

SEDAR 64: Yellowtail Snapper Assessment Model Methods

Shanae D. Allen and Christopher E. Swanson

FWRI Stock Assessment Group, St. Petersburg, FL
Review Workshop: February 24 - 26, 2020

SEDAR 64: Yellowtail Snapper Assessment Model Methods

Continuity Model

Continuity Model

'True' continuity model unattainable for SEDAR 64

Most influential reason:

- NMFS redesign and implementation of recreational data collection and estimation procedures (i.e. APAIS and FES calibrated MRIP data)
- Catch estimates now $2-5 x$ higher

Continuity Model

1) Run the SEDAR 27A Final Model in the current version of ASAP to ensure the same results were produced

- Version $2.0 \rightarrow$ version 3.0.16

2) Configure the SEDAR 64 data as close to the methods used for

SEDAR 27A as possible (see Table 3.8.1 in the AW Report). For example:

- 3 weight-at-age matrices
- 9 selectivity blocks; Flat-topped selectivity types for all fleets
- Only one RVC index (age 1+), no Headboat index; Constant catchability for Commercial CPUE index
- Weighting factors (lambdas)
- Age-Length-Key methods

Continuity Model

1) Run the SEDAR 27A Final Model in the current version of ASAP to ensure the same results were produced

- Version $2.0 \rightarrow$ version 3.0.16

2) Configure the SEDAR 64 data as close to the methods used for SEDAR 27A as possible (see Table 3.8.1 in the AW Report). For example:

- 3 weight-at-age matrices
- 9 selectivity blocks; Flat-topped selectivity types for all fleets
- Only one RVC index (age 1+), no Headboat index; Constant catchability for Commercial CPUE index
- Weighting factors (lambdas)
- Age-Length-Key methods

SEDAR 64: Yellowtail Snapper Assessment Model Methods

Stock Synthesis Model Configuration

Stock Synthesis v. 3.30.14

- Moderate complexity
- Years: 1992-2017
- 1 season, 1 area
- Spawning: January
- Settlement: January at Age 0; 2 cm FL
- Combined sex model with femaleonly SSB (frac_female = 0.5)

Life History

- Estimated growth using external growth model inputs as initial guesses
- 20 ages in the model; Age $12+$ group
- Natural mortality: Fixed vector by age
- Maturity: Fixed vector by age
- Fecundity = Spawning biomass at length
- Length-Weight: fixed

Stock Synthesis Model Configuration

Stock Synthesis v. 3.30.14

- Moderate complexity
- Years: 1992-2017
- 1 season, 1 area
- Snawning: January
- Settlement: January at Age 0; 2 cm FL
- Combined sex model with femaleonly SSB (frac female $=0.5$)

Life History

- Estimated growth using external growth model inputs as initial guesses
- 20 ages in the model; Age $12+$ group
- Natural mortality: Fixed vector by age
- Maturity: Fixed vector by age
- Fecundity = Spawning biomass at length
- Length-Weight: fixed

Stock Synthesis Model Configuration

Fleets

- Commercial
- Landings (mt) and discards (numbers)
- Headboat
- Landings and discards (numbers)
- MRIP (Charter, Private, Shore Modes)
- Landings and discards (numbers)

Surveys

- Commercial CPUE
- retained lbs/hook hour
- RVC
- Juvenile/subadult
- Adult
- number of fish/diver 'cylinder'
- MRIP CPUE
- total catch/trip (numbers)

Stock Synthesis Model Configuration

Fleets

- Commercial
- Landings (mt) and discards (numbers)
- Headboat
- Landings and discards (numbers)
- VRIP (Charter, Private, Shore Modes)
- Landings and discards
(numbers)

Surveys

- Commercial CPUE
- retained lbs/hook hour
- RVC
- Juvenile/subadult
- Adult
- number of fish/diver 'cylinder'
- MRIP CPUE
- total catch/trip (numbers)

