SEDAR 21 HMS Sandbar and Dusky Sharks

Guidelines for submitting written public comment

The intent of public comment is to allow interested parties the opportunity to address the draft reports of a SEDAR stock assessment before the report and assessment go to the Review Panel. Comments received will be reviewed by the appointed assessment panel and responded to as appropriate. The assessment panel reserves the right to make changes to the draft report in response to comments received. These documents are a draft documents. Content and formatting may change between this draft and the version that will be released to the Review Panel on April 4th, 2011.

The comment period will be open from 18 January 2011, to 2 February 2011. All comments must be in writing and submitted via US mail, fax, or by email to the appropriate address indicated below; comments sent by US mail must be postmarked by February 2, 2011. Comments will not be accepted by phone. Any comments received after February 2, 2011 will not be forwarded to the panel. Please clearly indicate that you are commenting on the "SEDAR 21 Assessment reports" in your correspondence. Please indicate which species you are commenting on: sandbar or dusky.
Comments for the SEDAR 21 HMS Sandbar and Dusky stock assessments may be submitted to the following:
Email: Sedar21comments@safmc.net Fax: (843) 769-4520

Address:

SEDAR 21 AW Comments -
4055 Faber Place Dr., Suite 201
North Charleston, SC 29405

When preparing comments for submission please keep the following guidelines in mind:

1. Relevancy. Please keep your comments concise and relevant to the assessment documents presented for comment.
a) Target specific issues,
b) Include data and facts with references,
c) Propose specific ideas or suggestions for solving any problems you identify,
d) Please comment on the assessment decisions and inputs that lead to the results, not on the results of the assessment.
2. No personal or slanderous remarks. Please be respectful and avoid personal attacks.
3. Comments should be directed to 'SEDAR 21 Assessment Panel' not to individual panel members.
4. You may submit comments anonymously.
5. All comments are considered public documents in compliance with open meeting and public record laws. All public documents will be available to the general public.

SEDAR

Southeast Data, Assessment, and Review

SEDAR 21
 Pre-Review Stock Asséssment Report

HMS Sandbar Shark

January 2011

SEDAR
4055 Faber Place Drive, Suite 201
North Charleston, SC 29405

This information is distributed solely for the purpose of peer review. It does not represent and should not be construed to represent any agency determination or policy.

$\underline{\text { Table of Contents }}$

Section 1. Introduction

Section 2. Data Workshop Report
Section 3. Assessment Workshop Report
Section 4. Research Recommendations
Section 5. Review Workshop Reports (To be added)
Section 6. Addenda and Post-Review Updates (To be added)

SEDAR

Southeast Data, Assessment, and Review

SEDAR 21

HMS Sandbar Shark

SECTION I: Introduction

SEDAR
4055 Faber Place Drive, Suite 201
North Charleston, SC 29405

This information is distributed solely for the purpose of peer review. It does not represent and should not be construed to represent any agency determination or policy.

1. SEDAR PROCESS DESCRIPTION

SouthEast Data, Assessment, and Review (SEDAR) is a cooperative Fishery Management Council process initiated in 2002 to improve the quality and reliability of fishery stock assessments in the South Atlantic, Gulf of Mexico, and US Caribbean. SEDAR seeks improvements in the scientific quality of stock assessments and the relevance of information available to address fishery management issues. SEDAR emphasizes constituent and stakeholder participation in assessment development, transparency in the assessment process, and a rigorous and independent scientific review of completed stock assessments.

SEDAR is managed by the Caribbean, Gulf of Mexico, and South Atlantic Regional Fishery Management Councils in coordination with NOAA Fisheries and the Atlantic and Gulf States Marine Fisheries Commissions. Oversight is provided by a Steering Committee composed of NOAA Fisheries representatives: Southeast Fisheries Science Center Director and the Southeast Regional Administrator; Regional Council representatives: Executive Directors and Chairs of the South Atlantic, Gulf of Mexico, and Caribbean Fishery Management Councils; and Interstate Commission representatives: Executive Directors of the Atlantic States and Gulf States Marine Fisheries Commissions.

SEDAR is organized around two workshops and a series of webinars. First is the Data Workshop, during which fisheries, monitoring, and life history data are reviewed and compiled. The second stage is the Assessment Process, which is conducted via a series of webinars, during which assessment models are developed and population parameters are estimated using the information provided from the Data Workshop. Third and final is the Review Workshop, during which independent experts review the input data, assessment methods, and assessment products. The completed assessment, including the reports of all 3 workshops and all supporting documentation, is then forwarded to the Council SSC for certification as 'appropriate for management' and development of specific management recommendations.

SEDAR workshops are public meetings organized by SEDAR staff and the lead Cooperator. Workshop participants are drawn from state and federal agencies, non-government organizations, Council members, Council advisors, and the fishing industry with a goal of including a broad range of disciplines and perspectives. All participants are expected to contribute to the process by preparing working papers, contributing, providing assessment analyses, and completing the workshop report.

SEDAR Review Workshop Panels consist of a chair, 3 reviewers appointed by the Center for Independent Experts (CIE), and three reviewers appointed from the SSC of the Council having jurisdiction over the stocks being assessed. The Review Workshop Chair is appointed by the Council from their SSC. Participating councils may appoint additional representatives of their SSC, Advisory, and other panels as observers.

2. MANAGEMENT OVERVIEW

2.1 FISHERY MANAGEMENT PLAN AND AMENDMENTS

Given the interrelated nature of the shark fisheries, the following section provides an overview of shark management primarily since 1993 through 2009 for sandbar, dusky, and blacknose sharks. The following summary focuses only on those management actions that likely affect these three species. The latter part of the document is organized according to individual species. The management measures implemented under fishery management plans and amendments are also summarized in Table 1.

The U.S. Atlantic shark fisheries developed rapidly in the late 1970s due to increased demand for their meat, fins, and cartilage worldwide. At the time, sharks were perceived to be underutilized as a fishery resource. The high commercial value of shark fins led to the controversial practice of "finning," or removing the valuable fins from sharks and discarding the carcasses. Growing demand for shark products encouraged expansion of the commercial fishery throughout the late 1970s and the 1980s. Tuna and swordfish vessels began to retain a greater proportion of their shark incidental catch and some directed fishery effort expanded as well.

Preliminary Fishery Management Plan (PMP) for Atlantic Billfish and Sharks

In January 1978, NMFS published the Preliminary Fishery Management Plan (PMP) for Atlantic Billfish and Sharks (43 FR 3818), which was supported by an Environmental Impact Statement (EIS) (42 FR 57716). This PMP was a Secretarial effort. The management measures contained in the plan were designed to:

1. Minimize conflict between domestic and foreign users of billfish and shark resources;
2. Encourage development of an international management regime; and
3. Maintain availability of billfishes and sharks to the expanding U.S. fisheries.

Primary shark management measures in the Atlantic Billfish and Shark PMP included:

- Mandatory data reporting requirements for foreign vessels;
- A hard cap on the catch of sharks by foreign vessels, which when achieved would prohibit further landings of sharks by foreign vessels;
- Permit requirements for foreign vessels to fish in the Fishery Conservation Zone (FCZ) of the United States;
- Radio checks by foreign vessels upon entering and leaving the FCZ;
- Boarding and inspection privileges for U.S. observers; and
- Prohibition on intentional discarding of fishing gears by foreign fishing vessels within the FCZ that may pose environmental or navigational hazards.

In the 1980s, the Regional Fishery Management Councils were responsible for the management of Atlantic highly migratory species (HMS). Thus, in 1985 and 1988, the five Councils finalized joint FMPs for swordfish and billfish, respectively. As catches accelerated through the 1980s, shark stocks started to show signs of decline. Peak commercial landings of large coastal and pelagic sharks were reported in 1989. In 1989, the five Atlantic Fishery Management Councils asked the Secretary of Commerce (Secretary) to develop a Shark Fishery Management Plan (FMP). The Councils were concerned about the late maturity and low fecundity of sharks, the increase in fishing mortality, and the possibility of the resource being overfished. The Councils requested that the FMP cap commercial fishing effort, establish a recreational bag limit, prohibit finning, and begin a data collection system.

On November 28, 1990, the President of the United States signed into law the Fishery Conservation Amendments of 1990 (Pub. L. 101-627). This law amended the Magnuson Fishery Conservation and Management Act (later renamed the Magnuson-Stevens Fishery Conservation and Management Act or Magnuson-Stevens Act) and gave the Secretary the authority (effective January 1, 1992) to manage HMS in the exclusive economic zone (EEZ) of the Atlantic Ocean, Gulf of Mexico, and Caribbean Sea under authority of the Magnuson-Stevens Act (16 U.S.C. §1811). This law also transferred from the Fishery Management Councils to the Secretary, effective November 28, 1990, the management authority for HMS in the Atlantic Ocean, Gulf of Mexico, and Caribbean Sea (16 U.S.C. §1854(f)(3)). At this time, the Secretary delegated authority to manage Atlantic HMS to NMFS.

1993 Fishery Management Plan for Sharks of the Atlantic Ocean (1993 FMP)

In 1993, the Secretary of Commerce, through NMFS, implemented the FMP for Sharks of the Atlantic Ocean. The management measures in the 1993 FMP included:

- Establishing a fishery management unit (FMU) consisting of 39 frequently caught species of Atlantic sharks, separated into three groups for assessment and regulatory purposes (Large Coastal Sharks (LCS), Small Coastal Sharks (SCS), and pelagic sharks) ${ }^{1}$;
- Establishing calendar year commercial quotas for the LCS and pelagic sharks and dividing the annual quota into two equal half-year quotas that applied to the following two fishing periods - January 1 through June 30 and July 1 through December 31;
- Establishing a recreational trip limit of four sharks per vessel for LCS or pelagic shark species groups and a daily bag limit of five sharks per person for sharks in the SCS species group;
- Requiring that all sharks not taken as part of a commercial or recreational fishery be released uninjured;

[^0]- Establishing a framework procedure for adjusting commercial quotas, recreational bag limits, species size limits, management unit, fishing year, species groups, estimates of maximum sustainable yield (MSY), and permitting and reporting requirements;
- Prohibiting finning by requiring that the ratio between wet fins/dressed carcass weight not exceed five percent;
- Prohibiting the sale by recreational fishermen of sharks or shark products caught in the Economic Exclusive Zone (EEZ);
- Requiring annual commercial permits for fishermen who harvest and sell shark products (meat products and fins);
- Establishing a permit eligibility requirement that the owner or operator (including charter vessel and headboat owners/operators who intend to sell their catch) must show proof that at least 50 percent of earned income has been derived from the sale of the fish or fish products or charter vessel and headboat operations or at least \$20,000 from the sale of fish during one of three years preceding the permit request;
- Requiring trip reports by permitted fishermen and persons conducting shark tournaments and requiring fishermen to provide information to NMFS under the Trip Interview Program; and,
- Requiring NMFS observers on selected shark fishing vessels to document mortality of marine mammals and endangered species.
At that time, NMFS identified LCS as overfished and established the quota at 2,436 metric tons (mt) dressed weight (dw) based on a 1992 stock assessment. Under the rebuilding plan established in the 1993 FMP, the LCS quota was expected to increase in 1994 and 1995 up to the MSY estimated in the 1992 stock assessment $(3,800 \mathrm{mt} \mathrm{dw})$.

