

Shanae D. Allen and Christopher E. Swanson

FWRI Stock Assessment Group, St. Petersburg, FL

Review Workshop: February 24 – 26, 2020

Continuity Model

Continuity Model

'True' continuity model unattainable for SEDAR 64

Most influential reason:

- NMFS redesign and implementation of recreational data collection and estimation procedures (i.e. APAIS and FES calibrated MRIP data)
 - Catch estimates now 2 5x higher

Continuity Model

- 1) Run the SEDAR 27A Final Model in the current version of ASAP to ensure the same results were produced
 - Version 2.0 \rightarrow version 3.0.16

2) Configure the SEDAR 64 data as close to the methods used for SEDAR 27A as possible (see Table 3.8.1 in the AW Report). For example:

- 3 weight-at-age matrices
- 9 selectivity blocks; Flat-topped selectivity types for all fleets
- Only one RVC index (age 1+), no Headboat index; Constant catchability for Commercial CPUE index
- Weighting factors (lambdas)
- Age-Length-Key methods

Continuity Model

1) Run the SEDAR 27A Final Model in the current version of ASAP to ensure the same results were produced

• Version 2.0 \rightarrow version 3.0.16

2) Configure the SEDAR 64 data as close to the methods used for SEDAR 27A as possible (see Table 3.8.1 in the AW Report). For example:

- 3 weight-at-age matrices
- 9 selectivity blocks; Flat-topped selectivity types for all fleets
- Only one RVC index (age 1+), no Headboat index; Constant catchability for Commercial CPUE index
- Weighting factors (lambdas)
- Age-Length-Key methods

Base Model Configuration

Stock Synthesis v. 3.30.14

- Moderate complexity
- Years: 1992 2017
- 1 season, 1 area
- Spawning: January
- Settlement: January at Age 0; 2 cm FL
- Combined sex model with femaleonly SSB (frac_female = 0.5)

Life History

- Estimated growth using external growth model inputs as initial guesses
- 20 ages in the model; Age 12+ group
- Natural mortality: Fixed vector by age
- Maturity: Fixed vector by age
- Fecundity = Spawning biomass at length
- Length-Weight: fixed

Stock Synthesis v. 3.30.14

- Moderate complexity
- Years: 1992 2017
- 1 season, 1 area
- Spawning: January
- Settlement: January at Age 0; 2 cm FL
- Combined sex model with femaleonly SSB (frac_female = 0.5)

Life History

- Estimated growth using external growth model inputs as initial guesses
- 20 ages in the model; Age 12+ group
- Natural mortality: Fixed vector by age
- Maturity: Fixed vector by age
- Fecundity = Spawning biomass at length
- Length-Weight: fixed

Fleets

- Commercial
 - Landings (mt) and discards (numbers)
- Headboat
 - Landings and discards (numbers)
- MRIP (Charter, Private, Shore Modes)
 - Landings and discards (numbers)

Surveys

- Commercial CPUE
 - retained lbs/hook hour
- RVC
 - Juvenile/subadult
 - Adult
 - number of fish/diver 'cylinder'
- MRIP CPUE
 - total catch/trip (numbers)

Fleets

- Commercial
 - Landings (mt) and discards (numbers)
- Headboat
 - Landings and discards (numbers)
- MRIP (Charter, Private, Shore Modes)
 - Landings and discards (numbers)

<u>Surveys</u>

- Commercial CPUE
 - retained lbs/hook hour
- RVC
 - Juvenile/subadult
 - Adult
 - number of fish/diver 'cylinder'
- MRIP CPUE
 - total catch/trip (numbers)

Length Composition Data

- Commercial
 - Landings and discards
- Headboat
 - Landings
- MRIP
 - Landings
- Headboat/MRIP Discards
 - Same length compositions
- RVC
 - Juvenile
 - Adult

Conditional Age-at-Length Data

- Commercial Landings
- Headboat Landings
- MRIP Landings
- Fishery-independent sources

Length Composition Data

- Commercial
 - Landings and discards
- Headboat
 - Landings
- MRIP
 - Landings
- Headboat/MRIP Discards
 - Same length compositions
- RVC
 - Juvenile
 - Adult

Conditional Age-at-Length Data

- Commercial Landings
- Headboat Landings
- MRIP Landings
- Fishery-independent sources

Fleet Selectivity

- Commercial
 - Selectivity: Simple logistic (flat-topped)
 - Estimated Retention (flat-topped)
 - Discard Mortality = 10%
- Headboat
 - Selectivity: Double normal (dome)
 - Estimated Retention (flat-topped)
 - Discard Mortality = 10%
- MRIP
 - Selectivity: Double normal (dome)
 - Estimated Retention (flat-topped)
 - Discard Mortality = 10%

