

SEDAR 64: Yellowtail Snapper Main Data Inputs

Shanae D. Allen and Christopher E. Swanson

FWRI Stock Assessment Group, St. Petersburg, FL

Review Workshop: February 24 – 26, 2020

SEDAR 64: Yellowtail Snapper

Main Data Inputs

Spatial Delineations

SEDAR 64: Yellowtail Snapper

Main Data Inputs

Life History

Yellowtail Snapper Genetic Studies

- South Florida vs Eastern Caribbean (Saillant et al. 2012)
 - 4 groupings: FL Keys, west coast of Puerto Rico, east coast of Puerto Rico and St Thomas, offshore of St. Croix
- Brazil vs Belize (Vasconcellos et al. 2008; da Silva et al. 2015)
 - Separate Stocks
- South Florida vs Western Caribbean/North FL/West of FL
 - Unknown but these fish likely do not contribute to spawning stock biomass due to the GOM Loop Current dynamics

Data sources (1980 - 2017)

- Fishery-dependent sources
 - TIP, SRHS, MRIP, Garcia et al. (2003)
- Fishery-independent sources
 - FWRI (FIM, Fish Bio), Vose and Shank (2003)
- Filtered data from SE U.S Atlantic and GOM waters (n = 48,212 otoliths; FD = 46,324; FI = 1,888)
- 99% of age data from Florida (n = 47,886 otoliths)

Age Structure

- 0 20 years in Florida
- Up to age-28 sampled off the Carolinas
- In Florida
 - 58% were age-2 and -3
 - 90% were ages 2 6

Location within Florida

• 61% from Florida Keys; 35% from southeast Florida

<u>Data sources (1980 – 2017)</u>

- Fishery-dependent sources
 - TIP, SRHS, MRIP, Garcia et al. (2003)
- Fishery-independent sources
 - FWRI (FIM, Fish Bio), Vose and Shank (2003)
- Filtered data from SE U.S Atlantic and GOM waters (n = 48,212 otoliths; FD = 46,324; FI = 1,888)
- 99% of age data from Florida (n = 47,886 otoliths)

Age Structure

- 0 20 years in Florida
- Up to age-28 sampled off the Carolinas
- In Florida
 - 58% were age-2 and -3
 - 90% were ages 2 6

Location within Florida

• 61% from Florida Keys; 35% from southeast Florida

THE - NOISE

External Growth Model

<u>Size-truncated von Bertalanffy growth model (Diaz et al. 2004)</u>

- Truncated at minimum size limit (12 inch TL or approx. 24.8 cm FL) for fishery-dependent data starting 8/31/83 (SAFMC Snapper-Grouper FMP)
- Inverse weighted; age 12+ group
- Constant CV for length-at-age
- n = 45,833 otoliths

Estimated Parameters using Florida data

- *L_{inf}* = 42.3 cm fork length
- $k = 0.207 \text{ yr}^{-1}$
- *t0* = -1.636 year
- CV = 0.179

Yellowtail Snapper Morphometrics

Length-Weight

Source	Y [kg]	а	b	X[cm]	n	Min [cm]	Max [cm]
SEDAR 64	TW	2.574E-05	2.8797	FL	16,540	20.2	55.0
	TW	2.459E-05	2.7487	TL _{relaxed}	10,792	24.7	69.7
	TW	1.959E-05	2.7849	TL _{max}	1,763	28.4	65.4