In 1994, under the rebuilding plan implemented in the 1993 FMP, the LCS quota was increased to 2,570 mt dw. Additionally, a new stock assessment was completed in March 1994. This stock assessment focused on LCS, suggested that recovery to the levels of the 1970s could take as long as 30 years, and concluded that "increases in the [Total Allowable Catch (TAC)] for sharks [are] considered risk-prone with respect to promoting stock recovery." A final rule that capped quotas for LCS at the 1994 levels was published on May 2, 1995 (60 FR 21468).

1999 Fishery Management Plan for Atlantic Tunas, Swordfish and Sharks (1999 FMP)

In June 1996, NMFS convened another stock assessment to examine the status of LCS stocks. The 1996 stock assessment found no clear evidence that LCS stocks were rebuilding and concluded that "[a]nalyses indicate that recovery is more likely to occur with reductions in effective fishing mortality rate of 50 [percent] or more." In addition, in 1996, amendments to the Magnuson-Stevens Act modified the definition of overfishing and established new provisions to halt overfishing and rebuild overfished stocks, minimize bycatch and bycatch mortality to the extent practicable, and identify and protect essential fish habitat. Accordingly, in 1997, NMFS began the process of creating a rebuilding plan for overfished HMS, including LCS, consistent
with the new provisions. In addition, in 1995 and 1997, new quotas were established for LCS and SCS (see Section 2.0 below). In June 1998, NMFS held another LCS stock assessment. The 1998 stock assessment found that LCS were overfished and would not rebuild under 1997 harvest levels. Based in part on the results of the 1998 stock assessment, in April 1999, NMFS published the final 1999 FMP, which included numerous measures to rebuild or prevent overfishing of Atlantic sharks in commercial and recreational fisheries. The 1999 FMP amended and replaced the 1993 FMP. Management measures related to sharks that changed in the 1999 FMP included:

- Reducing commercial LCS and SCS quotas;
- Establishing ridgeback and non-ridgeback categories of LCS;
- Implementing a commercial minimum size for ridgeback LCS;
- Establishing blue shark, porbeagle shark, and other pelagic shark subgroups of the pelagic sharks and establishing a commercial quota for each subgroup;
- Reducing recreational retention limits for all sharks;
- Establishing a recreational minimum size for all sharks except Atlantic sharpnose;
- Expanding the list of prohibited shark species to 19 species, including dusky sharks ${ }^{2}$;
- Added deepwater sharks to the fishery management unit;
- Established EFH for 39 species of sharks;
- Implementing limited access in commercial fisheries;
- Establishing a shark public display quota;
- Establishing new procedures for counting dead discards and state landings of sharks after Federal fishing season closures against Federal quotas; and
- Establishing season-specific over- and underharvest adjustment procedures.

The implementing regulations were published on May 28, 1999 (64 FR 29090). However, in 1999, a court enjoined implementation of the 1999 regulations, as they related to the ongoing litigation on the 1997 quotas. As such, many of the regulations in the 1999 FMP had a delayed implementation or were never implemented. These changes are explained below under Section 2.0.

2003 Amendment 1 to 1999 FMP for Atlantic Tunas, Swordfish, and Sharks (Amendment 1)

In 2002, additional LCS and SCS stock assessments were conducted. Based on these assessments, NMFS re-examined many of the shark management measures in the 1999 FMP for Atlantic Tunas, Swordfish, and Sharks. The changes in Amendment 1 affected all aspects of

[^1]shark management. The final management measures (December 24, 2003, 68 FR 74746) selected in Amendment 1 included, among other things:

- Aggregating the large coastal shark complex;
- Using maximum sustainable yield as a basis for setting commercial quotas;
- Eliminating the commercial minimum size;
- Establishing regional commercial quotas and trimester commercial fishing seasons, adjusting the recreational bag and size limits, establishing gear restrictions to reduce bycatch or reduce bycatch mortality;
- Establishing a time/area closure off the coast of North Carolina;
- Removing the deepwater/other sharks from the management unit;
- Establishing a mechanism for changing the species on the prohibited species list;
- Updating essential fish habitat identifications for five species of sharks; and,
- Changing the administration for issuing permits for display purposes.

2006 Consolidated HMS FMP

NMFS issued two separate FMPs in April 1999 for the Atlantic HMS fisheries. The 1999 Fishery Management Plan for Atlantic Tunas, Swordfish, and Sharks combined, amended, and replaced previous management plans for swordfish and sharks, and was the first FMP for tunas. Amendment 1 to the Billfish Management Plan updated and amended the 1988 Billfish FMP. The 2006 Consolidated HMS FMP consolidated the management of all Atlantic HMS into one comprehensive FMP, adjusted the regulatory framework measures, continued the process for updating HMS EFH, and combined and simplified the objectives of the previous FMPs.

In 2005, NMFS released the draft Consolidated HMS FMP. In July 2006, the final Consolidated HMS FMP was completed and the implementing regulations were published on October 2, 2006 (71 FR 58058). Measures that were specific to the shark fisheries included:

- Mandatory workshops and certifications for all vessel owners and operators that have pelagic longline (PLL) or bottom longline (BLL) gear on their vessels and that had been issued or were required to be issued any of the HMS limited access permits (LAPs) to participate in HMS longline and gillnet fisheries. These workshops provide information and ensure proficiency with using required equipment to handle release and disentangle sea turtles, smalltooth sawfish, and other non-target species;
- Mandatory Atlantic shark identification workshops for all federally permitted shark dealers to train shark dealers to properly identify shark carcasses;
- Differentiation between PLL and BLL gear based upon the species composition of the catch onboard or landed;
- The requirement that the $2^{\text {nd }}$ dorsal fin and the anal fin remain on all sharks through landing; and,
- Prohibition on the sale or purchase of any HMS that was offloaded from an individual vessel in excess of the retention limits specified in §§ 635.23 and 635.24.

The 2006 Consolidated HMS FMP also included a plan for preventing overfishing of finetooth sharks by expanding observer coverage, collecting more information on where finetooth sharks are being landed, and coordinating with other fisheries management entities that are contributing to finetooth shark fishing mortality.

2008 Amendment 2 to the 2006 Consolidated HMS FMP

In 2005/2006, new stock assessments were conducted on the LCS complex, sandbar, blacktip, porbeagle, and dusky sharks. Based on the results of those assessments, NMFS amended the 2006 Consolidated HMS FMP. On April 10, 2008, NMFS released the Final EIS for Amendment 2 to the Consolidated HMS FMP. Assessments for dusky (Carcharhinus obscurus) and sandbar (C. plumbeus) sharks indicated that these species were overfished with overfishing occurring and that porbeagle sharks (Lamna nasus) were overfished. NMFS implemented management measures consistent with recent stock assessments for sandbar, porbeagle, dusky, blacktip (C. limbatus) and the LCS complex. The implementing regulations were published on June 24, 2008 (73 FR 35778; corrected version published July 15, 2008; 73 FR 40658). Management measures implemented in Amendment 2 included:

- Initiating rebuilding plans for porbeagle, dusky, and sandbar sharks consistent with stock assessments;
- Implementing commercial quotas and retention limits consistent with stock assessment recommendations to prevent overfishing and rebuild overfished stocks;
- Modifying recreational measures to reduce fishing mortality of overfished/overfishing stocks;
- Modifying reporting requirements;
- Modifying timing of shark stock assessments;
- Clarifying timing of release for annual Stock Assessment and Fishery Evaluation (SAFE) reports;
- Updating dehooking requirements for smalltooth sawfish;
- Requiring that all Atlantic sharks be offloaded with fins naturally attached;
- Collecting shark life history information via the implementation of a sandbar shark research program; and,
- Implementing time/area closures recommended by the South Atlantic Fishery Management Council.

2010 Amendment 3 to the 2006 Consolidated HMS FMP (Amendment 3)

An SCS stock assessment was finalized during the summer of 2007, which assessed finetooth, Atlantic sharpnose, blacknose, and bonnethead sharks separately. Based on these assessments, NMFS determined that blacknose sharks were overfished with overfishing occurring; however, Atlantic sharpnose, bonnethead, and finetooth sharks were not overfished and overfishing was not occurring, and NMFS issued a Notice of Intent (NOI) announcing its intent to amend the 2006 Consolidated HMS FMP in order to rebuild blacknose sharks, among other things (May 7, 2008, 73 FR 25665).

On July 24, 2009 (74 FR 36706 and 74 FR 36892), the draft EIS and proposed rule were released, which considered a range of alternative management measures from several different topics including small coastal sharks (SCS) commercial quotas, commercial gear restrictions, pelagic shark effort controls, recreational measures for SCS and pelagic sharks, and smooth dogfish management measures. In order to rebuild blacknose sharks, NMFS proposed to establish a new blacknose shark specific quota of 14.9 mt dw and establish a new non-blacknose SCS quota of 56.9 mt dw . In addition, NMFS proposed to prohibit the landings of all sharks from South Carolina south using gillnet gear, and prohibit the landing of blacknose sharks in the recreational shark fishery. However, based on additional data and analyzes and public comment, in the final EIS (75 FR 13276, March 19, 2010), NMFS preferred to implement a blacknose shark specific quota of 19.9 mt dw and establish a new non-blacknose SCS quota of 221.6 mt dw while allowing sharks to be landed with gillnet gear and recreational anglers to be able to retain blacknose sharks, as long as they meet the minimum recreational size limit. The final rule for this action is anticipated in early summer of 2010. Therefore, while these regulations will not be in place during the time series of data considered for the 2010 blacknose assessment; however, changes in fishing practices in 2009 by SCS fishermen, particularly in the gillnet fishery, may have occurred even in the absence of regulation due to the proposed actions in the draft EIS for Amendment 3.

