SCDNR Charterboat Logbook Program Data, 1993-2013

Eric Hiltz

SEDAR41-DW32

Submitted: 25 July 2014

This information is distributed solely for the purpose of pre-dissemination peer review. It does not represent and should not be construed to represent any agency determination or policy.

Please cite this document as:

Hiltz, E. 2014. SCDNR Charterboat Logbook Program Data, 1993-2013. SEDAR41-DW32. SEDAR, North Charleston, SC. 8 pp.

SCDNR Charterboat Logbook Program Data, 1993-2013
Date: 7/25/2014
Prepared by: Eric Hiltz, South Carolina Department of Natural Resources
For: SEDAR 41 Data Workshop, August 2014

Abstract

: The South Carolina Department of Natural Resources (SCDNR) charterboat logbook program was used to develop indices of abundance for red snapper from 1993-2010. The indices of abundance are standardized catch per unit effort (CPUE; catch per angler hour). A delta-gamma GLM was used to produce annual abundance estimates. The indices are meant to describe the population trends of fish caught by V1 (6-pack) charter vessels operating in or off of South Carolina.

Background:

The South Carolina Department of Natural Resources (SCDNR) issues three types of charter vessel licenses: V1 (vessels carrying six or fewer passengers), V2 (vessels carrying 7 to 49 passengers), and V3 (vessels carrying 50 or more passengers). In 1993, SCDNR's Marine Resources Division (MRD) initiated a mandatory logbook reporting system for all charter vessels to collect basic catch and effort data. Under state law, vessel owners/operators purchasing South Carolina Charter Vessel Licenses (V1, V2, or V3) and carrying fishermen on a for-hire basis are required to submit trip level reports of their fishing activity in waters off of SC. Logbook reports are submitted by mail or fax to the SCDNR Fisheries Statistics section monthly. Reporting compliance is tracked by staff, and charter vessel owners/operators failing to submit reports can be charged with a misdemeanor. The charterboat logbook program is a complete census and should theoretically represent the total catch and effort of the charterboat trips in waters off of sc.

Logbook Data:

The charterboat logbook reports include: date, number of fishermen, fishing locale (inshore, 0-3 miles, >3miles), fishing location (based on a 10×10 mile grid map), fishing method, hours fished, target species, and catch (number of landed and released fish by species) per vessel per trip. The logbook forms have remained similar throughout the program's existence with a few exceptions: in 1999 the logbook forms were altered to begin collecting the number of fish released alive and the number of fish released dead (prior to 1999 only the total numbers of fish released were recorded) and in 2008 additional fishing methods were added to the logbook forms, including 4) cast, 5) cast and bottom, and 6) gig.

After being tracked for compliance each V1 charterboat logbook report is coded and entered into an existing Access database. (V2 and V3 charterboat logbook reports are tracked for compliance but are currently not coded and entered electronically. Most of these vessels participate in the NMFS Beaufort Headboat Logbook Survey.) Since the inception of the program, a variety of staff have coded the charterboat logbook data. From ~1999 to 2006, only information that was explicitly filled out by the charterboat owners/operators on the logbook forms was coded and entered into the database. No efforts were made to fill in incomplete reports. From 2007 to the present, staff have tried to fill in incomplete trip reports through conversations with charterboat owners/operators and by making assumptions based on the submitted data (i.e. if a location description was given instead of a grid location - a grid location was determined, if fishing method was left blank - it was determined based on catch, etc.). From 1999 to 2006 each individual trip record was reviewed to look for anomalies in the data. Starting in 2007 queries were used to look for and correct anomalous data and staff began checking a component of the database records against the raw logbook reports. Coding and QA/QC measures prior to 1999 were likely similar to those used from 1999 to the present. However, details on these procedures were not available since staff members working on this project prior to 1998 are no longer with the SCDNR. Data are not validated in the field and currently no correction factors are used to account for reporting errors. Recall periods for logbook records are typically one month or less. However, in the case of delinquent reports recall periods could be up to several months.

Data:

SCDNR charterboat logbook vessel trips included in the analysis for red snapper represent reported fishing trips that caught red snapper or other species that were caught at least 35% of the time when red snapper were caught. These species include: black seabass, vermillion snapper, triggerfishes, gag grouper, red porgy, scamp, and white grunt. For a list of percent occurrences of species when red snapper were caught see table 1.