Length-Length

Source	Y (mm)	a (mm)	b	X (mm)	n	Min X (mm)	Max X (mm)	Avg. X* (mm)	Adj. r ²
SEDAR 64	SL ^a	-8.55	0.896	FL	5,873	230	548	309.8	0.99
	TL _{relaxed} b**	-14.72	1.273	FL	16,212	205	550	304.8	0.98
	TL _{max} c	-16.41	1.297	FL	6,827	225	548	308.1	0.99
	Source SEDAR 64	SourceY (mm)SL aSEDAR 64TLrelaxedTLmaxC	Source Y (mm) a (mm) SL a -8.55 SEDAR 64 TL _{relaxed} b** -14.72 TL _{max} c -16.41	Source Y (mm) a (mm) b SL a -8.55 0.896 SEDAR 64 TL _{relaxed} b** -14.72 1.273 TL _{max} c -16.41 1.297	Source Y (mm) a (mm) b X (mm) SL a -8.55 0.896 FL SEDAR 64 TL _{relaxed} b** -14.72 1.273 FL TL _{max} c -16.41 1.297 FL	Source Y (mm) a (mm) b X (mm) n SL a -8.55 0.896 FL 5,873 SEDAR 64 TL _{relaxed} b** -14.72 1.273 FL 16,212 TL _{max} c -16.41 1.297 FL 6,827	SourceY (mm)a (mm)bX (mm)nMin X (mm)SL a-8.550.896FL5,873230SEDAR 64 $TL_{relaxed}$ b**-14.721.273FL16,212205 TL_{max} c-16.411.297FL6,827225	Source Y (mm) a (mm) b X (mm) n Min X (mm) Max X (mm) SL a -8.55 0.896 FL 5,873 230 548 SEDAR 64 TL _{relaxed} b** -14.72 1.273 FL 16,212 205 550 TL _{max} c -16.41 1.297 FL 6,827 225 548	Source Y (mm) a (mm) b X (mm) n Min X (mm) Max X (mm) Avg. X* (mm) SL ^a -8.55 0.896 FL 5,873 230 548 309.8 SEDAR 64 TL _{relaxed} ^{b**} -14.72 1.273 FL 16,212 205 550 304.8 TL _{max} ^c -16.41 1.297 FL 6,827 225 548 308.1

Yellowtail Snapper Length-Weight

Yellowtail Snapper Natural Mortality

DW discussions and decisions

- Recommended Hoenig_{alltaxa} (1983) using the maximum age = 28 yr (entire range)
- M inversely related to fish length and follows Lorenzen (2005)
- Sensitivity runs
 - Florida waters (age-20) and hypothetical max age in next assessment (age-33)

AW discussions and decisions

- Life history data needs to be consistent and provide management advice for Florida-based fishery
 - Recommended base model use maximum age = 20 yr (Florida waters)
 - Explore k-based methods as sensitivity runs

Yellowtail Snapper Natural Mortality

Instantaneous Natural Mortality (Hoenig_{all taxa} 1983)

- $e^{(1.44-0.982*\ln(t_{max}))}$
 - t_{max} for Florida is age-20
- M_{Hoenig(all taxa)} = 0.223 yr⁻¹

Age-specific Natural Mortality (Lorenzen 2005)

•
$$M(a) = -\ln\left(\frac{L(a)}{L(a) + L_{\infty}(\exp(k(a_{max} - ac)) - 1}\right) * \frac{-MrLr}{L_{\infty}k}$$

- M_r = 0.223 yr⁻¹
 - Scaled between ages 3 20
- Size-truncated VB growth parameters: L_{inf}, k
- M (a) = 0.558 yr⁻¹ 0.198 yr⁻¹ for ages 0 20

Yellowtail Snapper Maturity

Data source

- Barbieri and Colvocoresses (2003)
- Florida Keys and southeast Florida
- Age-at-maturity
 - 205 samples
 - A₅₀ = 1.7 years old; 1.5 1.9 yr old 95% CI
 PROC NLIN (SAS v.9)

Size-at-maturity

- 218 samples
- L₅₀ = 192 mm FL; 162 222 mm FL 95% Cl
 - PROC NLIN (SAS v.9)

Yellowtail Snapper Fecundity

Fecundity

- Estimates of fecundity in Yellowtail Snapper are limited
- FL Keys: 11,000 1,391,000 eggs (n = 44; Collins and Finucane 1989)
- Campeche Banks: 14,102 164,756 eggs; Batch fecundity = 1.45*FL_{cm}^{3.05} (n=41; Trejo-Martínez et al. 2011)
- Cuba: Fecundity=1,097*FL_{cm}^{2.88} (n=60; Carrillo de Albornoz and E. Grillo 1993)

Sex ratios (male:female)

- 1:1.04 in the Florida Keys (Grimes 1987)
- 1:1.3 and 1:1.4 in Jamaica and Cuba (Grimes 1987)
- 1:1 on Campeche Banks (Trejo-Martínez et al. 2011)

