ND ATMOSE

SEFSC

SEDAR 42: US Gulf of Mexico Red grouper assessment

Review Workshop Life history and assessment model configuration

July 14 - 16, 2015

SEDAR 42 Red Grouper Assessment

• Data inputs

- Assessment model and configuration
 - Overview of configuration
 - Life history
 - Other model assumptions
- Model fit to data
- Model diagnostics
- Stock status determination
- Projections

Assessment model

- Stock Synthesis (Methot and Wetzel 2013) as the proposed assessment modeling platform
 - Integrated stock assessment model
 - Forward projecting statistical catch at age model
- Advantages
 - Do not have to split time series
 - Time varying selectivity and retention functions, time blocks
 - Can use both length and age composition data
 - Can link parameters to environmental series
 - Explicitly incorporates imprecision of observation processes (e.g., aging imprecision)

Assessment model configuration

- 1986 2013
- 1 area, 1 season model
- Combined gender model
- Maturity, protogyny, and fecundity a function of age
- von Bertalanffy growth
- Lorenzen natural mortality
- Beverton-Holt spawner-recruitment relationship
- 6 fishing fleets landings and discards
- 3 fishery-independent indices of abundance
- Red tide mortality in 2005
- Age-based selectivity
 - Fleets
- Length-based selectivity
 - Fishery-independent surveys
- Time-varying retention to account for changes in regulations

Life history

- Reproductive biology
 - Maturity
 - Hermaphroditism
 - Fecundity
- Age and growth
- Meristics
- Natural mortality

- Red grouper are protogynous hermaphrodites
 - Transition from females to males
- Histological data from NMFS PC Lab and FWC-FWRI (1992 2013)
- Logistic model
 - 50% male 11.2 years
- Life history group recommended this relationship for use in the assessment model (do not estimate within SS)

Hermaphroditism in Stock Synthesis

- Defines the probability of transition using a cumulative normal distribution
 - Scaled so that age-0 are 100% female
 - Over-estimate proportion of female at younger ages
- Assessment panel did not recommend using the hermaphroditism function in Stock Synthesis

- Maturity
 - Data collected from fishery-dependent and fishery-independent surveys (1991 – 2013)
 - Provided by NMFS Panama City Laboratory and FWC-FWRI
 - Gompertz model most parsimonious
 - Age at 50% maturity 2.8 years

- Life history work group recommended batch fecundity estimates for use in the assessment model
 - Better proxy for fecundity than gonad weight, which was used in previous assessment

Red Grouper Batch Fecundity at Age

- Fecundity
 - Fixed input vector in assessment model
 - Fecundity = proportion mature females * batch fecundity

Age and growth

- Life history working group recommended using the von Bertalanffy model assuming a constant CV with age
 - Compared three models with different variance structure:
 - Constant CV with age, constant standard deviation with age, and linearly increasing CV with age
- During assessment workshop evaluated model assuming linearly increasing CV with length

Parameter	Constant CV with age	Linear increase in CV with length
Linf	82.89	82.7
k	0.125	0.124
to	-1.20	-1.27

Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries | Page 11

Meristics

Regression	Equation	statistic	Ν	Data Range
Max TL to FL	$FL = 5.35 + max_{TL} * 0.95$	$r^2=0.9963$	5818	Max TL: 120 – 954; FL: 116 – 910
Nat TL to FL	$FL = 5.71 + nat_TL * 0.95$	r ² =0.9909	3901	Nat TL: 151 – 957; FL: 149 – 910
FL to G Wt	GWT= 3.37 10 ⁻⁰⁹ * (FL ^{3.25})	RSE = 0.3499	37414	FL: 230 – 935; G WT: 0.26 – 16.96

• Length-weight relationship fixed in the assessment model

Natural mortality

- Natural mortality calculated as a function of age using the Lorenzen (2005) estimator
 - Adjusted to account for May 15 peak spawning period
 - Target M determined using Hoenig (1983) and maximum age of 29: M = 0.14
 - Input as a fixed vector

