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1 Introduction

Estimation of bycatch is an important problem in fisheries management.
Nichols (2004) and references therein outline the various observer programs
that have been implemented to measure the bycatch taken by the Gulf of
Mexico shrimping fleet. In an effort to use all data sources relevant to this
problem, we would like to augment direct observations of bycatch on shrimp-
ing vessels with data from abundance surveys taken by the research vessel
Oregon II. We would also like to exploit the spatial structure of the data to
improve our bycatch estimates. This report outlines a model designed to ac-
comodate these two goals. However, an MCMC approach to fitting the model
has not been successful. We will outline the model, the fitting approach, and
some possible remedies here.

In order to properly combine the different data types, we need to charac-
terize the relationship between the abundance and bycatch measurements in
a way that properly accounts for:

1. Microscale variation/measurement error for both bycatch and abun-
dance.

2. The zero-enriched character of both types of measurements.

These attributes need to be combined with a a model that accommodates
spatial structure.

Our exploratory data analysis suggests the proportion of zero measure-
ments in a locale and the average of the log non-zero measurements there
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are at least loosely related: Figure 1 shows the relationship between these
two quantities for both bycatch and abundance, for bins of size 1-degree lati-
tude by 1-degree longitude with at least 10 observations (all had at least one
non-zero observation). Least squares lines are also shown; the proportion of
non-zero measurements is a statistically significant predictor of average catch
in both cases (p=0.001 for abundance and p=0.013 for bycatch.)

In order to reflect this relationship, we model both types of measurements
as functions of an underlying Gaussian process. The probability of a non-
zero measurement is produced by a logistic model, and the value of each log
non-zero measurement is given by a linear model. (The log catch is used
throughout, to stabilize variance and give a symmetric error distribution.)

This approach is in contrast to the “delta distribution” (described in, e.g.,
Smith 1988) where the proportion of zero observations and the quantity of
fish in the non-zero observations are assumed to be unrelated. Our model
is also much more flexible than the Poisson or negative binomial model,
where the relationship between the proportion of zeroes and the other values
observed is tightly defined by the model. Also in contrast to the Poisson and
negative binomial, our model easily accommodates the continuous nature of
some of our data (resulting from extrapolation from subsampled catches).

2 Model

2.1 Mean process

Let quantities subscripted by i vary across space, by s across season, by j
across season/year, and by k across measurements at a given season, year
and place. Our Gaussian process Z has the following mean:

µis + µj

In other words, the mean consists of a spatially varying pattern for each
season, constant across years, and a mean for each year/season combination,
constant across space. The values for µis are taken from a loess smooth of
the non-zero abundance data. These loess smooths are pictured in Figures
2-4. In areas where there are not non-zero abundance measurements, we set
µis to zero, reflecting that our best guess for those areas is the yearly mean.
The µj are fit in the MCMC procedure described in Section 3.
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Figure 1: Proportion of zero observations vs average log(CPUE5) for non-
zero observations, for both abundance and bycatch measurements.
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Figure 2: Loess smooth of log(CPUE) for positive abundance measurements.
Darker areas had higher measurements. The points represent the measure-
ment locations; values for areas with few points are more uncertain.
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2.2 Covariance process

The differences (Zij’s) of the abundance index from the mean surface are cor-
related in space. Two points i and i′ are likely to have similar deviations from
the mean if they are close together. The covariance of these two differences
is described by the expression:

σ2 exp(−
√

htBh)

where h is the vector separating the 2 points, and B is a symmetric, positive
definite 2-by-2 matrix that describes a scaling and rotation of the space
between the points. This can be thought of as transforming to a new distance
measuring scheme where distance corresponds directly to correlation. For
instance, if we had a single diagonal shoreline and measured our points on a
latitude/longitude scale, we would expect B to rotate the space so that the
coordinates represented the offshore and along shore distances, and scale the
space so that the separation between points with different offshore distances
were “stretched” reflecting their lower correlation compared with points with
a similar differential in along shore distance on the original scale. This type
of correlation function is called “geometrically anisotropic.” (See Ecker and
Gelfand 1999.)

In our situation, we are dealing with a curving coastline. We will locate
each point with along shore and offshore distances to start with. Thus we
expect B to scale these distances, but not to rotate them. This corresponds
to the off-diagonal elements of B being zero.

2.3 Relation to measurements

Z represents an underlying “abundance index” which influences the measure-
ments in the following ways:

Abundance at location i = Zi + εi εi ∼ N(0, τ 2

1
) (1)

Bycatch at location i = β01 + β11Zi + εi εi ∼ N(0, τ 2

2
) (2)

Pr(Abundance measurement at location i > 0) = logit(β02 + β12Zi)(3)

Pr(Bycatch measurement at location i > 0) = logit(β03 + β13Zi)(4)

where logit(x) = exp(x)/(1 + exp(x)) These relationships are assumed to
be constant across time and space. The fitted linear relationship between
the positive bycatch and abundance is in the same spirit as the EBLUP
estimation in Jones (2004).
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2.4 Priors

Our priors are chosen using a mixture of mathematical convenience and sci-
entific knowledge. Some are parameterized using the total variance of the
abundance measurements V . The idea behind this is that the model parame-
ters together explain this total variance, so that any one of them individually
should account for only a fraction of it. The “data snooping” involved in
this does not follow the separation of prior and data prescribed by a strict
Bayesian construction. If this is of concern a large number can be plugged
in for V and a diffuse prior will be obtained.

• µj (one for each year/season combination): N(0, V ).

• σ2, uniform(0, V );

• τ 2

1
∝ 1/τ 2

1
, a standard improper prior.

• (β01, β11, τ
2

2
) ∝ 1/τ 2

2
. This is a standard improper prior for the param-

eters of a regression model. Its use simplifies the sampling of these
parameters, as explained in Section 3.