SEDAR 64: Yellowtail Snapper

Main Data Inputs

Landings and Discards

<u>Landings</u>

Commercial Fleet

- Florida's Marine Trip Ticket Program and NOAA ALS
- Florida only data used from 1992 2017 (available beginning in 1962)
- Standard errors (in log-space) weighted by landings (0.05 0.1)
- Headboat Fleet
 - Southeast Region Headboat Survey (SRHS)
 - Florida only data used from 1992 2017 (available beginning in 1981)
 - No variance estimates due to survey design
 - Standard errors (in log space) assumed equal to 0.25 and constant through time
- MRIP Fleet
 - Marine Recreational Information Program; Fully calibrated (APAIS, FES, and FHS)
 - Florida only data used from 1992 2017 (available beginning in 1981)
 - Modes: Private, Shore, and Charter.

• CVs provided by SEFSC and transformed to standard errors (in log-space; 0.09 – 0.36)

<u>Landings</u>

- Commercial Fleet
 - Florida's Marine Trip Ticket Program, NOAA ALS
 - Florida only data used from 1992 2017 (available beginning in 1962)
 - Standard errors (in log-space) weighted by landings (0.05 0.1)

• Headboat Fleet

- Southeast Region Headboat Survey (SRHS)
- Florida only data used from 1992 2017 (available beginning in 1981)
- No variance estimates due to survey design
 - Standard errors (in log space) assumed equal to 0.25 and constant through time
- MRIP Fleet
 - Marine Recreational Information Program; Fully calibrated (APAIS, FES, and FHS)
 - Florida only data used from 1992 2017 (available beginning in 1981)
 - Modes: Private, Shore, and Charter.

CVs provided by SEFSC and transformed to standard errors (in log-space; 0.09 – 0.36)

<u>Landings</u>

- Commercial Fleet
 - Florida's Marine Trip Ticket Program, NOAA ALS
 - Florida only data used from 1992 2017 (available beginning in 1962)
 - Standard errors (in log-space) weighted by landings (0.05 0.1)
- Headboat Fleet
 - Southeast Region Headboat Survey (SRHS)
 - Florida only data used from 1992 2017 (available beginning in 1981)
 - No variance estimates due to survey design
 - Standard errors (in log space) assumed equal to 0.25 and constant through time
- MRIP Fleet
 - Marine Recreational Information Program; Fully calibrated (APAIS, FES, and FHS)
 - Florida only data used from 1992 2017 (available beginning in 1981)
 - Modes: Private, Shore, and Charter.

Landings by Fleet

<u>Discards</u>

- Commercial Fleet
 - Effort and discard rate data from vertical line trips in southern Florida reported in the CFLP between 2002 – 2017
 - For years 1993 2001, discard rates were averaged for years 2002 2006 and used with available effort data
 - CVs provided by SEFSC using the 'standard' S32 method (CVs = 1.94 5.61)
- Headboat Fleet
 - SRHS logbook data reported from 2004 2017 and validated using Florida At-Sea Observer Program
 - Years 1981 2003 were hindcasted using MRIP Charterboat:SRHS discard ratio proxy method
 - Standard errors (in log space) assumed equal to 0.50 and constant through time
- MRIP Fleet
 - MRIP data (fully calibrated APAIS, FES, and FHS) used from 1992 2017 (available beginning in 1981)
 - CVs provided by SEFSC and transformed to standard errors (in log-space; 0.06 0.20)

<u>Discards</u>

- Commercial Fleet
 - Effort and discard rate data from vertical line trips in southern Florida reported in the CFLP between 2002 2017
 - For years 1993 2001, discard rates were averaged for years 2002 2006 and used with available effort data
 - CVs provided by SEFSC using the 'standard' S32 method (CVs = 1.94 5.61)
- Headboat Fleet
 - SRHS logbook data reported from 2004 2017 and validated using Florida At-Sea Observer Program
 - Years 1981 2003 were hindcasted using MRIP Charterboat:SRHS discard ratio proxy method
 - Standard errors (in log space) assumed equal to 0.50 and constant through time
- MRIP Fleet
 - MRIP data (fully calibrated APAIS, FES, and FHS) used from 1992 2017 (available beginning in 1981)
 - CVs provided by SEFSC and transformed to standard errors (in log-space; 0.06 0.20)