For all model runs for, catch per unit effort was calculated as the total number of fish caught per angler-hour. Management measures (bag and size limits) have been in place for red snapper throughout most of the dataset's time series (see management histories on red snapper provided for SEDAR 41 in RD12). To limit the possible influence of bag limits, total catch (includes harvest and discards) was used to calculate the CPUE instead of harvest.

Methods:

The indices were standardized using a delta generalized linear model (GLM) approach. All analyses were conducted in R, based primarily on code adapted from Dick (2004). A delta GLM model was chosen due to the significant amount of zeros in the CPUE data. A delta model has 2 components to it. First, the probability of a positive catch is modeled. Then the positive catch rates are modeled separately. Finally, the two are multiplied together to get the predicted CPUE (Dick 2004, Li et al. 2011, Siquan et al. 2009, and Yu et al. 2011)
$\widehat{C P U E}=\hat{d} x \hat{q}$
Where $\widehat{C P U E}$ is the standardized CPUE, \hat{d} is the predicted catch rate of the positive catches, and \hat{q} is the probability of a positive catch. The models for red snapper were built assuming a gamma distribution. The model of the positive catch rates used was:
$\ln (\hat{d})=\beta_{0}+\sum_{i=1} \beta_{i} X_{i}$
Where β_{0} is the intercept and β_{i} is the coefficient for the $i^{\text {th }}$ explanatory variable X_{i}. The probability of a positive catch was modeled as:
$\ln \left(\frac{\widehat{q}}{1-\hat{q}}\right)=\alpha_{0}+\sum_{i=1} \alpha_{i} X_{i}$
Where α_{0} is the intercept and α_{i} is the coefficient for the $i^{\text {th }}$ explanatory variable X_{i}.

The modeling approach used the year and the month as explanatory variables. A Jackknife approach was used to estimate the amount of variation in the model runs as per Dick (2004).

Results:

The SCDNR charterboat logbook data used to create the index represent 23,223 fishing trips in which anglers caught 12,972 red snapper and harvested 4,450 red snapper. Summarized catch and effort data are presented in Table 2 . The indices are presented in Table 3 and Figure 2. Diagnostics for the monthly model run are found in Figures 3 and 4.

Literature Cited:

Dick, E.J. 2004. Beyond 'lognormal versus gamma': discrimination among error distributions for generalized linear models. Fisheries Research 70:351-366.
Li, Y., Jiao, Y., He, Q. 2011. Decreasing uncertainty in catch rate analyses using Delta-AdaBoost: An alternative approach in catch and bycatch analyses with high percentage of zeros. Fisheries Research 107: 261-271.
Siquan, T., Xinjun, C.,Yong, C., Liuxiong, X., Xiaojie, D. 2009. Standardizing CPUE of Ommastrephes bartramii for Chinese squid-jigging fishery in Northwest Pacific Ocean. Chinese Journal of Oceanology and Limnology 27 (4): 729-739.

Yu, Hao, Jiao, Y., and Winter, A. 2011. Catch rate standardization of yellow perch in Lake Erie: a comparison of the spatial generalized linear model and generalized additive model. Transactions of the American Fisheries Society 140 (4): 905-918.

Table 1. Species caught when red snapper were caught. Percent occurrence was calculated by trips when species in question was caught when red snapper was caught / total trips when red snapper was caught.