Table 1 FMP Amendments and regulations affecting sandbar, dusky, and blacknose sharks

Effective Date	FMP/Amendment	Description of Action
January 1978	Preliminary Fishery Management Plan (PMP) for Atlantic Billfish and Sharks	- Mandatory data reporting requirements for foreign vessels; and, - Established a hard cap on the catch of sharks by foreign vessels, which when achieved would prohibit further landings of sharks by foreign vessels
Most parts effective April 26, 1993, such as quotas, complexes, etc. Finning prohibition effective May 26, 1993. Need to have permit, report landings, and carry observers effective July $1,1993$.	FMP for Sharks of the Atlantic Ocean	- Established a fishery management unit (FMU) consisting of 39 frequently caught species of Atlantic sharks, separated into three groups for assessment and regulatory purposes (LCS, SCS, and pelagic sharks); - Established calendar year commercial quotas for the LCS (2,436 mt dw) and pelagic sharks (580 mt dw) and divided the annual quota into two equal half-year quotas that apply to the following two fishing periods January 1 through June 30 and July 1 through December 31; - Establishing a recreational trip limit of 4 LCS \& pelagic sharks/vessel and a daily bag limit of 5 SCS/person; - Prohibited finning by requiring that the ratio between wet fins/dressed carcass weight not exceed five percent; - Prohibited the sale by recreational fishermen of sharks or shark products caught in the Economic Exclusive Zone (EEZ); - Required annual commercial permits for fishermen who harvest and sell shark (meat products and fins); and, - Requiring trip reports by permitted fishermen and persons conducting shark tournaments and requiring fishermen to provide information to NMFS under the Trip Interview Program. Other management measures included: establishing a framework procedure for adjusting commercial quotas, recreational bag limits, species size limits, management unit, fishing year, species groups, estimates of maximum sustainable yield (MSY), and permitting and reporting requirements; establishing a permit eligibility requirement that the owner or operator (including charter vessel and headboat owners/operators who intend to sell their catch); and requiring NMFS observers on selected shark fishing vessels to document mortality of marine mammals and endangered species.
$\begin{aligned} & \text { July 1, } 1999 \\ & \text {-Limited } \\ & \text { access permits } \\ & \text { issued } \\ & \text { immediately; } \\ & \text { application } \\ & \text { and appeals } \\ & \text { processed over } \\ & \text { the next year } \\ & \text { (measures in } \\ & \text { italics were } \\ & \text { delayed) } \end{aligned}$	FMP for Atlantic Tunas, Swordfish and Sharks	- Implemented limited access in commercial fisheries; - Reduced commercial LCS and SCS quotas to $1,285 \mathrm{mt} \mathrm{dw}$ and $1,760 \mathrm{mt}$ dw, respectively; - Reduced recreational retention limits for all sharks to 1 shark/vessel/trip except for Atlantic sharpnose (1 Atlantic sharpnose/person/trip); - Established a recreational minimum size for all sharks except Atlantic sharpnose (4.5 feet); - Established a shark public display quota (60 mt ww); - Expanded the list of prohibited shark species (in addition to sand tiger, bigeye sand tiger, basking, whale, and white sharks, prohibited Atlantic angel, bigeye sixgill, bigeye thresher, bignose, Caribbean reef, Caribbean sharpnose, dusky, galapagos, longfin mako, narrowtooth, night, sevengill, sixgill, smalltail sharks) (effective July 1, 2000); - Established blue shark, porbeagle shark, and other pelagic shark subgroups of the pelagic sharks and establishing a commercial quota for each subgroup(blue shark=273 mt dw; porbeagle shark=92 mt dw; other pelagics=488 mt dw) (effective January 1, 2001); - Established new procedures for counting dead discards and state landings

Effective Date	FMP/Amendment	Description of Action
		of sharks after Federal fishing season closures against Federal quotas; and established season-specific over- and underharvest adjustment procedures (effective January 1, 2003); - Established ridgeback and non-ridgeback categories of LCS (annual quotas of 783 mt dw for non-ridgeback LCS \& 931 mt dw for ridgeback LCS; effective January 1, 2003; suspended after 2003 fishing year); and, - Implemented a commercial minimum size for ridgeback LCS (suspended).
February 1, 2004, except LCS and SCS quotas, and recreational retention and size limits, which were delayed	Amendment 1 to the FMP for Atlantic Tunas, Swordfish and Sharks	- Removed the deepwater/other sharks from the management unit; - Aggregated the large coastal shark complex; - Eliminated the commercial minimum size; - Established gear restrictions to reduce bycatch or reduce bycatch mortality (allowed only handline and rod and reel in recreational shark fishery); - Used maximum sustainable yield as a basis for setting commercial quotas $($ LCS quota $=1,017 \mathrm{mt} \mathrm{dw}$; SCS quota $=454 \mathrm{mt} \mathrm{dw})($ effective December 30, 2003); - Adjusted the recreational bag and size limits (allowed 1 bonnethead/person/trip in addition to 1 Atlantic sharpnose/person/trip with no size limit for bonnethead or Atlantic sharpnose) (effective December 30, 2003); - Established regional commercial quotas and trimester commercial fishing seasons (trimesters not implemented until January 1, 2005; 69 FR 6964); and, - Established a time/area closure off the coast of North Carolina (effective January 1, 2005). Other management measures included: establishing a mechanism for changing the species on the prohibited species list; updating essential fish habitat identifications for five species of sharks; requiring the use of non-stainless steel corrodible hooks and the possession of line cutters, dipnets, and approved dehoôking device on BLL vessels; requiring vessel monitoring systems (VMS) for fishermen operating near the time/area closures off North Carolina and on gillnet vessels operating during the right whale calving season and, changing the administration for issuing display permits.
November 1, 2006, except for workshops	Consolidated HMS FMP	- Differentiation between PLL and BLL gear based upon the species composition of the catch onboard or landed; - The requirement that the $2^{\text {nd }}$ dorsal fin and the anal fin remain on all sharks through landing; - Mandatory workshops and certifications for all vessel owners and operators that have PLL or BLL gear on their vessels for fishermen with HMS LAPs (effective January 1, 2007); and - Mandatory Atlantic shark identification workshops for all Federally permitted shark dealers (effective January 1, 2007).
July 24, 2008	Amendment 2 to the 2006 Consolidated HMS FMP	- Initiating rebuilding plans for porbeagle, dusky, and sandbar sharks consistent with stock assessments; - Established a shark research fishery which collects shark life history information; - Implemented commercial quotas and retention limits consistent with stock assessment recommendations to prevent overfishing and rebuild overfished stocks (sandbar research annual quota $=87.9 \mathrm{mt} \mathrm{dw}$; nonsandbar LCS annual research quota $=37.5 \mathrm{mt} \mathrm{dw}$; GOM regional nonsandbar LCS annual quota $=390.5 \mathrm{mt} \mathrm{dw}$; ATL regional non-sandbar LCS annual quota $=187.8 \mathrm{mt} \mathrm{dw}$; retention limit $=33$ non-sandbar

Effective Date	FMP/Amendment	Description of Action
		LCS/vessel/trip outside of shark research fishery with no sandbar shark retention; sandbar retention only allowed within shark research fishery. Trip limits within research fishery were as follows: 2008-2,750 lb dw/trip of LCS of which no more than $2,000 \mathrm{lb}$ dw could be sandbar sharks; 200945 sandbar and 33 non-sandbar LCS/trip: 2010-33 sandbar/trip and 33 non-sandbar/trip; - Modified recreational measures to reduce fishing mortality of overfished/overfishing stocks (prohibiting the retention of silky and sandbar sharks for recreational anglers); - Required that all Atlantic sharks be offloaded with fins naturally attached; and, - Implemented BLL time/area closures recommended by the South Atlantic Fishery Management Council. - Other management measures included: modifying reporting requirements (dealer reports must be received by NMFS within 10 days of the reporting period), and modifying timing of shark stock assessments.
Expected 2010	Amendment 3 to the 2006 Consolidated HMS FMP	- Preferred actions include establishing a non-blacknose SCS quota of 221.6 mt and a blacknose-specific quota of 19.9 mt ; and, - Proposed a prohibition of landing sharks in gillnets from South Carolina south in July 2009.

Emergency and Other Major Rules

Rules in Relation to 1993 FMP

A number of difficulties arose in the initial year of implementation of the 1993 FMP that resulted in a short season and low ex-vessel prices. First, the January to June semi-annual LCS quota was exceeded shortly after implementation of the FMP, and that portion of the commercial fishery was closed on May 10, 1993. The LCS fishery reopened on July 1, 1993, with an adjusted quota of 875 mt dw (see Table 3 below). Derby-style fishing, coupled with what some participants observed to be an unusual abundance or availability of sharks, led to an intense and short fishing season for LCS, with the fishery closing within one month. Although fin prices remained strong throughout the brief season, the oversupply of shark carcasses led to reports of record low prices. The closure was significantly earlier than expected, and a number of commercial fishermen and dealers indicated that they were adversely affected. The intense season also complicated the task of monitoring the LCS quota and closing the season with the required advance notice.

To address these problems, a commercial trip limit of $4,000 \mathrm{lb}$ for permitted vessels for LCS was implemented on December 28, 1993 (58 FR 68556), and a control date for the Atlantic shark fishery was established on February 22, 1994 (59 FR 8457). A final rule to implement additional measures authorized by the 1993 FMP published on October 18, 1994 (59 FR 52453), which:

- Clarified operation of vessels with a Federal commercial permit;
- Established the fishing year;
- Consolidated the regulations for drift gillnets;
- Required dealers to obtain a permit to purchase sharks;
- Required dealer reports;
- Established recreational bag limits;
- Established quotas for commercial landings; and
- Provided for commercial fishery closures when quotas were reached.

A final rule that capped quotas for LCS (2,570 mt dw) and pelagic sharks (580 mt dw) at the 1994 levels was published on May 2, 1995 (60 FR 21468).

In response to a 1996 LCS stock assessment, in 1997, NMFS reduced the LCS commercial quota by 50 percent to $1,285 \mathrm{mt} \mathrm{dw}$ and the recreational retention limit to two LCS, SCS, and pelagic sharks combined per trip with an additional allowance of two Atlantic sharpnose sharks per person per trip (62 FR 16648, April 2, 1997). In this same rule, NMFS established an annual commercial quota for SCS of $1,760 \mathrm{mt}$ dw and prohibited possession of five LCS: sand tiger, bigeye sand tiger, whale, basking, and white sharks. On May 2, 1997, the Southern Offshore Fishing Association (SOFA) and other commercial fishermen and dealers sued the Secretary of Commerce (Secretary) on the April 1997 regulations.