Stock Synthesis Model Configuration

Length Composition Data

- Commercial
- Landings and discards
- Headboat
- Landings
- MRIP
- Landings
- Headboat/MRIP Discards
- Same length compositions
- RVC
- Juvenile
- Adult

Conditional Age-at-Length Data

- Commercial Landings
- Headboat Landings
- MRIP Landings
- Fishery-independent sources

Stock Synthesis Model Configuration

Length Composition Data

- Commercial
- Landings and discards
- Headboat
- Landings
- MRIP
- Landings
- Headboat/MRIP Discards
- Same length compositions
- RVC
- Juvenile
- Adult

Conditional Age-at-Length Data

- Commercial Landings
- Headboat Landings
- MRIP Landings
- Fishery-independent sources

Stock Synthesis Model Configuration

Fleet Selectivity

- Commercial
- Selectivity: Simple logistic (flat-topped)
- Estimated Retention (flat-topped)
- Discard Mortality = 10\%
- Headboat
- Selectivity: Double normal (dome)
- Estimated Retention (flat-topped)
- Discard Mortality = 10\%
- MRIP
- Selectivity: Double normal (dome)
- Estimated Retention (flat-topped)
- Discard Mortality = 10\%

Index Selectivity

- Commercial CPUE
- Linked to Commercial fleet
- Catchability Time Block: 2009-2017
- RVC Adult
- Selectivity: Double normal (dome)
- Constant catchability
- RVC Juvenile
- Selectivity: Double normal (dome)
- Constant catchability
- MRIP CPUE
- Selectivity: Mirrored to MRIP fleet
- Constant catchability

Stock Synthesis Model Configuration

Fleet Selectivity
 - Commercial
 - Selectivity: Simple logistic (flat-topped)
 - Estimated Retention (flat-topped)
 - Discard Mortality = 10\%
 - Headboat
 - Selectivity: Double normal (dome)
 - Estimated Retention (flat-topped)
 - Discard Mortality = 10\%

- MRIP
- Selectivity: Double normal (dome)
- Estimated Retention (flat-topped)
- Discard Mortality = 10\%

Index Selectivity

- Commercial CPUE
- Linked to Commercial fleet
- Catchability Time Block: 2009-2017
- RVC Adult
- Selectivity: Double normal (dome)
- Constant catchability
- RVC Juvenile
- Selectivity: Double normal (dome)
- Constant catchability
- MRIP CPUE
- Selectivity: Mirrored to MRIP fleet
- Constant catchability

Stock Synthesis Model Configuration

Recruitment Dynamics

- Beverton-Holt stock-recruitment relationship
- Virgin recruitment in log-space $(\ln (R O))$, the standard deviation of log of recruitment (sigmaR), and steepness estimated in model
- Simple recruitment deviations
- no sum-to-zero constraint
- Early recruitment deviations
- 1981 - 1990 (period of lower data-richness)
- Main recruitment deviations
- 1991 - 2017 (period of higher data-richness)
- Bias adjustments (following Methot and Taylor 2011)

Stock Synthesis Model Configuration

Parameters

- 85 out of 117 parameters estimated

Priors

- Symmetric betas on initial Fishing mortality rates for Commercial, Headboat, and MRIP fleets

Lambda

- No emphasis on model fit (=0)
- Initial equilibrium catch for all three fleets

Reported Fishing Mortality Rates

- Age 4

Stock Synthesis Model Configuration

Model Convergence Criteria

- Total likelihood (sum of individual data source component's likelihoods)
- Invertible Hessian matrix
- Maximum gradient <0.0001

Error Structure

- Assumed log-normal for all landings, indices, and discard data (except commercial discards)

Multinomial Distribution

- Length composition data of landings, discards, and indices
- Conditional age-at-length data of landings and FI sources

Data Weighting

- Length composition and conditional age-at-length data
- Initial sample sizes equal to sqrt (number of trips or number of fish)
- Iterative re-weighting following Francis (2011)