Species	Trips	\% Occurrence	Species	Trips	\% Occurrence
Snapper, Red, Unclassified	2455	100.00\%	Spadefish	22	0.90\%
Black Sea Bass, Unclassified	2035	82.89\%	Sheepshead	20	0.81\%
Snapper, Vermilion, Unclassified	1456	59.31\%	Tuna, Blackfin	19	0.77\%
Triggerfishes	1307	53.24\%	Grouper, Unclassified	19	0.77\%
Grouper, Gag	1293	52.67\%	Tuna, Yellowfin	17	0.69\%
Porgy, Red, Unclassified	1157	47.13\%	Banded Rudderfish	16	0.65\%
Scamp	952	38.78\%	Rays,Unc.	10	0.41\%
Grunt, White	911	37.11\%	Shark, Dogfish, Smooth	10	0.41\%
King Mackerel	816	33.24\%	Hind, Speckled	10	0.41\%
Shark, Atlantic Sharpnose	750	30.55\%	Seatrout, Gray (Weakfish)	8	0.33\%
Amberjack	593	24.15\%	Drum, Black	6	0.24\%
Dolphin	376	15.32\%	Hogfish	6	0.24\%
Pinfish, Spottail	317	12.91\%	Shark, Dogfish,Spiny	6	0.24\%
Shark, Unclassified	302	12.30\%	Hind, Rock	5	0.20\%
Porgy, Whitebone	294	11.98\%	Crevalle Jack	5	0.20\%
Grunts	265	10.79\%	Bank Sea Bass	5	0.20\%
Barracuda	244	9.94\%	Porgy, Knobbed	4	0.16\%
Grouper, Red	218	8.88\%	Shark, Bonnethead	4	0.16\%
Cobia	197	8.02\%	Shark, Bull	4	0.16\%
Porgy, Unclassified	159	6.48\%	Grouper, Warsaw	3	0.12\%
Tuna, Little	151	6.15\%	Tomtate	3	0.12\%
Flounder, Unclassified	86	3.50\%	Rudderfish	3	0.12\%
Mackerel, Spanish	73	2.97\%	Jack, Almaco	3	0.12\%
Bonito	52	2.12\%	Shark, Dusky	3	0.12\%
Wahoo	45	1.83\%	Snapper, Cubera	3	0.12\%
Grouper, Snowy	35	1.43\%	Shark, Lemon	3	0.12\%
Drum, Red	35	1.43\%	Porgy, Red, Large	3	0.12\%
Bluefish	35	1.43\%	Tilefish, Golden, Unclassified	2	0.08\%
Shark, Black Tip	28	1.14\%	Shark, Tiger	2	0.08\%
Finfish, Unclassified	27	1.10\%	Porgy, Jolthead	2	0.08\%
Sailfishes	23	0.94\%	Toadfishes	2	0.08\%

Species	Trips	\% Occurrence
Snapper, Silk	2	0.08\%
Shark, Nurse	2	0.08\%
Sea Catfish	2	0.08\%
Snapper, Yellowtail	2	0.08\%
Snapper, Unclassified	2	0.08\%
Ladyfish	2	0.08\%
King Whiting	2	0.08\%
Graysby	2	0.08\%
Blue Runner	1	0.04\%
Squirrelfishes	1	0.04\%
Snapper, Mutton	1	0.04\%
Eel, Pac.	1	0.04\%
Eels, Moray	1	0.04\%
Tarpon	1	0.04\%
Filefishes	1	0.04\%
Snapper, Blackfin	1	0.04\%
Scup	1	0.04\%
Pinfish	1	0.04\%
Sand Perch	1	0.04\%
Shark, Thresher	1	0.04\%
Shark, Dogfish	1	0.04\%
Seatrout, Spotted	1	0.04\%
Finfishes, General	1	0.04\%
Triggerfish, Queen	1	0.04\%
Rainbow Runner	1	0.04\%
Tuna, Skipjack	1	0.04\%
Marlin, Blue	1	0.04\%
Triggerfish, Grey	1	0.04\%

Table 2. Annual red snapper catch, harvest, and effort from SCDNR Charterboat Logbook Program, 1993-2013. Vessel trips were determined from the number of trips used in the index as defined above.