In May 1998, NMFS completed its consideration of the economic effects of the 1997 LCS quotas on fishermen and submitted the analysis to the court. NMFS concluded that the 1997 LCS quotas may have had a significant economic impact on a substantial number of small entities and that there were no other available alternatives that would both mitigate those economic impacts and ensure the viability of the LCS stocks. Based on these findings, the court allowed NMFS to maintain those quotas while the case was settled in combination with litigation mentioned below regarding the 1999 FMP.

Rules in Relation to the 1999 FMP

The implementing regulations for the 1999 FMP were published on May 28, 1999 (64 FR 29090). At the end of June 1999, NMFS was sued several times by several different entities regarding the commercial and recreational management measures in the 1999 FMP. Due to the overlap of one of those lawsuits with the 1997 litigation, on June 30, 1999, NMFS received a court order enjoining it from enforcing the 1999 regulations with respect to Atlantic shark commercial catch quotas and fish-counting methods (including the counting of dead discards and state commercial landings after Federal closures), which were different from the quotas and fish counting methods prescribed by the 1997 Atlantic shark regulations. A year later, on June 12, 2000, the court issued an order clarifying that NMFS could proceed with implementation and enforcement of the 1999 prohibited species provisions (64 FR 29090, May 28, 1999).

On September 25, 2000, the United States District Court for the District of Columbia ruled against the plaintiffs regarding the commercial pelagic shark management measures,
stating that the regulations were consistent with the Magnuson-Stevens Act and the Regulatory Flexibility Act. On September 20, 2001, the same court ruled against different plaintiffs regarding the recreational shark retention limits in the 1999 FMP, again stating that the regulations were consistent with the Magnuson-Stevens Act.

On November 21, 2000, SOFA et al. and NMFS reached a settlement agreement for the May 1997 and June 1999 lawsuits. On December 7, 2000, the United States District Court for the Middle District of Florida entered an order approving the settlement agreement and lifting the injunction. The settlement agreement required, among other things, an independent (i.e., nonNMFS) review of the 1998 LCS stock assessment. The settlement agreement did not address any regulations affecting the pelagic shark, prohibited species, or recreational shark fisheries. Once the injunction was lifted, on January 1, 2001, the pelagic shark quotas adopted in the 1999 FMP were implemented (66 FR 55). Additionally, on March 6, 2001, NMFS published an emergency rule implementing the settlement agreement (66 FR 13441). This emergency rule expired on September 4, 2001, and established the LCS (1,285 mt dw) and SCS commercial quotas ($1,760 \mathrm{mt} \mathrm{dw}$) at 1997 levels.

In late 2001, the Agency received the results of the independent peer review of the 1998 LCS stock assessment. These peer reviews found that the 1998 LCS stock assessment was not the best available science for LCS. Taking into consideration the settlement agreement, the results of the peer reviews of the 1998 LCS stock assessment, current catch rates, and the best available scientific information (not including the 1998 stock assessment projections), NMFS implemented another emergency rule for the 2002 fishing year that suspended certain measures under the 1999 regulations pending completion of new LCS and SCS stock assessments and a peer review of the new LCS stock assessment (66 FR 67118, December 28, 2001; extended 67 FR 37354, May 29, 2002). Specifically, NMFS maintained the 1997 LCS commercial quota (1,285 mt dw), maintained the 1997 SCS commercial quota (1,760 mt dw), suspended the commercial ridgeback LCS minimum size, suspended counting dead discards and state landings after a Federal closure against the quota, and replaced season-specific quota accounting methods with subsequent-season quota accounting methods. That emergency rule expired on December 30, 2002.

On May 28, 2002 (67 FR 36858), NMFS announced the availability of a modeling document that explored the suggestions of the CIE and NRC peer reviews on LCS. Then NMFS held a 2002 LCS stock assessment workshop in June 2002. On October 17, 2002, NMFS announced the availability of the 2002 LCS stock assessment and the workshop meeting report (67 FR 64098). The results of this stock assessment indicated that the LCS complex was still overfished and overfishing was occurring. Additionally, the 2002 LCS stock assessment found that sandbar sharks were no longer overfished but that overfishing was still occurring and that blacktip sharks were rebuilt and overfishing was not occurring. In addition, on May 8, 2002, NMFS announced the availability of a SCS stock assessment (67 FR 30879). The Mote Marine Laboratory and the University of Florida provided NMFS with another SCS assessment in

August 2002. Both of these stock assessments indicated that finetooth sharks were experiencing overfishing while the three other species in the SCS complex (Atlantic sharpnose, bonnethead, and blacknose) were not overfished and overfishing was not occurring.

Based on the results of both the 2002 SCS and LCS stock assessments, NMFS implemented an emergency rule to ensure that the commercial management measures in place for the 2003 fishing year were based on the best available science (67 FR 78990, December 27, 2002; extended 68 FR 31987, May 29, 2003). Specifically, the emergency rule implemented the LCS ridgeback/non-ridgeback split established in the 1999 FMP (the ridgeback quota was set at 783 mt dw and the non-ridgeback quota was set at 931 mt dw), suspended the commercial ridgeback LCS minimum size, and allowed both the season-specific quota adjustments and the counting of all mortality measures to go into place, and reduced the SCS annual commercial quota to 325 mt dw . Additionally, NMFS announced its intent to conduct an EIS and amend the 1999 FMP (67 FR 69180, November 15, 2002).

The emergency rule was an interim measure to maintain the status of LCS pending the reevaluation of management measures in the context of the rebuilding plan through the amendment to the 1999 FMP. The emergency rule for the 2003 fishing year implemented for the first and only time the classification system (ridgeback/non-ridgeback LCS) finalized in the 1999 FMP. Table 5 indicates which LCS were considered ridgeback and which non-ridgeback. NMFS also implemented for the first time a provision to count state landings after a Federal closure and to count dead discards against the quota. To calculate the commercial quotas for these groups, NMFS took the average landings for individual species from 1999 through 2001 and either increased them or decreased them by certain percentages, as suggested by scenarios presented in the stock assessment. Because the stock assessment scenarios suggested that an increase in catch for blacktip sharks would not cause overfishing and that maintaining the sandbar sharks would not increase overfishing (the two primary species in the LCS fishery), this method resulted in an increase in the overall quota for the length of the emergency rule. During the comment period on the emergency rule and scoping for this amendment, NMFS received comments regarding, among other things, the quota levels under the rule, concern over secondary species and discards, the ability of fishermen to target certain species, and impacts of the different season length for ridgeback and non-ridgeback LCS. NMFS responded to these comments when extending the emergency rule and further considered these comments when examining the alternatives presented in the Amendment to the 1999 FMP.

NMFS received the results of the peer review of the 2002 LCS stock assessment in December 2002. These reviews were generally positive.

Rules in Relation to 2003 Amendment 1

Based on the 2002 LCS stock assessment, NMFS re-examined many of the shark management measures in the 1999 FMP for Atlantic Tunas, Swordfish, and Sharks. The changes in Amendment 1
affected all aspects of shark management. Shortly after the final rule for Amendment 1 was published, NMFS conducted a rulemaking that adjusted the percent quota for each region, changed the seasonal split for the North Atlantic based on historical landing patterns, finalized a method of changing the split between regions and/or seasons as necessary to account for changes in the fishery over time, and established a method to adjust from semi-annual to trimester seasons (November 30, 2004, 69 FR 6954).

Rules to Reduce Bycatch and Bycatch Mortality in the Atlantic PLL Fishery

Pelagic longline is not a primary gear used to target LCS or SCS; however, sandbar and dusky sharks, in particular, are often caught on PLL gear, which targets swordfish and tuna. Therefore, regulations affecting the PLL fishery could also result in changes in dusky and/or sandbar catches. In the 1999 FMP, NMFS committed to implement a closed area to PLL gear that would effectively protect small swordfish. NMFS began to work towards this goal shortly after the publication of the 1999 FMP. After the publication of the 1999 FMP, NMFS was sued by several entities who felt, among other things, that the Agency had not done enough to reduce bycatch in HMS fisheries. As a result, NMFS expanded the goal of the rule to reduce all bycatch and bycatch mortality, to the extent practicable, in the HMS PLL fishery. The following objectives were developed to guide agency action for this goal:

- Maximize the reduction in finfish bycatch;
- Minimize the reduction in the target catch of swordfish and other species;
- Consider impacts on the incidental catch of other species to minimize or reduce incidental catch levels; and
- Optimize survival of bycatch and incidental catch species.

NMFS published the final rule implementing the first regulatory amendment to the 1999 FMP on August 1, 2000 (65 FR 47214), which closed three large areas (DeSoto Canyon, Florida East Coast, and Charleston Bump) and prohibited the use of live bait in the Gulf of Mexico. The DeSoto Canyon closure was effective on November 1, 2000. The other closures were effective March 1, 2001.

During the course of this rulemaking, the PLL fleet exceeded the Incidental Take Statement (ITS) for sea turtles established during the Endangered Species Act (ESA) Section 7 Consultation for the 1999 FMP. That, combined with new information on sea turtles and the uncertainty regarding what the closures would mean for sea turtles, resulted in a new Biological Opinion (BiOp) (June 30, 2000) that concluded that the operation of the PLL fishery as proposed was likely to jeopardize the continued existence of ESA-listed leatherback and loggerhead sea turtles. As a result, NMFS implemented certain measures to avoid jeopardy by reducing sea turtle bycatch in the PLL fishery.

NMFS decided that further analyses of observer data and additional population modeling of loggerhead sea turtles were needed to determine more precisely the impact of the PLL fishery on turtles. Because of this, NMFS reinitiated consultation on the HMS fisheries on September 7, 2000. In the interim, NMFS implemented emergency regulations, based on historical data on sea
turtle interactions, to reduce the short-term effects of the PLL fishery on sea turtles. An emergency rule that closed a portion of the Northeast Distant Statistical Area (NED) and required dipnets and line clippers to be carried and used on PLL vessels to aid in the release of any captured sea turtle published on October 13, 2000 (65 FR 60889).

NMFS issued a BiOp on June 8, 2001 (revised on June 14, 2001), that again concluded that the operation of the Atlantic PLL fishery as proposed was likely to jeopardize the continued existence of loggerhead and leatherback sea turtles. Accordingly, the BiOp provided a reasonable and prudent alternative (RPA) to avoid jeopardy. This BiOp concluded "no jeopardy" for other HMS fisheries, but required additional management measures to reduce sea turtle takes in these fisheries. The RPA included the following elements: closing the NED area effective July 15, 2001, and conducting a research experiment in this area to reduce sea turtle bycatch and bycatch mortality in the PLL fishery; requiring gangions to be placed no closer than twice the average gangion length from the suspending floatlines effective August 1, 2001; requiring gangion lengths to be 110 percent of the length of the floatline in sets of 100 meters or less in depth effective August 1, 2001; and, requiring the use of corrodible hooks effective August 1, 2001. Also, the BiOp included a term and condition for the ITS that recommended that NMFS issue a regulation requiring that all vessels permitted for HMS fisheries, commercial and recreational, post the sea turtle guidelines for safe handling and release following longline interactions inside the wheelhouse by September 15, 2001. The requirement that all vessels permitted for HMS fisheries post sea turtle handling and release guidelines was modified to specify only BLL and PLL vessels by an August 31, 2001 memorandum from the Office of Protected Resources.