Stock Synthesis Model Configuration

Model Convergence Criteria

- Total likelihood (sum of individual data source component's likelihoods)
- Invertible Hessian matrix
- Maximum gradient <0.0001

Error Structure

- Assumed log-normal for all landings, indices, and discard data (except commercial discards)

Multinomial Distribution

- Length composition data of landings, discards, and indices
- Conditional age-at-length data of landings and FI sources

Data Weighting

- Length composition and conditional age-at-length data
- Initial sample sizes equal to sqrt (number of trips or number of fish)
- Iterative re-weighting following Francis (2011)

SEDAR 64: Yellowtail Snapper Assessment Model Methods

Base Model Diagnostics

Model Diagnostics

Residual Analysis

- Visual inspection for patterns
- Quantitatively evaluated (RMSSE)

Correlation Analysis

- Help identify inadequate model assumptions or erroneous model parameterizations
- Absolute values > 0.7

Profile Likelihoods

- Iteratively run the model while fixing a given parameter across a range of reasonable values
- steepness, sigmaR, RO, initial_Fs

Jitter Analysis

- Aids in identifying a global solution vs. a local solution
- Randomly 'jitters' parameter values by a certain percentage
- 20% as suggested by R. Methot (pers. comm.) with 200 model runs

Model Diagnostics

Residual Analysis

- Visual inspection for patterns
- Quantitatively evaluated (RMSSE)

Correlation Analysis

- Help identify inadequate model assumptions or erroneous model parameterizations
- Absolute values > 0.7

Likelihood Profiles

- Iteratively run the model while fixing a given parameter fixed across a range of reasonable values
- steepness, sigmaR, RO, initial_Fs

Jitter Analysis

- Aids in identifying a global solution vs. a local solution
- Randomly 'jitters' parameter values by a certain percentage
- 20% as suggested by R. Methot (pers. comm.) with 200 model runs

Model Diagnostics

Jack-knife Analysis

- Removal of each index of abundance (inc. length/age data)
- Determine influence of each index on the model
- e.g. an index may only be sampling a portion of the stock resulting in conflicting abundance signals or trend of the entire stock

Retrospective Analysis

- Seven-year peel
- Helps evaluate the effect of the final year on model results
- Patterns can indicate model misspecification or temporal dynamics
- Evaluated visually and quantitatively
- Mohn's Rho
- Hurtado et al (2015) "Rule of thumb"
- - $0.15-0.20$ for longer-lived species

Model Diagnostics

Jack-knife Analysis

- Removal of each index of abundance (inc. length/age data)
- Determine influence of each index on the model
- e.g. an index may only be sampling a portion of the stock resulting in conflicting abundance signals or trend of the entire stock

Retrospective Analysis

- Seven-year peel
- Helps evaluate the effect of the final year on model results
- Patterns can indicate model misspecification or temporal dynamics
- Evaluated visually and quantitatively
- Mohn's Rho
- Hurtado et al (2015) "Rule of thumb"
- - 0.15-0.20 for longer-lived species

Model Diagnostics

Parametric Bootstrap

- Resampling method to analyze uncertainty associated with the data
- 500 bootstrapped datasets
- Error distributions centered on fitted values
- ESS must be integer
- Multiplied age-at-length ESS by Francis weight, rounded to lowest integer, removed zero bins.

MCMC Analysis

- Generate posterior distributions of model parameters and derived quantities
- Two chains
- 1) 2,500 iterations saved from 5,000,000 (2,000 burn in)
- 2) 2,500 iterations saved from $10,000,000$ (5,000,000 burn in)
- Two-chain convergence assessed using Gelman and Rubin's (1992) potential reduction scale factor

Model Diagnostics

Parametric Bootstrap

- Resampling method to analyze uncertainty associated with the data
- 500 bootstrapped datasets
- Error distributions centered on fitted values
- ESS must be integer
- Multiplied age-at-length ESS by Francis weight, rounded to lowest integer, removed zero bins.