Other model assumptions

- Stock recruitment
- Initial conditions
- Selectivity
- Retention
- Red tide

Stock recruitment

- Beverton-Holt stock recruitment model
- Estimated 4 parameters
 - log(R0): unexploited equilibrium recruitment
 - log(R1): offset parameter for initial equilibrium recruitment relative to virgin recruitment
 - Steepness (h): fraction of the unexploited recruits produced at 20% of the equilibrium spawning biomass level
 - SigmaR: standard deviation in recruitment
- Recruitment deviations estimated in two periods
 - Early recruitment devs (1969 1985)
 - Main recruitment devs (1986 2013)
- Bias adjustment for main recruitment deviations (1986 2012)

Initial conditions

- Starting year of assessment model is 1986
- Given that removals occurred prior to 1986, we started the model in a non-equilibrium state and estimated:
 - Equilibrium catch
 - Initial fishing mortality
 - R1: initial recruitment relative to virgin recruitment

Selectivity

- Age based selectivity was used for all fleets
 - Random walk
- Length-based selectivity was used for the fisheryindependent surveys
 - Double normal
- Assumed constant selectivity for all fleets and surveys
- Modeled time-varying retention to account for changes in management regulations

Selectivity

- Age based random walk selectivity
 - One parameter for each age
 - Age-0 parameter fixed at zero, all other parameters (age-1 thru age-20) were estimated
 - 95 estimated parameters total
 - A normal prior was used for each estimated parameter
 - Age-1 thru age-10 ~ N(0, 0.25)
 - Age-11 thru age-20 ~N(0, 0.1)

Selectivity

- Length based double normal selectivity
 - Six parameters, all estimated, for each survey (18 estimated parameters total)
 - Peak beginning size for the plateau
 - Top width of plateau
 - Ascending width parameter describing incline to plateau
 - Descending width parameter describing decline from plateau to final size bin
 - Init selectivity of first size bin
 - Final selectivity of final size bin

Retention

- Management regulations influence retention
 - Size limits, bag limits, closed seasons, quota
- Retention was assumed to be most effected by changes in the size limit
 - Commercial
 - Prior to 1990: Assumed no discards
 - 1990 2008 : 20 inch TL size limit (48.79 cm FL)
 - Fixed
 - 2009 2013: 18 inch TL size limit (43.96 cm FL)
 - Recreational
 - Prior to 1990: 18 inch TL size limit in state waters (43.96 cm FL)
 - 1990 2013 : 20 inch TL size limit (48.79 cm FL)
- Retention modeled as a logistic relationship

Retention

• Retention fixed assuming100% retention above the size limit

Commercial handline, longline, and trap (1990 – 2008)

- Recreational (prior to 1990)
- Retention estimated for:
 - Commercial handline (2009 2013)
 - Commercial longline (2009 2013)
 - Charter/Private (1990 2013)
 - Headboat (1990 2013)

- Three estimated parameters for each fleet (12 parameters)
 - Asymptote
 - Inflection
 - Slope of increase

Red tide: data

- Generalized additive model
 - Predict probability of bloom
- Satellite derived products
 from SeaWiFS
 - Operational from 1998–2010
- Harmful algal bloom (HAB) cell counts from FWRI

Image: Walter et al. 2013 Plot of all red tide water monitoring data (green points) for 1998-2010 and the spatial domain for satellite imagery. Blue = cloud cover, shading = satellite-derived chlorophyll.

Red tide: indices of red tide severity

NOAA FISHERIES

10mMCP75 (MCP)

- Minimum convex polygon that encompasses 75% of the HAB data
 - Minimizes prediction error but misses grouper habitat

Grouper (GRP)

- Covers critical grouper habitat (West Florida Shelf)
 - May introduce error due to predictions outside spatial range of HAB data

Image: Walter et al. 2013

Red tide: indices of red tide severity

Threshold (THR)

- Negative effects may occur solely when a red tide exceeds a given threshold
 - = 1: Average index value \geq cutoff
 - = 0: otherwise

Cutoff = value where (sensitivity + specificity) is at a maximum on the receiver operating characteristic curve (ROC)

