a) This

square plots height of the growth curve (A) on the y axis

and mortality near adulthood (Ma) on the x axis. Lines

of equal body size W
1=3
a ¼ La

� �
are just rays from the origin.

Reproductive effort is proportional to Ma, independent of

A or Wa. (b) Hypothetical plot of two ‘habitats’ and

on the A, Ma plane. Because both span the same A/Ma

range, the two habitats will contain similar body sizes. But

all the reproductive efforts will be high in and low in .
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they smooth over the annual cycle of production

and mortality. Perhaps it is not necessary to suggest

that small-bodied species are selected for fast intrin-

sic rates of increase, and maybe the non-growing

population assumption, mandating R0 as a fitness

measure, is adequate for all body sizes.
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Appendix 1: Some useful properties of the

Bertalanffy growth equation

The Bertalanffy growth (BG) equation is the most

widely used descriptor of body size growth for

fish (and other indeterminate growers). It’s usual

integral form (two parameters) is where L =

L¥(1 ) e)KÆX) length, L¥ = asymptotic length, X is

age and K is the growth coefficient. In weight (W),

the equation is W = W¥(1 ) e)KÆX)3. In this

appendix, we review and point out some of the

properties of the BG equation, beginning with the

differential equation form for weight (W). We

begin with dW/dt, as production is a mass-based

process, even if fishery scientists usually work in

terms of length.

The differential equation form of the BG equation

is as follows:

dW

dt
¼ A �W2=3 � B �W ðA1Þ

Length (L) is related to weight by the rule:

W ¼ a � L3: ðA2Þ

The asymptotic weight W¥ is where dW
dt ¼ 0, thus

W1=3
1 ¼ A

B
; ðA3Þ

or L1 ¼ W1
a

� �1=3
� �

.

Notice that Equation A2 allows us to write dW
dt ¼

a � 3L2 � dL
dt or dL

dt ¼ dW
dt

1
a�3L2

� �
. Now, combining this

with Equations A1, A2 and A3, we can show that
dL
dt ¼ B

3 L1 � L½ � ¼ K L1 � L½ �; so that K ¼ B
3. This is

the differential equation for length.

As K ¼ B
3 and W1=3

1 ¼ A
B ;K ¼ A

3

� �
W�1=3
1 so that

log K ¼ loge

A

3

� �
� 1=3 loge W1: ðA4Þ

We can use Equation A2 to transform W¥ to L¥ :

K ¼ A

3

� �
1

a1=3

� �
� L�1
1

loge K ¼ loge

A

3

� �
� 1

3
loge a

� 	
� loge L1

ðA5Þ

A, of course, is estimated as A ¼ 3 � K �W1=3
1 . We

can estimate A from the K, L¥ data if we know the

shape coefficient of Equation A2.

What Is A in the BG Equation?

As A of dW/dt is a key parameter, it seems

worthwhile to ask what it means. In von Berta-

lanffy’s original derivation, the A Æ W2/3 term was

anabolism, the building of new tissue. It is probably

reasonably interpreted as reflecting the intake of

nutrition (food), which is assumed to scale with

W⅔. The BW term is catabolism, the breakdown of

tissue (but B Æ W also must include reproductive

allocation; Charnov 2008). While fisheries scientists

no longer accept the simple physiological interpre-

tation of von Bertalanffy, it may well be useful to

treat the A Æ W2/3 term as the scaling of new tissue

production.

There is another way to interpret the A coefficient.

Rewrite Equation A1 as

dW

dt
¼ A �W2=3 1� B

A
�W1=3

� 	
;

but by Equation A3,

dW

dt
¼ A �W2=3 1� W

W1

� �1=3
" #

: ðA6Þ

Thus, dW
dt is proportional to W⅔ at any fixed

W/W¥ value with A (and the W/W¥ term)

determining the ‘height’ of the ⅔ power function.

For example, at very small body size, W/W¥ » 0

and Equation A6 becomes dW/dt » AW⅔; A is the
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height of the power function (W2/3) growth curve

at small W.