MCMC Analysis

- Generate posterior distributions of model parameters and derived quantities
- Two chains
- 1) 2,500 iterations saved from 5,000,000 (2,000 burn in)
- 2) 2,500 iterations saved from $10,000,000$ (5,000,000 burn in)
- Two-chain convergence assessed using Gelman and Rubin's (1992) potential reduction scale factor

SEDAR 64: Yellowtail Snapper Assessment Model Methods

Sensitivity Runs

Sensitivity Runs: Getting to the Base Model

Investigated

- Spawning in January; settlement in Apr; linear growth until Oct
- Mimic recruitment as close as we could given a single season model
- Multiple settlement events: Jan, April, July
- Natural mortality
- Jensen (1996), Charnov et al. (2013), tmax $=28 \mathrm{yr}, \operatorname{tmax}=33 \mathrm{yr}$
- Initial fishing mortality rates; equilibrium catch
- No priors; varying levels of equilibrium catch (e.g. 5\%-25\% of total catch)
- Changing start year to 1992 from initial base model start year 1981
- Time blocks for retention
- Time-varying q vs. constant q vs. time block q

Sensitivity Runs: Base Model

Start Year in 1981

- Most landings data available in 1981

Discard Mortality Rates

- Commercial: 15\%
- Recreational (both Headboat and MRIP fleets): 20\% and 30\%

Bias Adjustments to Rec Devs

- Input values were not updated to reflect recommended bias adjustment values from model output
- Time and resources would not permit this tuning into the final base model with rerun diagnostics, projections, bootstrapping, and MCMC analyses

SEDAR 64: Yellowtail Snapper Assessment Model Methods

Per-recruit Analysis

Per-recruit Analysis

Purpose

- Obtain targets of fishing mortality and age at first capture to evaluate various management regulations
- Evaluate stock productivity, identify levels of yield from the fishery, and adjust target based on risk aversion and uncertainty
- Assumes equilibrium fishing mortality rates; constant M , growth, and recruitment

Metrics

- Function of fishing mortality on age-4 fish
- Yield-per-recruit (YPR)
- Spawner-per-recruit (SSB/R)
- Static spawning potential ratio (SPR)
- Yields associated with $\mathrm{F}_{30 \% \text { SPR }}$ and $\mathrm{F}_{40 \% \text { SPR }}$

SEDAR 64: Yellowtail Snapper Assessment Model Methods

Catch Curve Analysis

Catch Curve Analysis

Estimate total mortality (Z)

- Useful in understanding the estimated fishing mortality rates
- Instantaneous M value from the Hoenigalltaxa (1983) equation ($\mathrm{M}=0.16$)
- Chapman-Robson estimator (Chapman and Robson 1960; Robson and Chapman 1961)
- Method 'when age is known for entire sample'
- Annual survival rate which we convert to total mortality $(Z=-\ln (\mathrm{S}))$
- Used the number of fish-at-age in the Florida age dataset
- Aggregated across time
- Started at the modal age plus one (peaked at age-3)
- Ages 4-20 ($\mathrm{n}=18,316$ otoliths)

SEDAR 64: Yellowtail Snapper Assessment Model Methods

Benchmark/Reference Points

South Atlantic and Gulf of Mexico Fishery Management Councils

Criteria
 Definition

$\mathrm{SSB}_{\mathrm{F} 30 \% \mathrm{SPR}}$	Estimated SSB associated with F at 30\% SPR
SSB $_{\text {current }}$ (recent average of SSB)	The geometric mean of SSB for 2015-2017
MSST (Minimum Stock Size Threshold)	0.75*SSBF30\%SPR
F30\%SPR	The fishing mortality rate associated with 30\% SPR
$\mathrm{F}_{\text {current }}$ (recent average age 4 fishing mortality)	The geometric mean of F for 2015-2017
MFMT(Maximum Fishing Mortality Threshold)	F_{30} \% SPR
OY (Optimum Yield)	Yield at Foy
Foy (Fishing Mortality Rate at OY)	$\mathrm{F}_{40 \%}$ SPR