On July 13, 2001, NMFS published an emergency rule (66 FR 36711) to implement several of the BiOp recommendations. NMFS published an amendment to the emergency rule to incorporate the change in requirements for the handling and release guidelines that was published in the Federal Register on September 24, 2001 (66 FR 48812). On July 9, 2002, NMFS published the final rule (67 FR 45393) implementing measures required under the June $14,2001 \mathrm{BiOp}$ on Atlantic HMS to reduce the incidental catch and post-release mortality of sea turtles and other protected species in HMS Fisheries, with the exception of the gangion placement measure. The rule implemented the NED closure, required the length of any gangion to be 10 percent longer than the length of any floatline if the total length of any gangion plus the total length of any floatline is less than 100 meters, and prohibited vessels from having hooks on board other than corrodible, non-stainless steel hooks. In the HMS shark gillnet fishery, both the observer and vessel operator are responsible for sighting whales, the vessel operator must contact NMFS regarding any listed whale takes as defined under MMPA, and shark gillnet fishermen must conduct net checks every 0.5 to 2 hours to look for and remove any sea turtles or marine mammals caught in their gear. The final rule also required all HMS BLL and PLL vessels to post sea turtle handling and release guidelines in the wheelhouse. NMFS did not implement the gangion placement requirement because it appeared to result in an unchanged number of
interactions with loggerhead sea turtles and an apparent increase in interactions with leatherback sea turtles.

In 2001, 2002, and 2003, NMFS in conjunction with the fishing industry conducted an experiment in the NED to see if certain gear restrictions or requirements could reduce sea turtle captures and mortality. The results of this experiment indicated that certain gear types could reduce sea turtle interactions and mortality and that certain methods of handling and releasing turtles could further reduce mortality. For example, using 16/0 non-offset or $18 / 0$ offset hooks of at least 10 degrees could reduce leatherback interactions by approximately 50 percent; however loggerhead sea turtle interactions were expected to stay the same. Using $18 / 0$ hooks flat or offset up to 10 degrees could reduce leatherback and loggerhead sea turtle interactions by approximately 50 and 65 percent, respectively.

On November 28, 2003, based on the conclusion of the experiment in the NED, which examined ways to reduce bycatch and bycatch mortality of loggerhead and leatherback sea turtles in the PLL fishery, and based on preliminary data that indicated that the Atlantic PLL fishery may have exceeded the ITS in the June 14, 2001 BiOp, NMFS published a NOI to prepare a Supplemental Environmental Impact Statement (SEIS) to assess the potential effects on the human environment of proposed alternatives and actions under a proposed rule to reduce sea turtle bycatch (68 FR 66783).

In January 2004, NMFS reinitiated consultation after receiving data that indicated the Atlantic PLL fishery exceeded the incidental take statement for leatherback sea turtles in 2001 2002 and for loggerhead sea turtles in 2002. In the Spring of 2004, NMFS released a proposed rule that would require fishermen to use certain hook and bait types and take other measures to reduce sea turtle takes and mortality. The resulting June 1, 2004 BiOp considered these measures and concluded that the PLL fishery was not likely to jeopardize the continued existence of loggerhead sea turtles, but was still likely to jeopardize the continued existence of leatherback sea turtles. NMFS published a final rule implementing many gear and bait restrictions and requiring certain handling and release tools and methods on July 6, 2004 (69 FR 40734).

Shark Rules After 2006 Consolidated HMS FMP

On February 16, 2006, NMFS published a temporary rule (71 FR 8223) to prohibit, through March 31, 2006, any vessel from fishing with any gillnet gear in the Atlantic Ocean waters between $32^{\circ} 00^{\prime}$ N. Lat. (near Savannah, GA) and $27^{\circ} 51^{\prime}$ N. Lat. (near Sebastian Inlet, FL) and extending from the shore eastward out to $80^{\circ} 00^{\prime} \mathrm{W}$. long under the authority of the Atlantic Large Whale Take Reduction Plan (ALWTRP) (50 CFR 229.32 (g)) and ESA. NMFS took this action based on its determination that a right whale mortality was the result of an entanglement by gillnet gear within the Southeast U.S. Restricted Area in January of 2006.

NMFS implemented the final rule on June 25, 2007 (72 FR 34632), that prohibits gillnet fishing, including shark gillnet fishing, from November 15 to April 15, between the NC/SC
border and $29^{\circ} 00^{\prime} \mathrm{N}$. The action was taken to prevent the significant risk to the wellbeing of endangered right whales from entanglement in gillnet gear in the core right whale calving area during calving season. Limited exemptions to the fishing prohibitions are provided for gillnet fishing for sharks and for Spanish mackerel south of $29^{\circ} 00^{\prime} \mathrm{N}$. lat. Shark gillnet vessels fishing between $29^{\circ} 00^{\prime} \mathrm{N}$ and $26^{\circ} 46.5^{\prime} \mathrm{N}$ have certain requirements as outlined $50 \mathrm{CFR} \S 229.32$ from December 1 through March 31 of each year. These include vessel operators contacting the Southeast Fisheries Science Center (SEFSC) Panama City Laboratory at least 48 hours prior to departure of a fishing trip in order to arrange for an observer.

In addition, a 2007 rule (October 5, 2007, 72 FR 57104) amended restrictions in the Southeast U.S. Monitoring Area from December 1 through March 31. In that area, no person may fish with or possess gillnet gear for sharks with webbing of 5 " or greater stretched mesh unless the operator of the vessel is in compliance with the VMS requirements found in 50 CFR 635.69. The Southeast U.S. Monitoring Area is from $27^{\circ} 51^{\prime}$ N. (near Sebastian Inlet, FL) south to $26^{\circ} 46.5^{\prime} \mathrm{N}$. (near West Palm Beach, FL), extending from the shoreline or exemption line eastward to $80^{\circ} 00^{\prime} \mathrm{W}$. In addition, NMFS may select any shark gillnet vessel regulated under the ALWTRP to carry an observer. When selected, the vessels are required to take observers on a mandatory basis in compliance with the requirements for at-sea observer coverage found in 50 CFR 229.7. Any vessel that fails to carry an observer once selected is prohibited from fishing pursuant to 50 CFR § 635. There are additional gear marking requirements that can be found at 50 CFR § 229.32.

In 2007, NMFS expanded the equipment required for the safe handling, release, and disentanglement of sea turtles caught in the Atlantic shark BLL fishery (72 FR 5633, February 7, 2007). As a result, equipment required for BLL vessels is now consistent with the requirements for the PLL fishery. Furthermore, this action implemented several year-round BLL closures to protect EFH to maintain consistency with the Caribbean Fishery Management Council.

Table 2. Chronological list of most of the Federal Register publications relating to Atlantic sharks.

Federal Register Cite	Date	Rule or Notice
Pre 1993		
48 FR 3371	1/25/1983	Preliminary management plan with optimum yield and total allowable level of foreign fishing for sharks
56 FR 20410	5/3/1991	NOA of draft FMP; 8 hearings
57 FR 1250	1/13/1992	NOA of Secretarial FMP
57 FR 24222	6/8/1992	Proposed rule to implement FMP
57 FR 29859	7/7/1992	Correction to 57 FR 24222
1993		
58 FR 21931	4/26/1993	Final rule and interim final rule implementing FMP
58 FR 27336	5/7/1993	Correction to 58 FR 21931
58 FR 27482	5/10/1993	LCS commercial fishery closure announcement
58 FR 40075	7/27/1993	Adjusts 1993 second semi-annual quotas
58 FR 40076	7/27/1993	LCS commercial fishery closure announcement
58 FR 46153	9/1/1993	Notice of 13 public scoping meetings
58 FR 59008	11/5/1993	Extension of comment period for 58 FR 46153
58 FR 68556	12/28/1993	Interim final rule implementing trip limits
1994		
59 FR 3321	1/21/1994	Extension of comment period for 58 FR 68556
59 FR 8457	2/22/1994	Notice of control date for entry
59 FR 25350	5/16/1994	LCS commercial fishery closure announcement
59 FR 33450	6/29/1994	Adjusts second semi-annual 1994 quota
59 FR 38943	8/1/1994	LCS commercial fishery closure announcement
59 FR 44644	8/30/1994	Reopens LCS fishery with new closure date
59 FR 48847	9/23/1994	Notice of public scoping meetings
59 FR 51388	10/11/1994	Rescission of LCS closure
59 FR 52277	10/17/1994	Notice of additional scoping meetings
59 FR 52453	10/18/1994	Final rule implementing interim final rule in 1993 FMP
59 FR 55066	11/3/1994	LCS commercial fishery closure announcement
1995		
60 FR 2071	1/6/1995	Proposed rule to adjust quotas
60 FR 21468	5/2/1995	Final rule indefinitely establishes LCS quota at 1994 level
60 FR 27042	5/22/1995	LCS commercial fishery closure announcement
60 FR 30068	6/7/1995	Announcement of Shark Operations Team meeting
60 FR 37023	7/19/1995	Adjusts second semi-annual 1995 quota
60 FR 38785	7/28/1995	ANPR - Options for Permit Moratoria
60 FR 44824	8/29/1995	Extension of ANPR comment period
60 FR 49235	9/22/1995	LCS commercial fishery closure announcement
60 FR 61243	11/29/1995	Announces Limited Access Workshop
1996		
61 FR 21978	5/13/1996	LCS commercial fishery closure announcement
61 FR 37721	7/19/1996	Announcement of Shark Operations Team meeting.

