SEDAR 42: US Gulf of Mexico Red grouper assessment

NOAA FISHERIES
SEFSC

Review Workshop
Life history and assessment model
configuration

July 14-16, 2015

SEDAR 42 Red Grouper Assessment

- Data inputs
- Assessment model and configuration
- Overview of configuration
- Life history
- Other model assumptions
- Model fit to data
- Model diagnostics
- Stock status determination
- Projections

Assessment model

- Stock Synthesis (Methot and Wetzel 2013) as the proposed assessment modeling platform
- Integrated stock assesment model
- Forward projecting statistical catch at age model
- Advantages
- Do not have to split time series
- Time varying selectivity and retention functions, time blocks
- Can use both length and age composition data
- Can link parameters to environmental series
- Explicitly incorporates imprecision of observation processes (e.g., aging imprecision)

Assessment model configuration

- 1986-2013
- 1 area, 1 season model
- Combined gender model
- Maturity, protogyny, and fecundity a function of age
- von Bertalanffy growth
- Lorenzen natural mortality
- Beverton-Holt spawner-recruitment relationship
- 6 fishing fleets - landings and discards
- 3 fishery-independent indices of abundance
- Red tide mortality in 2005
- Age-based selectivity
- Fleets
- Length-based selectivity
- Fishery-independent surveys
- Time-varying retention to account for changes in regulations

Life history

- Reproductive biology
- Maturity
- Hermaphroditism
- Fecundity
- Age and growth
- Meristics
- Natural mortality

Reproductive biology

- Red grouper are protogynous hermaphrodites
- Transition from females to males
- Histological data from NMFS PC Lab and FWC-FWRI (1992 - 2013)
- Logistic model
- 50% male - 11.2 years
- Life history group recommended this relationship for use in the assessment model (do not estimate within SS)

Hermaphroditism in Stock Synthesis

- Defines the probability of transition using a cumulative normal distribution
- Scaled so that age-0 are 100% female
- Over-estimate proportion of female at younger ages
- Assessment panel did not recommend using the hermaphroditism function in Stock Synthesis

> —SS_herma —\%Male —\% Female

Reproductive biology

- Maturity
- Data collected from fishery-dependent and fishery-independent surveys (1991-2013)
- Provided by NMFS Panama City Laboratory and FWC-FWRI
- Gompertz model most parsimonious
- Age at 50% maturity -2.8 years
- Observed -Predicted

Reproductive biology

- Life history work group recommended batch fecundity estimates for use in the assessment model
- Better proxy for fecundity than gonad weight, which was used in previous assessment

Reproductive biology

- Fecundity
- Fixed input vector in assessment model
- Fecundity = proportion mature females * batch fecundity

Age and growth

- Life history working group recommended using the von Bertalanffy model assuming a constant CV with age
- Compared three models with different variance structure:
- Constant CV with age, constant standard deviation with age, and linearly increasing CV with age
- During assessment workshop evaluated model assuming linearly increasing CV with length

Parameter	Constant CV with age	Linear increase in CV with length
Linf	82.89	82.7
k	0.125	0.124
to	-1.20	-1.27

Meristics

Regression	Equation	statistic	N	Data Range
Max TL to FL	FL $=5.35+$ max_TL $* 0.95$	$\mathrm{r}^{2}=0.9963$	5818	Max TL: $120-954$; FL: $116-910$
Nat TL to FL	FL $=5.71+$ nat_TL $* 0.95$	$\mathrm{r}^{2}=0.9909$	3901	Nat TL: $151-957$; FL: $149-910$
FL to G Wt	$\mathrm{GWT}=3.3710^{-09} *\left(\mathrm{FL}^{\wedge 3.25}\right)$	RSE $=0.3499$	37414	FL: $230-935$; G WT: $0.26-16.96$

- Length-weight relationship fixed in the assessment model

Natural mortality

- Natural mortality calculated as a function of age using the Lorenzen (2005) estimator
- Adjusted to account for May 15 peak spawning period
- Target M determined using Hoenig (1983) and maximum age of 29: $\mathrm{M}=0.14$
- Input as a fixed vector