SEDAR 64: Yellowtail Snapper Assessment Model Methods

Projections

Scenarios

- A) If stock is overfished:
$F=0, F_{\text {Current }}, F=F_{\text {MSV, }}, F$ at 75% of $F_{M S Y}$
$\mathrm{F}=\mathrm{F}_{\text {Rebuild }}$ (max exploitation that rebuild in greatest allowed time)
- B) If overfishing is occurring:

$$
F=F_{\text {Current }}, F=F_{M S Y}, F \text { at } 75 \% \text { of } F_{M S Y}
$$

- C) If stock is neither overfished nor undergoing overfishing:
$\mathrm{F}=\mathrm{F}_{\text {Current }}, \mathrm{F}=\mathrm{F}_{\mathrm{MSY},} \mathrm{F}$ at 75% of $\mathrm{F}_{\mathrm{MSV}}$, equilibrium yield
- D) If data limitations preclude classic projections (i.e. A, B, C above), explore alternative models to provide management advice

Projections

Five-year horizon

- 2018-2022
- Estimates of biomass, abundance, and fishing mortality rates Values held constant
- Selectivity from terminal year
- Stock-recruitment parameters
- Recruitment for first year of projection equal to terminal 3-year average

SEDAR 64: Yellowtail Snapper Assessment Model Methods

Model Bridging Exercise

			S27A		
	Catchability	RVC age 1+ RVC Juv RVC Adult Com CPUE HB CPUE MRIP CPUE	constant constant constant constant	constant constant annual devs constant	constant constant block: 20092017 constant
	Lambdas	Indices	<1	1	1
		Deviation from initial steepness	1	1	-
		Deviation from initial N	1	0	-
		Deviation from initial SSB0	1	-	-
		Deviation from initial R1	-	0	-
		Deviation from initial F-Mult	1	0	-
		Deviation from Equilibruim Catch	-	-	0
	Calculate Likelihood Constants		yes	no	no
	Years Natural Mortality: Tmax		1981-2010	1992-2017	1992-2017
			23 yr	20 yr	20 yr
		Commercial	0.115	0.10	0.10
	Release mortality	Recreational MRIP	0.10	0.10	0.10
		Headboat	0.10	0.10	0.10

		S27A		
Framework		ASAP 2	ASAP 3	SS3
Natural mortality		Fixed at age	Fixed at age	Fixed at age
Maturity		Fixed at age	Fixed at age	Fixed at age
Growth		-	-	Estimated
Steepness		Estimated	Estimated	Estimated
Sexes		Combined	Combined	Combined
SSB		Female	Female	Female
Fraction of year before spawning		0.5	0.25	0
Number of weight-at-age matrices		3	10	-
\# of Selectivity blocks		9	3	3
Fleet Selectivity	Commercial	Flat-topped	Flat-topped	Flat-topped
	Recreational MRIP	Flat-topped	Dome-shaped	Dome-shaped
	Headboat	Flat-topped	Dome-shaped	Dome-shaped
Indices		RVC age 1+ Com CPUE HB CPUE	RVC Juv RVC Adult Com CPUE	RVC Juv RVC Adult Com CPUE
		MRIP CPUE	MRIP CPUE	MRIP CPUE
Index selectivity	RVC age 1+	Age-specific	-	-
	RVC Juv		RVC age-1	Dome-shaped
	RVC Adult	-	Dome-shaped	Dome-shaped
	Com CPUE	linked	Flat-topped	linked
	HB CPUE	linked	-	-
	MRIP CPUE	linked	linked	mirrored to MRIP selectivity