Index Selectivity

- Commercial CPUE
 - Linked to Commercial fleet
 - Catchability Time Block: 2009 2017
- RVC Adult
 - Selectivity: Double normal (dome)
 - Constant catchability
- RVC Juvenile
 - Selectivity: Double normal (dome)
 - Constant catchability
- MRIP CPUE
 - Selectivity: Mirrored to MRIP fleet
 - Constant catchability

Fleet Selectivity

- Commercial
 - Selectivity: Simple logistic (flat-topped)
 - Estimated Retention (flat-topped)
 - Discard Mortality = 10%
- Headboat
 - Selectivity: Double normal (dome)
 - Estimated Retention (flat-topped)
 - Discard Mortality = 10%
- MRIP
 - Selectivity: Double normal (dome)
 - Estimated Retention (flat-topped)
 - Discard Mortality = 10%

Index Selectivity

- Commercial CPUE
 - Linked to Commercial fleet
 - Catchability Time Block: 2009 2017
- RVC Adult
 - Selectivity: Double normal (dome)
 - Constant catchability
- RVC Juvenile
 - Selectivity: Double normal (dome)
 - Constant catchability
- MRIP CPUE
 - Selectivity: Mirrored to MRIP fleet
 - Constant catchability

Recruitment Dynamics

- Beverton-Holt stock-recruitment relationship
 - Virgin recruitment in log-space (*In(RO)*), the standard deviation of log of recruitment (*sigmaR*), and *steepness* estimated in model
- Simple recruitment deviations
 - no sum-to-zero constraint
- Early recruitment deviations
 - 1981 1990 (period of lower data-richness)
- Main recruitment deviations
 - 1991 2017 (period of higher data-richness)
- Bias adjustments (following Methot and Taylor 2011)

Parameters

• 85 out of 117 parameters estimated

Priors

• Symmetric betas on initial Fishing mortality rates for Commercial, Headboat, and MRIP fleets

<u>Lambda</u>

- No emphasis on model fit (=0)
 - Initial equilibrium catch for all three fleets

Reported Fishing Mortality Rates

• Age 4

Model Convergence Criteria

- Total likelihood (sum of individual data source component's likelihoods)
- Invertible Hessian matrix
- Maximum gradient < 0.0001

Error Structure

 Assumed log-normal for all landings, indices, and discard data (except commercial discards)

Multinomial Distribution

- Length composition data of landings, discards, and indices
- Conditional age-at-length data of landings and FI sources

Data Weighting

- Length composition and conditional age-at-length data
- Initial sample sizes equal to sqrt (number of trips or number of fish)
- Iterative re-weighting following Francis (2011)

Model Convergence Criteria

- Total likelihood (sum of individual data source component's likelihoods)
- Invertible Hessian matrix
- Maximum gradient < 0.0001

Error Structure

 Assumed log-normal for all landings, indices, and discard data (except commercial discards)

Multinomial Distribution

- Length composition data of landings, discards, and indices
- Conditional age-at-length data of landings and FI sources

Data Weighting

- Length composition and conditional age-at-length data
- Initial sample sizes equal to sqrt (number of trips or number of fish)
- Iterative re-weighting following Francis (2011)

SEDAR 64: Yellowtail Snapper

Assessment Model Methods

Base Model Diagnostics

Residual Analysis

- Visual inspection for patterns
- Quantitatively evaluated (RMSSE)

Correlation Analysis

- Help identify inadequate model assumptions or erroneous model parameterizations
- Absolute values > 0.7

Profile Likelihoods

- Iteratively run the model while fixing a given parameter across a range of reasonable values
- steepness, sigmaR, RO, initial_Fs

Jitter Analysis

- Aids in identifying a global solution vs. a local solution
- Randomly 'jitters' parameter values by a certain percentage
 - 20% as suggested by R. Methot (pers. comm.) with 200 model runs

Residual Analysis

- Visual inspection for patterns
- Quantitatively evaluated (RMSSE)

Correlation Analysis

- Help identify inadequate model assumptions or erroneous model parameterizations
- Absolute values > 0.7

Likelihood Profiles

- Iteratively run the model while fixing a given parameter fixed across a range of reasonable values
- steepness, sigmaR, RO, initial_Fs

Jitter Analysis

- Aids in identifying a global solution vs. a local solution
- Randomly 'jitters' parameter values by a certain percentage
 - 20% as suggested by R. Methot (pers. comm.) with 200 model runs