A interpreted this way is also true for the size at

fastest growth. The max of dW
dt is where @ dW=dtð Þ

@W ¼ 0,

which implies from Equation A1 that
2
3 W�1=3 � A� B ¼ 0. We combine this with Equation

A3 for W¥ to show that W/W¥ = 0.296 (which

= (2/3)3) at the max of dW
dt . Putting this into Equation

A6 shows that dW
dt ¼ A

3 �W2=3 at the size of fastest

growth; thus, A/3 is the height of this ⅔ power

function for dW
dt at fastest growth. Table A1 shows a

simple way to estimate dW
dt at fastest growth

(W = 0.296 Æ W¥).

Appendix 2: Fitness (R0) is a product

(derivation from Charnov 1997)

The ‘net reproductive rate,’ R0, is defined as

R0 ¼
R1

0 lðxÞ � bðxÞdx (Equation B1), and calculates

the average number of daughters produced over a

female’s lifespan. (l(x) is the probability of being

alive at age x; b(x) is the daughters produced at

age x that are alive at independence from mother;

b > 0 only if x > a, the age at first birth, measured

from independence.) Now, write b xð Þ ¼ b yð Þ for

y ¼ x� a and denote l(x) for x > a as l(x) =

S(a) Æ e)u(x)a) = S(a) Æ e)u(y). (Notice that u(y) is

zero at y = 0 and is increasing with y;

@ð� log lðxÞÞ=@y ¼ @uðyÞ=@y, so ¶u/¶y is the

instantaneous mortality rate at age y.) S(a) is the

chance of living from independence to a. R0 can be

written for this general life history as:

R0 ¼ SðaÞ �
Z 1

0

bðyÞ � e�uðyÞdy ðB2Þ

Recall from the stable age distribution theory that

the proportion of the breeding lifespan spent

between ages y and y + dy (the probability density

function for the adult ages) is given by:

e�uðyÞdyR1
0 e�uðyÞdy

Now, multiply Equation (B2) by:R1
0 e�/ yð ÞdyR1
0 e�/ yð Þdy

to yield:

R0 ¼ SðaÞ
Z 1

0

bðyÞ � e�uðyÞR1
0 e�uðyÞdy

dy

" # Z 1
0

e�uðyÞdy

� �

ðB3Þ

S(a) is the chance of living to reproduce at age a,

while the term in square brackets is simply �b, the

average rate of production of offspring over the

reproductive adult life, and the term in curved

brackets is simply E(a), the expectation of further life

at age a, the average length of the adult lifespan. So,

Equation (B3) is really:

R0 ¼ SðaÞ � �b � EðaÞ ðB4Þ

Equation (B4) applies to any age-structured life

history; R0 is the simple product of three aggregated

terms, each an average. For Equation (B4) to be

used as a fitness measure, the population must not

be growing. This makes R0 » 1 for typical individ-

uals, owing to density dependence. But mutant

individuals may have their own R0 „ 1, and it is

fitness and trade-offs for mutants, which are

discussed here. Thus, we use R0, Equation (B4), as

a fitness measure, with the condition that it must

equal unity at the optimum, when mutants are the

same as typical (wild type).

Evolutionary ecologists often prefer to work with

a version of Equation A4 where b yð Þ ¼ R yð Þ
m0

; R(y) is

the mass allocated to reproduction at age y, while

m0 is the size of each offspring. Then Equation B4

becomes

R0 ¼
SðaÞ
m0
� �R � EðaÞ ðB5Þ

A further common step is to make R(y) body-size

dependent.

Notice that if the adult instantaneous mortality

rate (M) is an age-independent constant (Ma), E(a)

is simply 1/Ma; when combined �b ¼ b, this yields

R0 ¼ b�SðaÞ
Ma

, Equation 9 in the text. See Metz et al.

(2008) for a discussion of fitness measures.

Table A1 Max dW
dt

As dW
dt ¼ A=3 �W2=3 (Equation A7), we have dW

dt ¼
A=3ð0:296 �W1Þ2=3 at fastest growth. But K ¼ A=3� W�1=3

1

(Equation A4), so that max dW
dt ¼ ð0:293Þ2=3 � K �W1 ¼

0:44 � K �W1; the maximum growth rate is estimated by

0.44 of the product of K times W¥.
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