Discards

- Commercial Fleet
 - Effort and discard rate data from vertical line trips in southern Florida reported in the CFLP between 2002 2017
 - For years 1993 2001, discard rates were averaged for years 2002 2006 and used with available effort data
 - CVs provided by SEFSC using the 'standard' S32 method (CVs = 1.94 5.61)
- Headboat Fleet
 - SRHS logbook data reported from 2004 2017 and validated using Florida At-Sea Observer Program
 - Years 1981 2003 were hindcasted using MRIP Charterboat:SRHS discard ratio proxy method
 - Standard errors (in log space) assumed equal to 0.50 and constant through time
- MRIP Fleet
 - MRIP data (fully calibrated APAIS, FES, and FHS) used from 1992 2017 (available beginning in 1981)
 - CVs provided by SEFSC and transformed to standard errors (in log-space; 0.06 0.20)

Discards by Fleet

SEDAR 64: Yellowtail Snapper

Main Data Inputs

Indices

Fishery-Independent

- Reef Fish Visual Census (RVC)
 - Florida Keys (1997 2016), Dry Tortugas (1999 2016), southeast Florida (2012 – 2016)
 - Two-stage SRS design using divers in water <30 m
 - Habitat strata varied by region
 - Juvenile and subadult (1 18 cm)
 - Adult (19+ cm)
- Indices were constructed by combining data in overlapping years for the Florida Keys and the Dry Tortugas
 - New habitat strata codes
- OL CONSERVICE NOISE
- 1999, 2000, biennially 2004 2016
- Juvenile and adult indices of abundance (number of fish/diver 'cylinder')

https://www.fisheries.noaa.gov/southeast/science-data/reef-ecology-unit

Fishery-Independent

- Reef Fish Visual Census (RVC)
 - Florida Keys (1997 2016), Dry Tortugas (1999 2016), southeast Florida (2012 – 2016)
 - Two-stage SRS design using divers in water <30 m
 - Habitat strata varied by region
 - Juvenile and subadult (1 18 cm)
 - Adult (19+ cm)
- Indices were constructed by combining data in overlapping years for the Florida Keys and the Dry Tortugas
 - New habitat strata codes
 - 1999, 2000, biennially 2004 2016
 - Juvenile and adult indices of abundance (number of fish/diver 'cylinder')

https://www.fisheries.noaa.gov/southeast/science-data/reef-ecology-unit

Fishery-Dependent

- Commercial vertical line
 - CFLP data from 1993 2017
 - Southern Florida (southeast Florida through Sarasota and the Dry Tortugas)
 - Index of biomass (lbs of fish/hook hours fished)
- MRIP
 - MRIP total catch data from 1991 2017
 - Southeast Florida and the Florida Keys (including the Dry Tortugas)
 - Index of abundance (number of fish/trip)

SEDAR 64: Yellowtail Snapper

Main Data Inputs

Length Compositions

Retained Length Compositions

Commercial (TIP)

- 1992 2017 (n=135,960)
- 14 68 cm FL

Headboat (SRHS)

- 1992 2017 (n=64,107)
- 14 58 cm FL

MRIP (MRIP)

- 1992 2017 (n=15,749)
- 10 78 cm FL

All weighted by landings

Retained Length Compositions: Commercial

THE PROPERTY OF THE PROPERTY O
Retained Length Compositions: Headboat

Retained Length Compositions: MRIP

Discard Length Compositions

Commercial

- Reef Fish & Shark
 Observer Program
- 2009 2017 (n=868)
- 12 38 cm FL

Headboat and MRIP

- Headboat/Charter At-Sea Observer data combined
- 2005 2017 (n=7,243)
- 10 44 cm FL

All weighted by discards

Discard Length Compositions: Commercial

Discard Length Compositions: Headboat/MRIP

RVC Length Compositions

RVC Adult

- 1999 2016 (n=44,401)
- 19 64 cm FL

RVC Juvenile

- 1999 2016 (n=41,904)
- 2 18 cm FL

Weighted by number of SSUs

Length Compositions: RVC Adult

Length Compositions: RVC Juvenile

					· 0.01 · 0.2 · 0.4						
	18 -	0	0		0	0	0	0	0	0	0
	16 -	0	0		0	0	0	0	0	0	0
	14 -	0	0		0	0	0	0	0	0	0
(cm)	12 –	0	0		0	0	0	0	0	0	0
_ength	10 -	0	0		0	0	0	0	0	0	0
[8 -	0	0		0	0	0	٥	0	0	0
	6 -	o	o		0	0	0	٥	0	0	0
	4 -	o	0		o	٥	٥	¢	٥	٥	٥
	2 -	¢	•			¢	•	*	•	•	
	1999			2004	2006	2008	2010	2012	2014	2016	