Jack-knife Analysis

- Removal of each index of abundance (inc. length/age data)
- Determine influence of each index on the model
 - e.g. an index may only be sampling a portion of the stock resulting in conflicting abundance signals or trend of the entire stock

Retrospective Analysis

- Seven-year peel
- Helps evaluate the effect of the final year on model results
- Patterns can indicate model misspecification or temporal dynamics
- Evaluated visually and quantitatively
 - Mohn's Rho
 - Hurtado et al (2015) "Rule of thumb"
 - - 0.15 0.20 for longer-lived species

Jack-knife Analysis

- Removal of each index of abundance (inc. length/age data)
- Determine influence of each index on the model
 - e.g. an index may only be sampling a portion of the stock resulting in conflicting abundance signals or trend of the entire stock

Retrospective Analysis

- Seven-year peel
- Helps evaluate the effect of the final year on model results
- Patterns can indicate model misspecification or temporal dynamics
- Evaluated visually and quantitatively
 - Mohn's Rho
 - Hurtado et al (2015) "Rule of thumb"
 - - 0.15 0.20 for longer-lived species

Parametric Bootstrap

- Resampling method to analyze uncertainty associated with the data
- 500 bootstrapped datasets
 - Error distributions centered on fitted values
- ESS must be integer
 - Multiplied age-at-length ESS by Francis weight, rounded to lowest integer, removed zero bins.

MCMC Analysis

- Generate posterior distributions of model parameters and derived quantities
- Two chains
 - 1) 2,500 iterations saved from 5,000,000 (2,000 burn in)
 - 2) 2,500 iterations saved from 10,000,000 (5,000,000 burn in)
- Two-chain convergence assessed using Gelman and Rubin's (1992) potential reduction scale factor

Parametric Bootstrap

- Resampling method to analyze uncertainty associated with the data
- 500 bootstrapped datasets
 - Error distributions centered on fitted values
- ESS must be integer
 - Multiplied age-at-length ESS by Francis weight, rounded to lowest integer, removed zero bins.

MCMC Analysis

- Generate posterior distributions of model parameters and derived quantities
- Two chains
 - 1) 2,500 iterations saved from 5,000,000 (2,000 burn in)
 - 2) 2,500 iterations saved from 10,000,000 (5,000,000 burn in)
- Two-chain convergence assessed using Gelman and Rubin's (1992) potential reduction scale factor

Sensitivity Runs

Sensitivity Runs: Getting to the Base Model

Investigated

- Spawning in January; settlement in Apr; linear growth until Oct
 - Mimic recruitment as close as we could given a single season model
- Multiple settlement events: Jan, April, July
- Natural mortality
 - Jensen (1996), Charnov et al. (2013), tmax = 28 yr, tmax = 33 yr
- Initial fishing mortality rates; equilibrium catch
 - No priors; varying levels of equilibrium catch (e.g. 5% 25% of total catch)
- Changing start year to 1992 from initial base model start year 1981
- Time blocks for retention
- Time-varying q vs. constant q vs. time block q
 - Commercial and MRIP fleets

Sensitivity Runs: Base Model

Start Year in 1981

 Most landings data available in 1981

Discard Mortality Rates

- Commercial: 15%
- Recreational (both Headboat and MRIP fleets): 20% and 30%

Bias Adjustments to Rec Devs

- Input values were not updated to reflect recommended bias adjustment values from model output
- Time and resources would not permit this tuning into the final base model with rerun diagnostics, projections, bootstrapping, and MCMC analyses

Per-recruit Analysis

Per-recruit Analysis

<u>Purpose</u>

- Obtain targets of fishing mortality and age at first capture to evaluate various management regulations
- Evaluate stock productivity, identify levels of yield from the fishery, and adjust target based on risk aversion and uncertainty
- Assumes equilibrium fishing mortality rates; constant M, growth, and recruitment

<u>Metrics</u>

- Function of fishing mortality on age-4 fish
- Yield-per-recruit (YPR)
- Spawner-per-recruit (SSB/R)
- Static spawning potential ratio (SPR)
- Yields associated with $F_{30\% SPR}$ and $F_{40\% SPR}$

Catch Curve Analysis

Catch Curve Analysis

Estimate total mortality (Z)

- Useful in understanding the estimated fishing mortality rates
 - Instantaneous M value from the Hoenig_{alltaxa} (1983) equation (M=0.16)
- Chapman-Robson estimator (Chapman and Robson 1960; Robson and Chapman 1961)
 - Method 'when age is known for entire sample'
 - Annual survival rate which we convert to total mortality (Z = -In (S))
- Used the number of fish-at-age in the Florida age dataset
 - Aggregated across time
- Started at the modal age plus one (peaked at age-3)
 - Ages 4 20 (n = 18,316 otoliths)