Federal Register Cite	Date	Rule or Notice
61 FR 39099	7/26/1996	Adjusts second semi-annual 1996 quota
61 FR 43185	8/21/1996	LCS commercial fishery closure announcement
61 FR 67295	12/20/1996	Proposed rule to reduce Quotas/Bag Limits
61 FR 68202	12/27/1996	Proposed rule to establish limited entry (Draft Amendment 1 to 1993 FMP)
1997		
62 FR 724	1/6/1997	NOA of Draft Amendment 1 to 1993 FMP
62 FR 1705	1/13/1997	Notice of 11 public hearings for Amendment 1
62 FR 1872	1/14/1997	Extension of comment period and notice of public hearings for proposed rule on quotas
62 FR 4239	1/29/1997	Extension of comment period for proposed rule on quotas
62 FR 8679	2/26/1997	Extension of comment period for Amendment 1 to 1993 FMP
62 FR 16647	4/7/1997	Final rule reducing quotas/bag limits
62 FR 16656	4/7/1997	LCS commercial fishery closure announcement
62 FR 26475	5/14/1997	Announcement of Shark Operations Team meeting
62 FR 26428	5/14/1997	Adjusts second semi-annual 1997 LCS quota
62 FR 27586	5/20/1997	Notice of Intent to prepare an supplemental environmental impact statement
62 FR 27703	5/21/1997	Technical Amendment regarding bag limits
62 FR 38942	7/21/1997	LCS commercial fishery closure announcement
1998		
63 FR 14837	3/27/1998	LCS commercial fishery closure announcement
63 FR 19239	4/17/1998	NOA of draft consideration of economic effects of 1997 quotas
63 FR 27708	5/20/1998	NOA of final consideration of economic effects of 1997 quotas
63 FR 29355	5/29/1998	Adjusts second semi-annual 1998 LCS quota
63 FR 41736	8/5/1998	LCS commercial fishery closure announcement
63 FR 57093	10/26/1998	NOA of draft 1999 FMP
1999		
64 FR 3154	1/20/1999	Proposed rule for draft 1999 FMP
64 FR 14154	3/24/1999	LCS commercial fishery closure announcement
64 FR 29090	5/28/1999	Final rule for 1999 FMP
64 FR 30248	6/7/1999	Fishing season notification
64 FR 37700	7/13/1999	Technical amendment to 1999 FMP final rule
64 FR 37883	7/14/1999	Fishing season change notification
64 FR 47713	9/1/1999	LCS fishery reopening
64 FR 52772	9/30/1999	Notice of Availability of outline for National Plan of Action for sharks
64 FR 53949	10/5/1999	LCS closure postponement
64 FR 66114	11/24/1999	Fishing season notification
2000		
65 FR 16186	3/27/2000	Revised timeline for National Plan of Action for sharks
65 FR 35855	6/6/2000	Fishing season notification and 2nd semi-annual LCS quota adjustment
65 FR 47214	8/1/2000	Final rule closing Desoto Canyon, Florida East Coast, and Charleston Bump and requiring live bait for PLL gear in Gulf of Mexico

Federal Register Cite	Date	Rule or Notice
65 FR 47986	8/4/2000	Notice of Availability of National Plan of Action for sharks
65 FR 38440	6/21/2000	Implementation of prohibited species provisions and closure change
65 FR 60889	10/13/2000	Final rule closed NED and required dipnets and line clippers for PLL vessels
65 FR 75867	12/5/2000	Fishing season notification
2001		
66 FR 55	1/2/2001	Implementation of 1999 FMP pelagic shark quotas
66 FR 10484	2/15/2001	NOA of Final National Plan of Action for the Conservation and Management of Sharks
66 FR 13441	3/6/2001	Emergency rule to implement settlement agreement
66 FR 33918	6/26/2001	Fishing season notification and 2nd semi-annual LCS quota adjustment
66 FR 34401	6/28/2001	Proposed rule to implement national finning ban
66 FR 36711	7/13/2001	Emergency rule implementing 2001 BiOp requirements
66 FR 46401	9/5/2001	LCS fishing season extension
66 FR 48812	9/24/2001	Amendment to emergency rule (66 FR 13441) to incorporate change in requirement for handling and release guidelines
66 FR 67118	12/28/2001	Emergency rule to implement measures based on results of peer review and fishing season notification
2002		
67 FR 6194	2/11/2002	Final rule implementing national shark finning ban
67 FR 8211	2/22/2002	Correction to fishing season notification 66 FR 67118
67 FR 30879	5/8/2002	Notice of availability of SCS stock assessment
67 FR 36858	5/28/2002	Notice of availability of LCS sensitivity document and announcement of stock evaluation workshop in June
67 FR 37354	5/29/2002	Extension of emergency rule and fishing season announcement
67 FR 45393	7/9/2002	Final rule to implement measures under 2001 BiOp (gangion placement measure not implemented), including HMS shark gillnet measures
67 FR 64098	10/17/2002	Notice of availability of LCS stock assessment and final meeting report
67 FR 69180	11/15/2002	Notice of intent to conduct an environmental impact assessment and amend the 1999 FMP
67 FR 72629	12/6/2002	Proposed rule regarding EFPs
67 FR 78990	12/27/2002	Emergency rule to implement measures based on stock assessments and fishing season notification
2003		
68 FR 1024	1/8/2003	Announcement of 4 public hearings on emergency rule
68 FR 1430	1/10/2003	Extension of comment period for proposed rule on EFPs
68 FR 3853	1/27/2003	Announcement of 7 scoping meetings and notice of availability of Issues and Options paper
68 FR 31983	5/29/2003	Emergency rule extension and fishing season notification
68 FR 45196	8/1/2003	Proposed rule and NOA for draft Amendment 1 to 1999 FMP
68 FR 47904	8/12/2003	Public hearing announcement for draft Amendment 1 to 1999 FMP
68 FR 51560	8/27/2003	Announcement of HMS AP meeting on draft Amendment 1 to 1999 FMP
68 FR 54885	9/19/2003	Rescheduling of public hearings and extending comment period for draft Amendment 1 to 1999 FMP

Federal Register Cite	Date	Rule or Notice
68 FR 64621	11/14/2003	NOA of availability of Amendment 1
68 FR 66783	11/28/2003	NOI for SEIS
68 FR 74746	12/24/2003	Final Rule for Amendment 1
2004		
69 FR 6621	02/11/04	Proposed rule for PLL fishery
69 FR 10936	3/9/2004	SCS fishery closure
69 FR 19979	4/15/2004	VMS type approval notice
69 FR 26540	5/13/2004	N. Atlantic Quota Split Proposed Rule
69 FR 28106	5/18/2004	VMS effective date proposed rule
69 FR 30837	6/1/2004	Fishing season notice
69 FR 33321	6/15/2004	N. Atlantic Quota Split Final Rule
69 FR 40734	07/06/04	Final rule for PLL fishery
69 FR 44513	07/26/04	Notice of sea turtle release/protocol workshops
69 FR 47797	8/6/2004	Technical amendment correcting changes to BLL gear requirements
69 FR 49858	08/12/04	Advanced notice of proposed rulemaking; reducing sea turtle interactions with fishing gear
69 FR 51010	8/17/2004	VMS effective date final rule
69 FR 56024	9/17/2004	Regional quota split proposed rule
69 FR 6954	11/30/2004	Regional quota split final rule and season announcement
69 FR 71735	12/10/2004	Correction notice for 69 FR 6954
2005		
70 FR 11922	3/10/2005	2nd and 3rd season proposed rule
70 FR 21673	4/27/2005	2nd and 3rd season final rule
70 FR 24494	5/10/2005	North Carolina Petition for Rulemaking
70 FR 29285	5/20/2005	Notice of handling and release workshops for BLL fishermen
70 FR 48804	8/19/2005	Proposed rule Draft Consolidated HMS FMP
70 FR 48704	8/19/2005	NOA of Draft EIS for Draft Consolidated HMS FMP
70 FR 52380	9/2/2005	Correction to 70 FR 48704
70 FR 53146	9/7/2005	Cancellation of hearings due to Hurricane Katrina
70 FR 54537	9/15/2005	Notice of LCS data workshop
70 FR 55814	9/23/2005	Cancellation of Key West due to Hurricane Rita
70 FR 58190	10/5/2005	Correction to 70 FR 54537
70 FR 58177	10/5/2005	Extension of comment period for Draft Consolidated HMS FMP
70 FR 58366	10/6/2005	1st season proposed rule
70 FR 72080	12/1/2005	$1^{\text {st }}$ season final rule, fishing season notification
70 FR 73980	12/14/2005	Final Agency decision on petition for rulemaking to amend mid-Atlantic closed area
70 FR 76031	12/22/2005	Notice for Large Coastal Shark 2005/2006 Stock Assessment Workshop
70 FR 76441	12/27/2005	Rescheduling and addition of public hearings for Consolidated HMS FMP
2006		
71 FR 8223	2/16/2006	Temporary rule prohibiting gillnet gear in areas around the Southeast U.S. Restricted Area
71 FR 8557	2/17/2006	Proposed Rule for third and second trimester seasons
71 FR 12185	3/9/2006	Notice for Large Costal Shark Review Workshop

Federal Register Cite	Date	Rule or Notice
71 FR 15680	3/29/2006	Proposed rule for gear operation and deployment for BLL and gillnet fishery and complementary closure
71 FR 16243	3/31/2006	Final rule for second and third trimester seasons
71 FR 26351	5/4/2006	Scientific research permit for pelagic shark research
71 FR 30123	5/25/2006	Notice of availability of stock assessment of dusky sharks
71 FR 41774	7/24/2006	Notice of availability of final stock assessment for Large Costal Sharks
71 FR 58058	10/2/2006	Final Rule for the HMS Consolidated Fishery Management Plan
71 FR 58058	10/2/2006	1st season proposed rule
71 FR 62095	10/23/2006	Notice of shark dealer identification workshops and protected species safe handling and release workshops
71FR 64213	11/1/2006	Extension of comment period regarding the 2007 first trimester season proposed rule
71 FR 65086	11/7/2006	Notice of Intent to prepare Amendment 2 to the 2006 Consolidated HMS FMP and status determination for sandbar, blacktip, dusky, the LCS complex, and porbeagle sharks based on the latest stock assessments
71 FR 65087	11/7/2006	Notice of Intent to prepare Amendment 1 to the 2006 Consolidated HMS FMP for Essential Fish Habitat for Some Atlantic Highly Migratory Species
71 FR 66154	11/13/2006	Extension of comment period regarding the 2007 first trimester season proposed rule
71 FR 68561	11/27/2006	Notice of shark dealer identification workshops and protected species safe handling and release workshops
71 FR 75122	12/14/2006	Final Rule and Temporary Rule for the 2007 first trimester season and south Atlantic quota modification
71 FR 75714	12/18/2006	Notice of shârk dealer identification workshops and protected species safe handling and release workshops
2007		
72 FR 123	1/3/2007	Notice of public hearings for scoping for Amendment 2 to the 2006 Consolidated HMS FMP
72 FR 5633	$2 / 7 / 2007$	Final rule for gear operation and deployment for BLL and gillnet fishery and complementary closures
72 FR 6966	2/14/2007	Notice of closure of the Small Coastal Shark fishery for the Gulf of Mexico
72 FR 7417	2/15/2007	Revised list of equipment models for careful release of sea turtles in the PLL and BLL fisheries
72 FR 8695	2/27/2007	Notice of new VMS type approval for HMS fisheries and other programs
72 FR 10480	3/8/2007	Proposed rule for second and third trimester seasons
72 FR 11335	3/13/2007	Schedule of public protected resources dehooking workshops and Atlantic shark identification workshops
72 FR 19701	4/19/2007	Notice of Small Costal Shark stock assessment workshop
72 FR 20765	4/26/2007	Final rule for second and third trimester season
72 FR 32836	6/14/2007	Schedule of public protected resources dehooking workshops and Atlantic shark identification workshops
72 FR 34632	6/25/2007	Final rule prohibiting gillnet gear from November 15-April 15 between NC/SC border and $29^{\circ} 00^{\prime} \mathrm{N}$.
72 FR 39606	7/18/2007	Notice of Small Costal Shark 2007 peer review workshop
72 FR 41392	7/27/2007	Proposed rule for Amendment 2 to the Consolidated Atlantic Highly