Year	Vessel Trips	\% Trips With Red Snapper	Red Snapper Catch (\# fish)	Red Snapper Harvest (\# fish)	Red Snapper Released (\# fish)	\% Released
1993	571	16.81\%	531	286	245	46.14\%
1994	694	15.56\%	410	189	221	53.90\%
1995	558	11.47\%	192	104	88	45.83\%
1996	715	7.97\%	174	155	19	10.92\%
1997	773	5.17\%	79	42	37	46.84\%
1998	946	11.52\%	401	222	179	44.64\%
1999	883	16.65\%	680	457	223	32.79\%
2000	1047	15.28\%	1273	343	930	73.06\%
2001	1036	18.05\%	1831	591	1240	67.72\%
2002	985	16.85\%	1238	575	663	53.55\%
2003	941	12.33\%	541	246	295	54.53\%
2004	1104	9.06\%	365	211	154	42.19\%
2005	1205	9.13\%	362	208	154	42.54\%
2006	1249	5.60\%	229	107	122	53.28\%
2007	1307	8.57\%	425	181	244	57.41\%
2008	1300	11.31\%	845	233	612	72.43\%
2009	982	12.12\%	662	247	415	62.69\%
2010	1164	11.94\%	647	1	646	99.85\%
2011	1423	9.91\%	916	19	897	97.93\%
2012	1989	5.98\%	681	17	664	97.50\%
2013	2351	4.85\%	490	16	474	96.73\%

Table 3. Red snapper catch per unit effort (catch per angler hour) for the standardized index model runs.

Year	Nominal CPUE	Standardized CPUE	SE	Upper	Lower
1993	0.21138535	0.228034666	0.058800474	0.169234193	0.28683514
1994	0.12503812	0.112603611	0.024008548	0.088595064	0.136612159
1995	0.07643312	0.068251716	0.01425174	0.053999976	0.082503457
1996	0.05335787	0.046288437	0.011625903	0.034662534	0.05791434
1997	0.02241135	0.023081839	0.009274894	0.013806945	0.032356734
1998	0.0920358	0.091752285	0.01982818	0.071924105	0.111580465
1999	0.17250127	0.174759478	0.037760517	0.136998961	0.212519996
2000	0.25665323	0.283302109	0.041945362	0.241356747	0.325247471
2001	0.38825276	0.333114983	0.053478258	0.279636725	0.386593242
2002	0.27652446	0.261014268	0.068395934	0.192618334	0.329410202
2003	0.12345961	0.182318065	0.067852277	0.114465788	0.250170342
2004	0.07224861	0.060941999	0.010441077	0.050500922	0.071383076
2005	0.06485131	0.072807797	0.014234379	0.058573417	0.087042176
2006	0.04090747	0.04868721	0.018607226	0.030079984	0.067294436
2007	0.06871463	0.070046166	0.018815039	0.051231127	0.088861205
2008	0.12733574	0.145831279	0.034917405	0.110913875	0.180748684
2009	0.14010582	0.118338725	0.028436763	0.089901961	0.146775488
2010	0.12100243	0.116740875	0.026749078	0.089991797	0.143489953
2011	0.14745654	0.146053434	0.037032182	0.109021252	0.183085617
2012	0.07858297	0.07629779	0.015503507	0.060794283	0.091801296
2013	0.04869323	0.044773705	0.009532571	0.035241134	0.054306276

Table 4. AIC values for the red snapper standardized index model run. SE is the standard error calculated from the model jack knife. \% Total CPUE is sum(SE)/sum(CPUE).

AIC	Standardized CPUE
Binomial	100.1791019
Positive	-537.157572501
Sum of SE	0.621491315
\% Total CPUE	22.98%

Figure 1. Distribution of red snapper catch from SCDNR 6-pack Charterboat Logbook data. Each square represents a 10 mile ${ }^{2}$ area. Only data from 2008-2013 were used because prior to 2008 approximately 80% of the logbook trips included in the analysis did not include location information.

Figure 2. Red snapper CPUE from SCDNR 6-pack Charterboat Logbook data from 1993-2010. Nominal (blue) and monthly standardized (green)catch per angler-hour are shown. The dotted lines show 1 standard error from the standardized CPUE.

Figure 3. Diagnostic plots for gamma component of the red snapper SCDNR 6-pack Charterboat Logbook monthly model: A. residuals plotted against predicted values; B. the cumulative normalized residuals ($Q Q$ plot); C. the residuals by year; D. the residuals by month

C

D

Figure 4. Diagnostic plots for binomial component of the red snapper SCDNR 6-pack Charterboat Logbook monthly model: A. residuals plotted against predicted values; \mathbf{B}. the cumulative normalized residuals (QQ plot); C. the residuals by year, \mathbf{D}. the residuals by month

A

C

B

D

