

SEFSC

ND ATMOSA

SEDAR 42: US Gulf of Mexico Red grouper assessment

Review Workshop Model fit and diagnostics

July 14 - 16, 2015

SEDAR 42 Red Grouper Assessment

- Data inputs
- Assessment model configuration
- Model fit to data
- Model diagnostics
- Stock status determination
- Projections

Model fit to data

- Landings
- Discards
- Selectivity
- Retention
- Age composition
- Length composition
- Indices

Landings

• The expected landings fit the observed exactly

Discards Commercial handline Commercial trap **Commercial longline** Total discards (1000's) Total discards (1000's) Total discards (1000's) Year Year Year Charter/Private Headboat Total discards (1000's) Total discards (1000's) NC sheries | Page 5 U.S. Department Year Year

Selectivity

• 1990 – 2008 retention was fixed as knife-edge at the 20 inch TL (48.79 cm FL) commercial size limit

Charter/Private

Headboat

 Pre-1990 retention was fixed as knife-edge at the 18 inch TL (43.96 cm FL) Florida state recreational size limit

Age composition – Commercial handline

Commercial Handline

Age composition – Commercial longline

Commercial Longline

Age composition – Commercial trap

Commercial Trap

Age composition – Charter/Private

Charter / Private

Age composition – Headboat

Commercial Handline

Length (cm FL)

Commercial Longline

Charter/Private

Length composition – Fishery-independent Surveys

Length composition – Fishery-independent Surveys

N=33 effN=36.4 0.20 2008 0.15 20 60 60 0.10 0.05 80 0.00 0.20 2009 N=298 effN=101.4 0.15 0.10 0.05 0.00 0.20 Ė N=187 effN=61.5 2010 60 0.15 Length (cm) 0.10 Proportion 0.05 0.00 0.20 N=114 effN=55 2011 40 0.15 ξ 0.10 0.05 0.00 0.20 N=151 effN=84.7 2012 8000 0.15 å 20 0.10 0.05 0.00 0.20 8 2013 N=72 effN=66.6 0.15 0.10 0 0.05 2008 2009 2010 2011 2012 2013 0.00 0 20 40 60 80 Year

SEAMAP Summer Groundfish Survey

Length (cm FL)

Length composition – Fishery-independent Surveys

NMFS Bottom Longline Survey

Indices – Fishery-dependent

ries | Page 20

Indices – Fishery-independent

Model output

- Recruitment
- Total and spawning stock biomass
- Predicted numbers at age
- Fishing mortality

Recruitment

NOAA FISHERIES

- Stock-recruitment relationship is generally flat
- High recruitment in 1995, 1998, 2001, and 2005

Recruitment

• Deviations

Year

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries | Page 24

Total biomass and spawning stock biomass

Total biomass (mt)

Spawning output with ~95% asymptotic intervals

Predicted numbers at age

Age

 Average age was around 2 for many years

- Declines in years of high recruitment (1998 and 2005)
- After 2005, mean age increases
 - Lack of evidence of strong recruitment events after 2005

Mean age

Year

Fishing mortality

- Exploitation declined over time
 - 2005 combination of exploitation and red tide mortality

Model diagnostics

- Retrospective analysis
- Jitter analysis
- Likelihood profiles

Retrospective analysis

- Purpose: Assess consistency of stock assessment results and potential biases
- Sequentially removed data back to 2004
 - Runs 2004 2008 did not include the SEAMAP summer groundfish survey

Retrospective analysis

Jitter analysis

- Model convergence was evaluated using jitter analysis
- 30 out of 50 runs were within 5 likelihood units of base likelihood

- Evaluate ability to estimate various parameters and most likely values
 - Steepness (h): fraction of the unexploited recruits produced at 20% of the equilibrium spawning biomass level
 - Ln Ro: Log of eqilibrium recruitment
 - Ln R1: offset parameter for initial equilibrium recruitment relative to virgin recruitment
 - Sigma R: standard deviation in recruitment
 - Final parameter of the double normal selectivity pattern