No associated variance

Red tide: index of red tide mortality

- 1998 2009
- Ecosystem approach
 - Red tide affects a full suite of predator and prey species
- Ecopath with Ecosim
 - Includes species and life-history stages sensitive to red tide (Gray 2014)
 - Pseudo fishing fleet represents a red tide mortality driver

Image: Sagarese et al. 2015

Red tide: indices

Red tide: incorporation into Stock Synthesis

- Method 1: Addition of episodic red tide mortality (M_{rt})
 - Detailed in assessment report and SEDAR42-RW01
 - Similar to approach used in SEDAR 2009 Update
- Method 2: Red tide fishing fleet
 - Detailed in assessment report and SEDAR42-RW01

Red tide: likelihood profile of M_{rt}

Red tide: comparison

	NoRT	$M_{rt} = 0.25$	$M_{rt} = 0.48$
Gradient	0.005	0.047	0.021
wAICc	0	8%	92%
wBIC	0	8%	92%
Likelihood			
Total	2925	2917	2915
Discard	320	318	316
Length composition (Lcomp)	1079	1083	1086
Age composition (Acomp)	1454	1453	1452
Recruitment (Recr)	18	17	17
Survey	-80	-88	-90
Commercial Handline (comHL)	-10	-11	-12
Commercial Longline (comLL)	-17	-18	-18
Recreational Headboat (HB)	-11	-15	-18
Recreational Charterboat/Private (CBT_PRSurv)	-22	-20	-18
Combined Video Survey (SEAMAP_Vid)	-13	-14	-15
SEAMAP Groundfish Survey (SEAMAP_GF)	-4	-4	-4
NMFS Bottom Longline Survey (NMFS_BLL)	-3	-5	-5

Red tide:

Fits to indices of abundance

Red tide: incorporation into Stock Synthesis

- Method 1: Addition of episodic red tide mortality (M_{rt})
 - Detailed in assessment report and SEDAR42-RW01
 - Similar to approach used in SEDAR 2009 Update
- Method 2: Red tide fishing fleet
 - Detailed in assessment report and SEDAR42-RW01

Red tide: red tide fishing fleet

- Pseudo-fishery, discard only with 100% mortality
- Indices of abundance from the red tide fishery were derived from red tide indices
- Selectivity of the red tide fishing fleet assumed constant at age
- Compare model fits by looking at residual fits to survey indices

Red tide: red tide fishing fleet comparison

	THR (base)	MCP	GRP	MRT
Gradient	0.300	1.019	0.104	10.115
AICc	-13645	-9264	-9221	-8256
BIC	7584	7680	7724	7640
Likelihood				
Total	2837	2887	2908	2867
Discard	311	312	310	312
Lcomp	1086	1082	1085	1082
Acomp	1451	1453	1452	1453
Survey	-164	-115	-93	-134
ComHL	-12	-11	-12	-11
ComLL	-18	-18	-18	-18
HB	-18	-14	-16	-13
CBT_PRSurv	-18	-19	-18	-19
SEAMAP_Vid	-15	-14	-14	-14
SEAMAP_GF	-4	-4	-4	-4
NMFS_BLL	-5	-3	-4	-3
RTq	0.816	0.713	0.394	0.208
F_2005	0.442	0.095	0.224	0.077

Red tide:

Method 2 fits to indices of abundance

THR index

Red tide: why use the red tide fishing fleet?

- Red tide fishing fleet chosen as the central approach for incorporating red tide mortality:
 - Results similar to the approach that used a fixed constant M applied to all ages
 - Level of mortality estimated by the assessment model rather than input as a fixed parameter
 - Better represents model uncertainty regarding the 2005 red tide mortality event

Red tide: conclusions

- Red tide fishing fleet with the threshold index driving red tide fleet effort best approach
 - No associated variance
 - Most parsimonious of available indices
 - Negative effects on grouper may only occur under conditions where a red tide is above a threshold
- Additional work needed on size/age specific mortality effects of red tides on grouper populations

EXTRA SLIDES

Red tide:

Method 2 fits to indices of abundance

THR index

Red tide: ages susceptible