Benchmark/Reference Points

South Atlantic and Gulf of Mexico Fishery Management Councils					
Criteria	Definition				
SSB _{F30%SPR}	Estimated SSB associated with F at 30% SPR				
SSB _{current} (recent average of SSB)	The geometric mean of SSB for 2015 – 2017				
MSST (Minimum Stock Size Threshold)	0.75*SSB _{F30%SPR}				
F30%SPR	The fishing mortality rate associated with 30% SPR				
Fcurrent (recent average age 4 fishing mortality)	The geometric mean of F for 2015 - 2017				
MFMT(Maximum Fishing Mortality Threshold)	F30% SPR				
OY (Optimum Yield)	Yield at Foy				
Foy (Fishing Mortality Rate at OY)	F40% SPR				
NO					

FISH

Projections

Projections

Scenarios

• A) If stock is overfished:

F=0, $F_{Current}$, F=F_{MSY}, F at 75% of F_{MSY}

F=F_{Rebuild} (max exploitation that rebuild in greatest allowed time)

• B) If overfishing is occurring:

 $F=F_{Current}$, $F=F_{MSY}$, F at 75% of F_{MSY}

• C) If stock is neither overfished nor undergoing overfishing:

 $F=F_{Current}$, $F=F_{MSY}$, F at 75% of F_{MSY} , equilibrium yield

• D) If data limitations preclude classic projections (i.e. A, B, C above), explore alternative models to provide management advice

Projections

Five-year horizon

- 2018 2022
- Estimates of biomass, abundance, and fishing mortality rates

Values held constant

- Selectivity from terminal year
- Stock-recruitment parameters
- Recruitment for first year of projection equal to terminal 3-year average

SEDAR 64: Yellowtail Snapper

Assessment Model Methods

Model Bridging Exercise

		S27A	S64	
	RVC age 1+	constant	-	-
Catchability	RVC Juv	-	constant	constant
	RVC Adult	-	constant	constant
	Com CPUE	constant	annual devs	block: 2009- 2017
	HB CPUE	constant	-	-
	MRIP CPUE	constant	constant	constant
	Indices	< 1	1	1
Lambdas	Deviation from initial steepness	1	1	-
	Deviation from initial N	1	0	-
	Deviation from initial SSB0	1	-	-
	Deviation from initial R1	-	0	-
	Deviation from initial F-Mult	1	0	-
	Deviation from Equilibruim Catch	-	-	0
Calculate Likelihood Constants		yes	no	no
Vears		1981-2010	1992-2017	1992-2017
Natural Mortality: Tmax		23 vr	20 vr	20 vr
Commercial		0.115	0.10	0.10
Release mortality	Recreational MRIP	0.10	0.10	0.10
]	Headboat	0.10	0.10	0.10
			1	I
Average F age		5	4	4

FISH AN

ATION C

			S27A	S64	
	Framework		ASAP 2	ASAP 3	SS3
	Natural mortality		Fixed at age	Fixed at age	Fixed at age
	Maturity		Fixed at age	Fixed at age	Fixed at age
	Growth		-	-	Estimated
	Steepness		Estimated	Estimated	Estimated
	Sexes		Combined	Combined	Combined
	SSB		Female	Female	Female
	Fraction of year before spawning		0.5	0.25	0
	Number of weight-at-age matrices		3	10	-
	# of Selectivity blocks		9	3	3
		Commercial	Flat-topped	Flat-topped	Flat-topped
Fleet Selectivity	Fleet Selectivity	Recreational MRIP	Flat-topped	Dome-shaped	Dome-shaped
		Headboat	Flat-topped	Dome-shaped	Dome-shaped
Indices Index selectivity		RVC age 1+	RVC Juv	RVC Juv	
		Com CPUE	RVC Adult	RVC Adult	
		HB CPUE	Com CPUE	Com CPUE	
		MRIP CPUE	MRIP CPUE	MRIP CPUE	
		RVC age 1+	Age-specific	-	-
		RVC Juv	-	RVC age-1	Dome-shaped
		RVC Adult	-	Dome-shaped	Dome-shaped
	Index selectivity	Com CPUE	linked	Flat-topped	linked
		HB CPUE	linked	-	-
			1. 1. 1	1	mirrored to
		MRIP CPUE	linked	linked	MRIP selectivity