- Profile indicates steepness should be between 0.8 and 0.85
 - Most likelihood components support this
- Length composition does not support estimate of steepness
 - Supports a lower estimate

 Profile indicates Ln Ro should be between 9.3 and 10

- Profile indicates Ln R1_offset should be between -0.05 and 0.3
 - Most likelihood components support this

- Profile indicates sigma R greater than 0.4
- Likelihood components are in agreement

- Profile of the parameter describing the selectivity of the final size bin
- Not well estimated

Sensitivities

- Natural mortality
- Steepness
- Discard weighting
- Selectivity of NMFS bottom longline survey
- Jack-knife analysis of abundance indices

Sensitivity – Natural mortality

Sensitivity - Steepness

NOAA FISHERIES

Sensitivity – Discard weighting

Sensitivity -

Year

Jack-knife analysis of abundance indices

 Conducted a jack-knife analysis of the abundance indices to determine which index or indices were most influential on abundance estimates, recruitment, and exploitation

Jack-knife analysis of abundance indices

Charter/Private

S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries | Page 44

Stock status

- Measure of spawning stock biomass
- Benchmarks

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries | Page 4

Measure of SSB

- SSB-female provides best estimates of biological reference points if the potential for decreased fertilization is weak (Brooks et al. 2008)
- SSB-combined is best when the potential for decreased fertility is moderate (Brooks et al. 2008)
- SEDAR 12 and 2009 Update used mature female biomass as the measure of SSB
- AW panel recommended using mature female biomass for S42
 - Red grouper sex ratio: 28% male

Benchmarks

- 2002 assessment, SEDAR 12, and 2009 update used MSY-based reference points to determine stock status
 - Panel thought steepness was estimable
- AW panel S42 also recommended using FMSY to calculate reference points

Stock status

- Stock considered overfished and experiencing overfishing between 1986 and 1995
 - All other years stock not overfished and
 - All other years stock not experiencing overfishing except for 2005

Stock status – Comparison of S42 and Update

- Stock status trends similar
- Difference between S42 and Update in 2005 is due to how red tide was accounted for in the assessment models

Projections

- Projected model forward to 2030 at three fishing mortality rates:
 - Fcurrent
 - FMSY
 - FOY (i.e., 75% of FMSY)

Projection assumptions

- Assume fishing patterns (selectivity, discard mortality rate, retention rates, etc.) of each fleet same as 2009-2013
- Projections run at three fishing mortality values:
 - Fcurrent
 - FMSY
 - FOY
- Catch allocation by fleet:
 - 76% Commercial
 - 24% Recreational
- Assumed red tide was negligible in 2014

Projections

- Assume recruitment comes from stock-recruit relationship for forecast period.
 - Provides future recruitments that are similar to average of 1986-2013 recruitments

EXTRA SLIDES

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries | Page 54

Criteria	Definition	Value
Base M		0.144
Steepness		0.801
Virgin Recruitment		15833.9
SSB unfished (eggs)		4017750
	Mortality rate criteria	
Fmsy or proxy	Fmsy	0.1600
MFMT	Fmsy	0.1600
Foy	75% of Fmsy	0.1200
Fcurrent	F2013	0.1209
Fcurrent/MFMT	F2013	0.7554
	Biomass criteria	
SSBmsy (eggs)	SSB at Fmsy	1416320
MSST	(1-M)*SSBmsy	1212370
SSBcurrent (eggs)	SSB2013	2222750
SSBcurrent/MSST	SSB2013	1.83
Equilibrium MSY	Equilibrium yield at Fmsy	3329.33
Equilibrium OY	Equilibrium yield at Foy	2497.00
OFL	Annual yield at MFMT	
	OFL 2014	3946.13
	OFL 2015	6263.09
	OFL 2016	4835.98
	OFL 2017	3700.32
	OFL 2018	2885.36
	OFL 2019	2499.72
	OFL 2020	2503.59