• β02, β12, β03, β13 N(0, 25) , a fairly diffuse normal prior. We do not
expect any of these to be large in absolute value.

• B11, B12 must be positive; we give them diffuse Gamma priors with
mean 1: Gamma(0.1, 0.1). (Variance of 10).

2.5 Computation Time

It was found that it was not computationally feasible to work with the avail-
able spatial information at its full resolution. The root of this problem is
the large covariance matrices that describe the Gaussian process. Each year
has different locations sampled, necessitating a different covariance matrix
be computed for every year at each iteration. In addition, several years have
upwards of 500 observations. If our ultimate goal is to estimate total by-
catch, and effort data is collected on a grid of 210 cells, understanding the
bycatch distribution on a finer spatial scale than that defined by these cells is
not necessary. Binning the data so that Z’s are computed for the bin centers
only (and variation within bins is described by the τ parameters) will mean
the same covariance matrix can be used for every year, and that matrix will
have a moderate size.
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3 Fitting Algorithm

As well as fitting the parameters, we sample values for the underlying abun-
dance index Z. We use a component-wise algorithm, where groups of param-
eters are updated conditional on the others.

• The values of Z for each time period are updated jointly by sampling
from the distribution of Z conditional on the parameters and the ob-
served positive data. The metropolis ratio for acceptance or rejection of
this proposal then boils down to the likelihood of the 0/1 data between
the new and old Z.

• σ2 is updated with a metropolis step. A new value of the form σcurrent∗
exp(u), with u uniform between -0.1 and 0.1 is proposed.

• τ 2

1
is updated with a Gibbs step sampling from its posterior conditional

on the other parameters; this is a scaled inverse χ2 distribution with
the scale factor equal to the mean squared residual (average of (Yijs −
Zijs−µj−µis)

2) and degrees of freedom equal to the number of positive
abundance measurements.

• β02, β12, β03, β13 are updated jointly with a random walk step (between
-0.1 and 0.1) proposed for each.

• β10, β11, τ
2

2
are updated by sampling from their posterior conditional

on Z. They form the parameters of a simple linear regression model
of bycatch on the imputed Z’s. With the improper prior given in
section 2.3 the posterior of τ 2

2
is scaled Inv-χ2(n − k, s2), with s2 =

1/(n−k)× (the residual sum of squares). Conditional on τ 2

2
, (β01, β11)

have a bivariate normal distribution, with mean the ordinary least
squares estimate of (β01, β11) and variance τ 2

2
Vβ. Vβ is derived from

the predictor matrix X as Vβ = (XT X)−1. (Gelman et al. 1995).

• The µj for each year are updated separately by proposing from their
posterior distribution given only the positive abundance measurements,
the corresponding Z values, and τ 2

1
, and then accepting or rejecting this

proposal based on the likelihood ratio between new and old values for
the other data.
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• B11, B22 are updated jointly with a metropolis step New values of the
form Bcurrent ∗ exp(u), with u uniform between -0.1 and 0.1 are pro-
posed.

4 Results

The model was applied to all observer data available from 1972-1982, and
the Characterization data and control net Evaluation data from both the
Regional Research Program (1992-1997) and the summer 1998 BRD evalu-
ations. The data are the same as those used in the GLM ’ALL’ updates in
the last red snapper assessment. The abundance data used were taken from
survey measurements for the same time period (1972-1998).

The results of the algorithm described in the preceding section revealed
severe mixing problems for the Z’s in years that had a substantial number of
positive measurements. A typical sample path for Z at a particular grid point
is shown in Figure 3. This picture was produced after approximately 24 hours
of computation on a Macintosh G4 Powerbook; while some speedup could be
gained using a faster machine, it would not allow enough additional iterations
to compensate for the very poor mixing. After some initial movement, almost
all the proposed Z’s are rejected. Poor mixing for the Z’s is a known property
of spatial models for binary data (Diggle et al. 1998); however it was hoped
that the information from the continuous data would allow us to generate
from good proposal distributions. In fact, in years where there is substantial
continuous data the distribution generated is narrow enough that even small
amounts of discordance between the processes implied by the binary and
continuous data results in very low acceptance probabilities for the proposed
Z’s.

An initial attempt at solving this problem was to generate the proposal
conditional not just on the continuous data, but also on an artificial data
point obtained from applying an inverse logit transformation (and the inverse
of the linear relationship between the logit value and Z) to the observed
proportion of non-zero observations. (If there were no positive observations,
the proportion 1/(2*number of samples) was used.) This was designed to
make the proposal distribution more concordant with all the data. The
acceptance/rejection probability then depends on the continuous positive
observations as well as the binary status of the observation. This procedure
only succeeded in pushing back the “sticking point” a few dozen iterations.
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Figure 3: The MCMC time series for a particular element of Z.
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There are many alterations of the MCMC algorithm that could potentially
solve the mixing problem, but none are guaranteed to work. The simplest
would be to modify the conditioning scheme that incorporates the binary
data by giving the data point representing the binary data higher weight
(essentially making it worth several data points.) This weighting may need
to be tuned based on the proportion of observations that have positive mea-
surements. Other “ad hoc” manipulations of the mean and or variance of
the proposal distribution are also possible. The method involving the biggest
departure from the current algorithm (which perhaps also has the greatest
chance of success) would be to modify the approach for spatial generalized
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linear models in Christensen et al. to accomodate our hybrid model.

5 Conclusions

While I feel the model developed has attractive properties, I was not able
to develop an adequate Markov chain Monte Carlo fitting algorithm. There
are various possibilities for modifying the MCMC algorithm, but they are
beyond the scope of the current project. We have been able to establish that
any spatial treatment of this data should use a binned version of the data
for computational efficiency.
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