Federal Register Cite	Date	Rule or Notice
		Migratory Species Fishery Management Plan
72 FR 52552	9/14/2007	Schedules for Atlantic shark identification workshops and protected species safe handling, release, and identification workshops
72 FR 55729	10/1/2007	Proposed rule for 2008 first trimester quotas
72 FR 56330	10/3/2007	Amendment 2 to the Consolidated FMP - extension of comment period
72 FR 57104	10/5/2007	Final rule amending restriction in the Southeast U.S. Monitoring Area
72 FR 63888	11/13/2007	Notice of Small Coastal Shark Stock Assessment - notice of availability
72 FR 67580	11/29/2007	Final rule for 2008 first trimester quotas
2008		
73 FR 11621	3/4/2008	Notice of Atlantic shark identification workshops and protected species safe handling, release, and identification workshops
73 FR 19795	4/11/2008	Proposed rule for renewal of Atlantic tunas longline limited access permits; and, Atlantic shark dealer workshop attendance requirements
73 FR 24922	5/6/2008	Proposed rule for Atlantic tuna fisheries; gear authorization and turtle control devices
73 FR 25665	5/7/2008	Stock Status Determinations; Notice of Intent (NOI) to prepare an Environmental Impact Statement (EIS) for Amendment 3 to the 2006 Consolidated HMS FMP
73 FR 32309	6/6/2008	Notice of Atlantic shark identification workshops and protected species safe handling, release, and identification workshops
73 FR 35778	6/24/2008	Final rule for Amendment 2 to the 2006 Consolidated HMS FMP and fishing season notification
73 FR 35834	6/24/2008	Shark research fishery; Notice of intent; request for applications
73 FR 37932	7/2/2008	Notice of availability; notice of public scoping meetings; Extension of comment period for Amendment 3 to the 2006 Consolidated HMS FMP
73 FR 38144	7/3/2008	Final rule for renewal of Atlantic tunas longline limited access permits; and, Atlantic shark dealer workshop attendance requirements
73 FR 40658	7/15/2008	Final rule for Amendment 2 to the 2006 Consolidated HMS FMP and fishing season notification; correction/republication
73 FR 47851	8/15/2008	Effectiveness of collection-of-information requirements to implement finson check box on Southeast dealer form
73 FR 51448	$9 / 3 / 2008$	Notice of Atlantic shark identification workshops and protected species safe handling, release, and identification workshops
73 FR 53408	9/16/2008	Notice of public meeting, public hearing, and scoping meetings regarding the AP meeting and various other hearings/meetings
73 FR 53851	9/17/2008	Atlantic Shark Management Measures; Changing the time and location of a scoping meeting
73 FR 54721	9/23/2008	Final rule for Atlantic tuna fisheries; gear authorization and turtle control devices
73 FR 63668	10/27/2008	Proposed rule for 2009 shark fishing season
73 FR 64307	10/29/2008	Extension of scoping comment period for Amendment 3 to the 2006 Consolidated HMS FMP
2009		
74 FR 8913	2/27/2009	Notice of Atlantic shark identification workshops and protected species safe handling, release, and identification workshops

Federal Register Cite	Date	Rule or Notice
74 FR26803	$6 / 4 / 2009$	Inseason action to close the commercial Gulf of Mexico non-sandbar large coastal shark fishery
74 FR 27506	$6 / 10 / 2009$	Notice of Atlantic shark identification workshops and protected species safe handling, release, and identification workshops
74 FR 30479	$6 / 26 / 2009$	Inseason action to close the commercial non-sandbar large coastal shark fisheries in the shark research fishery and Atlantic region
74 FR 36892	$7 / 24 / 2009$	Proposed rule for Amendment 3 to the 2006 Consolidated HMS FMP
74 FR 39914	$8 / 10 / 2009$	Extension of Comment Period for Amendment 3 to the 2006 Consolidated HMS FMP
74 FR 46572	$9 / 10 / 2009$	Notice of Atlantic shark identification workshops and protected species safe handling, release, and identification workshops
74 FR 51241	$10 / 6 / 2009$	Inseason action to close the commercial sandbar shark research fishery
74 FR 55526	$10 / 28 / 2009$	Proposed rule for 2010 shark fishing season
74 FR 56177	$10 / 30 / 2009$	Notice of intent for 2010 shark research fishery; request for applications

Table 3. List of Large Coastal Shark Seasons, 1993-2010

Year	Open dates	Adjusted Quota (mt dw)
1993	Jan. 1 - May 15	1,218
	July 1 - July 31	875
1994	Jan. 1 - May 17	1,285
	$\begin{aligned} & \text { July } 1 \text { - Aug } 10 \\ & \text { Sept. } 1 \text { - Nov. } 4 \\ & \hline \end{aligned}$	1,318
1995	Jan. 1 - May 31	1,285
	July 1 - Sept. 30	968
1996	Jan. 1 - May 17	1,285
	July 1 - Aug. 31	1,168
1997	Jan. 1-April 7	642
	July 1- July 21	326
1998	Jan. 1 - Mar. 31	- 642
	July 1 - Aug. 4	-600
1999	Jan. 1 - Mar. 31	642
	$\begin{aligned} & \hline \text { July } 1 \text { - July } 28 \\ & \text { Sept. } 1 \text { - Oct. } 15 \end{aligned}$	585
2000	Jan. 1 - Mar. 31	642
	July 1 - Aug. 15	542
2001	Jan. 1 - Mar. 24	642
	July 1 - Sept. 4	697
2002	Jan. 1 - April 15	735.5
	July 1 - Sept. 15	655.5
2003	Jan. 1 - April 15 (Ridgeback LCS) Jan. 1 - May 15 (Non-ridgeback LCS)	$\begin{gathered} 391.5 \text { (Ridgeback LCS) } \\ 465.5 \text { (Non-ridgeback LCS) } \end{gathered}$
	July 1 - Sept. 15 (All LCS)	424 (Ridgeback LCS) 498 (Non-ridgeback LCS)
2004	$\begin{aligned} & \hline \text { GOM: Jan. } 1 \text { - Feb. } 29 \\ & \text { S. Atl: Jan } 1 \text { - Feb. } 15 \\ & \text { N. Atl: Jan } 1 \text { - April } 15 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 190.3 \\ 244.7 \\ 18.1 \end{gathered}$
	GOM: July 1 - Aug. 15 S. Atl: July 1 - Sept. 30 N. Atl: July 1 - July 15	$\begin{gathered} 287.4 \\ 369.5 \\ 39.6 \end{gathered}$
2005	$\begin{aligned} & \hline \text { GOM: Jan } 1 \text { - Feb } 28 \\ & \text { S. Atl: Jan. } 1 \text { - Feb } 15 \\ & \text { N. Atl: Jan. } 1 \text { - April } 30 \end{aligned}$	$\begin{gathered} 156.3 \\ 133.3 \\ 6.3 \end{gathered}$
	GOM: July 6 - July 23 S. Atl: July 6 - Aug 31 N. Atl: July 21 - Aug 31	$\begin{gathered} 147.8 \\ 182 \\ 65.2 \end{gathered}$
	GOM: Sept. 1 - Oct. 31 S. Atl: Sept 1 - Nov. 15 N. Atl: Sept 1 - Sept. 15	$\begin{gathered} 167.7 \\ 187.5 \\ 4.9 \end{gathered}$
2006	GOM: Jan 1-April 15 S. Atl: Jan 1 - Mar. 15 N. Atl: Jan 1 - April 30	$\begin{gathered} \hline 222.8 \\ 141.3 \\ 5.3 \end{gathered}$

Note: SB=sandbar shark; NSB=non-sandbar LCS

Table 4 List of Small Coastal Shark Seasons, 1993-2010

Year	Open Dates	Adjusted Quota (mt dw)
1993	No season	No Quota
1994	No season	No Quota
1995	No season	No Quota
1996	No season	No Quota
1997	Jan. 1 - June 30	880
	July 1- Dec 31	880
1998	Jan. 1 - June 30	880
	July 1- Dec 31	880
1999	Jan. 1- June 30	880
	July 1 - Dec 31	880
2000	Jan. 1-June 30	-880
	July 1- Dec 31	- 880
2001	Jan. 1-June 30	880
	July 1- Dec 31	880
2002	Jan. 1-June 30	880
	July 1- Dec 31	880
2003	Jan. 1 - June 30	163
	July 1- Dec 31	163
2004	GOM: Jan. 1 - March 18 S. Atl: Jan 1 - June 30 N. Atl: Jan 1 - June 30	$\begin{gathered} \hline 11.2 \\ 233.2 \\ 36.5 \end{gathered}$
	$\begin{array}{\|l\|} \hline \text { GOM: July } 1-\text { Dec. } 31 \\ \text { S. Att: July 1-Dec. } 31 \\ \text { N. Atl: July } 1 \text { - Dec. } 31 \\ \hline \end{array}$	$\begin{gathered} \hline 10.2 \\ 210.2 \\ 33.2 \end{gathered}$
2005	GOM: Jan 1- April 30 S. Att: Jan. 1 - April 30 N. Atl: Jan. 1 - April 30	$\begin{gathered} \hline 13.9 \\ 213.5 \\ 18.6 \end{gathered}$
	GOM: May 1 - Aug. 31 S. Att: May 1 - Aug. 31 N. Atl: May 1 - Aug. 31	$\begin{gathered} \hline 31 \\ 281 \\ 23 \end{gathered}$
	GOM: Sept. 1 - Dec. 31 S. Att: Sept. 1 - Dec. 31 N. Atl: Sept. 1 - Dec. 31	$\begin{gathered} \hline 32 \\ 201.1 \\ 16 \end{gathered}$
2006	GOM: Jan 1 - April 30 S. Att: Jan 1 - April 30 N. Atl: Jan 1 - April 30	$\begin{gathered} \hline 14.8 \\ 284.6 \\ 18.7 \end{gathered}$
	GOM: May 1 - Aug. 31 S. Atl: May 1 - Aug. 31 N. Atl: May 1 - Aug. 31	$\begin{gathered} \hline 38.9 \\ 333.5 \\ 35.9 \end{gathered}$
	GOM: Sept. 1-Dec. 31 S. Att: Sept. 1 - Dec. 31 N. Atl: Sept. 1 - Dec. 31	$\begin{gathered} \hline 30.8 \\ 263.7 \\ 28.2 \end{gathered}$