Other model assumptions

- Stock recruitment
- Initial conditions
- Selectivity
- Retention
- Red tide

Stock recruitment

- Beverton-Holt stock recruitment model
- Estimated 4 parameters
- $\log (R 0)$: unexploited equilibrium recruitment
- $\log (R 1)$: offset parameter for initial equilibrium recruitment relative to virgin recruitment
- Steepness (h): fraction of the unexploited recruits produced at 20% of the equilibrium spawning biomass level
- SigmaR: standard deviation in recruitment
- Recruitment deviations estimated in two periods
- Early recruitment devs (1969-1985)
- Main recruitment devs (1986-2013)
- Bias adjustment for main recruitment deviations (1986-2012)

Initial conditions

- Starting year of assessment model is 1986
- Given that removals occurred prior to 1986, we started the model in a non-equilibrium state and estimated:
- Equilibrium catch
- Initial fishing mortality
- R1: initial recruitment relative to virgin recruitment

Selectivity

- Age based selectivity was used for all fleets
- Random walk
- Length-based selectivity was used for the fisheryindependent surveys
- Double normal
- Assumed constant selectivity for all fleets and surveys
- Modeled time-varying retention to account for changes in management regulations

Selectivity

- Age based random walk selectivity
- One parameter for each age
- Age-0 parameter fixed at zero, all other parameters (age-1 thru age-20) were estimated
- 95 estimated parameters total
- A normal prior was used for each estimated parameter
- Age-1 thru age-10 ~ N(0, 0.25)
- Age-11 thru age-20 $\sim N(0,0.1)$

Selectivity

- Length based double normal selectivity
- Six parameters, all estimated, for each survey (18 estimated parameters total)
- Peak - beginning size for the plateau
- Top - width of plateau
- Ascending width - parameter describing incline to plateau
- Descending width - parameter describing decline from plateau to final size bin
- Init - selectivity of first size bin
- Final - selectivity of final size bin

Retention

- Management regulations influence retention
- Size limits, bag limits, closed seasons, quota
- Retention was assumed to be most effected by changes in the size limit
- Commercial
- Prior to 1990: Assumed no discards
- 1990 - 2008 : 20 inch TL size limit (48.79 cm FL)
- Fixed
- 2009 - 2013: 18 inch TL size limit (43.96 cm FL)
- Recreational
- Prior to 1990: 18 inch TL size limit in state waters (43.96 cm FL)
- 1990 - 2013 : 20 inch TL size limit (48.79 cm FL)
- Retention modeled as a logistic relationship

Retention

- Retention fixed assuming 100% retention above the size limit
- Commercial handline, longline, and trap (1990-2008)
- Recreational (prior to 1990)
- Retention estimated for:
- Commercial handline (2009-2013)
- Commercial longline (2009-2013)
- Charter/Private (1990-2013)
- Headboat (1990-2013)

- Three estimated parameters for each fleet (12 parameters)
- Asymptote
- Inflection
- Slope of increase

Red tide: data

- Generalized additive model
- Predict probability of bloom
- Satellite derived products from SeaWiFS
- Operational from 1998-2010
- Harmful algal bloom (HAB) cell counts from FWRI

Image: Walter et al. 2013
Plot of all red tide water monitoring data (green points) for 1998-2010 and the spatial domain for satellite imagery. Blue = cloud cover, shading = satellite-derived chlorophyll.