ELH AND THE R NOISE

MRIP CPUE Length Compositions

MRIP CPUE

- Combined retained and discarded lengths
- 2005 2017 (n=22,992)
- 10 76 cm FL

Sum of discards at length and retained at length

Length Compositions: MRIP CPUE

THE RUSE

SEDAR 64: Yellowtail Snapper

Main Data Inputs

Conditional Age-at-length

Commercial

- Sources: TIP, SRHS, Unknown
- 1981 2017
- 21,671 otoliths
- Ages 1 18

Headboat

- Sources: SRHS, TIP, At-Sea, GRFS/MARFIN
- 1981 2017
- 20,679 otoliths
- Ages 1 20

MRIP

- Sources: GRFS/MARFIN, At Sea, SRHS, TIP, Unknown
- 1985 2017
- 2,234 otoliths
- Ages 1 16

Fishery-independent

- Sources: FIM FWRI, Vose & Shank (2003)
- 1995 2015
- 1,888 otoliths
- Ages 0 13

Yellowtail Snapper Natural Mortality

Beverton-Holt life history invariants

- M/k ratio (Jensen 1996)
 - M = 1.5k \rightarrow M = 1.5(0.207) \rightarrow $M = 0.311 \text{ yr}^{-1}$
- Yellowtail Snapper *M/k* = 1.076
 - Hordyk et al. (2015) describes M/k ratios ranging from 0.12 3.52 for several species

<u>Charnov et al. (2013)</u> • $M(a) = k \left(\frac{L^{\infty}}{L(a)}\right)^{1.5}$

OIL CONSTRUCTION COMMUNICATION

These and other *k*-based methods explored were found unreasonable and estimated high mortality rates at young ages

		M-at-age	S	Survival proportions-at-age		
Age	Length (cm)	Base Model	Base Model	Jensen (1996)	Charnov et al. (2013)	
0	12	0.558	1.000	1.000	1.000	
1	18	0.414	0.572	0.446	0.261	
2	22	0.343	0.378	0.245	0.122	
3	26	0.301	0.269	0.149	0.071	
4	29	0.273	0.199	0.097	0.046	
5	32	0.255	0.151	0.065	0.032	
6	34	0.241	0.117	0.045	0.023	
7	35	0.231	0.092	0.032	0.018	
8	37	0.224	0.073	0.023	0.013	
9	38	0.218	0.058	0.016	0.010	
10	38	0.214	0.047	0.012	0.008	
11	39	0.210	0.038	0.009	0.006	
12	40	0.208	0.031	0.006	0.005	
13	40	0.205	0.025	0.005	0.004	
14	41	0.204	0.020	0.004	0.003	
15	41	0.202	0.017	0.003	0.003	
16	41	0.201	0.014	0.002	0.002	
17	41	0.200	0.011	0.001	0.002	
18	42	0.200	0.009	0.001	0.001	
19	42	0.199	0.007	0.001	0.001	
20	42	0.198	0.006	0.001	0.001	

FISH AND

TON C

Landings by Region

Discards by Fleet and Region

Retained Length Compositions: Commercial

Retained Length Compositions: Commercial

Retained Length Compositions: Headboat

Retained Length Compositions: Headboat

Retained Length Compositions: MRIP

Retained Length Compositions: MRIP

Observed Length Compositions: RVC Adult

Observed Length Compositions: RVC Juvenile

Length Compositions: MRIP CPUE

Discard Length Compositions: Commercial

Discard Length Compositions: Headboat

Discard Length Compositions: MRIP

Retained Conditional Age-at-Length: Headboat

TIGH AND THE WORK

Retained Conditional Age-at-Length: Headboat

Retained Conditional Age-at-Length: Headboat

Retained Conditional Age-at-Length: MRIP

Retained Conditional Age-at-Length: MRIP

Retained Conditional Age-at-Length: MRIP

Conditional Age-at-Length: FI

Conditional Age-at-Length: FI