Red tide: indices of red tide severity

Threshold (THR)

- Negative effects may occur solely when a red tide exceeds a given threshold
$=1$: Average index value \geq cutoff
= 0: otherwise
Cutoff = value where (sensitivity + specificity) is at a maximum on the receiver operating characteristic curve (ROC)
- No associated variance

Red tide: index of red tide mortality

- 1998-2009
- Ecosystem approach
- Red tide affects a full suite of predator and prey species
- Ecopath with Ecosim

- Includes species and life-history stages sensitive to red tide (Gray 2014)
- Pseudo fishing fleet represents a red tide mortality driver

Image: Sagarese et al. 2015

Red tide: indices

Red tide: incorporation into Stock Synthesis

- Method 1: Addition of episodic red tide mortality $\left(\mathrm{M}_{\mathrm{rt}}\right)$
- Detailed in assessment report and SEDAR42-RW01
- Similar to approach used in SEDAR 2009 Update

Red tide: likelihood profile of M_{rt}

Red tide: comparison

	NoRT	$M_{\mathrm{rt}}=0.25$	$\mathrm{M}_{\mathrm{rt}}=0.48$
Gradient	0.005	0.047	0.021
wAICc	0	8%	92%
wBIC	0	8%	92%
Likelihood	2925	2917	2915
Total	320	318	316
Discard	1079	1083	1086
Length composition (Lcomp)	1454	1453	1452
Age composition (Acomp)	18	17	17
Recruitment (Recr)	-80	-88	-90
Survey	-10	-11	-12
Commercial Handline (comHL)	-17	-18	-18
Commercial Longline (comLL)	-11	-15	-18
Recreational Headboat (HB)	-22	-20	-18
Recreational Charterboat/Private (CBT_PRSurv)	-13	-14	-15
Combined Video Survey (SEAMAP_Vid)	-4	-4	-4
SEAMAP Groundfish Survey (SEAMAP_GF)	-3	-5	-5
NMFS Bottom Longline Survey (NMFS_BLL)			

Red tide:

Fits to indices of abundance

Red tide: incorporation into Stock Synthesis

- Method 2: Red tide fishing fleet
- Detailed in assessment report and SEDAR42-RW01

Red tide: red tide fishing fleet

- Pseudo-fishery, discard only with 100% mortality
- Indices of abundance from the red tide fishery were derived from red tide indices
- Selectivity of the red tide fishing fleet assumed constant at age
- Compare model fits by looking at residual fits to survey indices

Red tide: red tide fishing fleet comparison

	THR (base)	MCP	GRP	MRT
Gradient	0.300	1.019	0.104	10.115
AICc	-13645	-9264	-9221	-8256
BIC	7584	7680	7724	7640
Likelihood				
\quad Total	2837	2887	2908	2867
Discard	311	312	310	312
Lcomp	1086	1082	1085	1082
Acomp	1451	1453	1452	1453
Survey	-164	-115	-93	-134
\quad ComHL	-12	-11	-12	-11
ComLL	-18	-18	-18	-18
HB	-18	-14	-16	-13
\quad CBT_PRSurv	-18	-19	-18	-19
\quad SEAMAP_Vid	-15	-14	-14	-14
SEAMAP_GF	-4	-4	-4	-4
\quad NMFS_BLL	-5	-3	-4	-3
RT q	0.816	0.713	0.394	0.208
F_2005	$\mathbf{0 . 4 4 2}$	0.095	0.224	0.077

Red tide:

Method 2
 fits to indices of abundance

Red tide: why use the red tide fishing fleet?

- Red tide fishing fleet chosen as the central approach for incorporating red tide mortality:
- Results similar to the approach that used a fixed constant M applied to all ages
- Level of mortality estimated by the assessment model rather than input as a fixed parameter
- Better represents model uncertainty regarding the 2005 red tide mortality event

Red tide: conclusions

- Red tide fishing fleet with the threshold index driving red tide fleet effort best approach
- No associated variance
- Most parsimonious of available indices
- Negative effects on grouper may only occur under conditions where a red tide is above a threshold
- Additional work needed on size/age specific mortality effects of red tides on grouper populations

EXTRA SLIDES

Red tide:

Method 2 fits to indices of abundance

THR index

\section*{Red tide: overall comparison
 | $1=$ No red tide | $2=$ Episodic M |
| ---: | :---: |
| $3=$ Red tide fleet | $4=$ OSMOSE- |
| | WFS M |}

Red tide: ages susceptible

- Tested different selectivity patterns
- Results suggest age-0 and older affected by red tide
- wAICc $=85.6 \%$
- wBIC $=85.6 \%$