Year	Open Dates	Adjusted Quota (mt dw)
	GOM: Jan. 1 - Feb. 23	15.1
	S. Atl: Jan 1 - April 30	308.4
	N. Atl: Jan 1 - April 30	18.8
	GOM: May 1 - Aug. 31	72.6
	S. Atl: May 1 - Aug. 31	291.6
	N. Atl: May 1 - Aug. 31	36.2
	GOM: September 1 - Dec. 31	80.4
	S. Atl: September 1 - Dec. 31	297.5
	N. Atl: September 1 - Dec. 31	29.4
2008	GOM: Jan 1 - April 30, 2008	73.2
	S. Atl: Jan 1 - April 30, 2008	354.9
	N. Atl: Jan 1 - April 30, 2008	19.3
	GOM: May 1 - July 24, 2008	72.6
	S. Atl: May 1 - July 24, 2008	74.1
	N. Atl: May 1 - July 24, 2008	12.0
	July 24 - Dec. 31, 2008	454
2009	January 23, 2009	454
2010	Open upon effective date of final rule	TBD
	for Amendment 3	

Table 5 List of species that are LCS, SCS and prohibited species

Common name	Species name	Notes
LCS		
Ridgeback Species		
Sandbar	Carcharhinus plumbeus	
Silky	Carcharhinus falciformis	
Tiger	Galeocerdo cuvier	
Non-Ridgeback Species		
Blacktip	Carcharhinus limbatus	
Spinner	Carcharhinus brevipinna	
Bull	Carcharhinus leucas	
Lemon	Negaprion brevirostris	
Nurse	Ginglymostoma cirratum	
Scalloped hammerhead	Sphyrna lewini	-
Great hammerhead	Sphyrna mokarran	$1 \times$
Smooth hammerhead	Sphyrna zygaena	N
SCS		
Atlantic sharpnose	Rhizoprionodon terraenovae	
Blacknose	Carcharhinus acronotus	
Bonnethead	Sphyrna tiburo	
Finetooth	Carcharhinus isodon	
Pelagic Sharks		
Blue	Prionace glauca	
Oceanic whitetip	Carcharhinus longimanus	
Porbeagle	Lamna nasus	
Shortfin mako	Isurus oxyrinchus	
Common thresher	Alopias vulpinus	
Prohibited Species		
Sand tiger	Odontaspis taurus	Part of LCS complex until 1997
Bigeye sand tiger	Odontaspis noronhai	Part of LCS complex until 1997
Whale	Rhincodon typus	Part of LCS complex until 1997
Basking	Cetorhinus maximus	Part of LCS complex until 1997
White	Carcharodon carcharias	Part of LCS complex until 1997
Dusky	Carcharhinus obscurus	Part of LCS complex until 1999
Bignose	Carcharhinus altimus	Part of LCS complex until 1999
Galapagos	Carcharhinus galapagensis	Part of LCS complex until 1999
Night	Carcharhinus signatus	Part of LCS complex until 1999
Caribbean reef	Carcharhinus perezi	Part of LCS complex until 1999
Narrowtooth	Carcharhinus brachyurus	Part of LCS complex until 1999
Atlantic angel	Squatina dumerili	Part of SCS complex until 1999
Caribbean sharpnose	Rhizoprionodon porosus	Part of SCS complex until 1999
Smalltail	Carcharhinus porosus	Part of SCS complex until 1999
Bigeye sixgill	Hexanchus nakamurai	Part of Pelagics complex until 1999
Bigeye thresher	Alopias superciliosus	Part of Pelagics complex until 1999
Longfin mako	Isurus paucus	Part of Pelagics complex until 1999

Common name	Species name	Notes
Sevengill	Heptranchias perlo	Part of Pelagics complex until 1999
Sixgill	Hexanchus griseus	Part of Pelagics complex until 1999

Requirement for Specific Fishery	Retention Limits	Quotas	Other Requirements
Inside the Commercial Shark Research Fishery	Sandbar: Trip limit is specific to each vessel and owner(s) combination and is listed on the Shark Research Permit. Non-sandbar LCS: Trip limit is specific to each vessel and owner (s) combination and is listed on the Shark Research Permit. SCS \& Pelagic Sharks: Directed Permits: No trip limit for pelagic sharks \& SCS Incidental Permits: 16 pelagic sharks/SCS combined	Sandbar: Quota from 2008-2012: 87.9 mt dw Quota starting in 2013: 116.6 mt dw Non-sandbar LCS: Quota from 2008-2012: 37.5 mt dw Quota starting in 2013: 50 mt dw SCS:454 mt dw/year Pelagic Sharks: Pelagic sharks (not blue and porbeagle): $273 \mathrm{mt} \mathrm{dw} /$ year Blue sharks: 488 mt dw Porbeagle sharks: $1.7 \mathrm{mt} \mathrm{dw} /$ year	- Need Shark Research Fishery Permit -100 percent observer coverage when participating in research fishery - Adjusted quotas (established through Dec. 31, 2012) may be further adjusted based on future overharvests, if any.
Outside the Commercial Shark Research Fishery	Non-sandbar LCS Until Dec. 31, 2012: Directed Permit: 33 non-sandbar LCS/vessel/trip Incidental Permit: 3 non-sandbar LCS/vessel/trip Non-sandbar LCS As of Jan. 1, 2013: Directed Permit: 36 non-sandbar LCS/vessel/trip Incidental Permit: 3 non-sandbar LCS/vessel/trip SCS \& Pelagic Sharks: Directed Permits: No trip limit for pelagic sharks \& SCS Incidental Permits: 16 pelagic sharks/SCS combined	Non-sandbar LCS: Quota from 2008-2012: Gulf of Mexico Region: 390.5 mt dw/year; Atlantic Region: $187.8 \mathrm{mt} \mathrm{dw} /$ year Quota starting in 2013: Gulf of Mexico Region: 439.5 mt dw/year; Atlantic Region: $188.3 \mathrm{mt} \mathrm{dw} /$ year SCS: $454 \mathrm{mt} \mathrm{dw} /$ year Pelagic Sharks: Pelagic sharks (not blue and porbeagle): $273 \mathrm{mt} \mathrm{dw} /$ year Blue sharks: 488 mt dw Porbeagle sharks: $1.7 \mathrm{mt} \mathrm{dw} /$ year	-Vessels subject to observer coverage, if selected - Adjusted quotas (established through Dec. 31, 2012) may be further adjusted based on future overharvests, if any.
All Commercial Shark Fisheries	Gears Allowed: Gillnet; Bottom/Pelagic Longline; Rod and Reel; Handline; Bandit Gear		
	Authorized Species: Non-sandbar LCS (silky, blacktip, spinner, bull, lemon, nurse, great hammerhead, scalloped hammerhead, smooth hammerhead, and tiger sharks), pelagic sharks (porbeagle, common thresher, shortfin mako, oceanic whitetip, and blue sharks), and SCS (bonnethead, finetooth, blacknose, and Atlantic sharpnose sharks)		
	Landings condition: All sharks (sandbar, non-sandbar LCS, SCS, and pelagic sharks) must have fins naturally attached through offloading; fins can be cut slightly for storage but must remain attached to the carcass via at least a small amount of uncut skin; shark carcasses must remain in whole or log form through offloading. Sharks can have the heads removed but the tails must remain naturally attached.		
	Permits Required: Commercial Directed or Incidental Shark Permit		
	Reporting Requirements: All commercial fishermen must submit commercial logbooks; all dealers must report bi-weekly		
All Recreational Shark Fisheries	Gears Allowed: Rod and Reel; Handline		
	Authorized Species: Non-ridgeback LCS (blacktip, spinner, bull, lemon, nurse, great hammerhead, scalloped hammerhead, smooth hammerhead); tiger sharks; pelagic sharks (porbeagle, common thresher, shortfin mako, oceanic whitetip, and blue sharks); and SCS (bonnethead, finetooth, blacknose, and Atlantic sharpnose sharks)		
	Landing condition: Sharks must be landed with head, fins, and tail naturally attached		
	Retention limits: 1 shark > 54" FL vessel/trip, plus 1 Atlantic sharpnose and 1 bonnethead per person/trip (no minimum size)		
	Permits Required: HMS Angling; HMS Charter/Headboat; and, General Category Permit Holders (fishing in a shark tournament)		
	Reporting Requirements: Participate in MRIP and LPS if contacted		

Table 6 Summary of current shark regulations

Control Date Notices

February 22, 1994 (59 FR 8457)

Management Program Specifications

Table 7 General management information for the sandbar shark

Species	Sandbar shark (Carcharhinus plumbeus)
Management Unit	Atlantic Ocean, Gulf of Mexico, and Caribbean Sea
Management Unit Definition	All federal waters within U.S. EEZ of the western north Atlantic Ocean, including the Gulf of Mexico and the Caribbean Sea.
Management Entity	NMFS, Highly Migratory Species Management Division
Management Contacts	Karyl Brewster-Geisz
SERO / Council	N/A
Current stock exploitation status	Overfishing
Current stock biomass status	Overfished

Table 8 General management information for the dusky shark

Species	Dusky shark (Carcharhinus obscurus)
Management Unit	Atlantic Ocean, Gulf of Mexico, and Caribbean Sea
Management Unit Definition	All federal waters within U.S. EEZ of the western north Atlantic Ocean, including the Gulf of Mexico and the Caribbean Sea.
Management Entity	NMFS, Highly Migratory Species Management Division
Management Contacts SERO / Council	Karyl Brewster-Geisz
Current stock exploitation status	N/A
Current stock biomass status	Overfishing

Table 9 General management information for the blacknose shark

Species	Blacknose shark (Carcharhinus acronotus)
Management Unit	Atlantic Ocean, Gulf of Mexico, and Caribbean Sea
Management Unit Definition	All federal waters within U.S. EEZ of the western north Atlantic Ocean, including the Gulf of Mexico and the Caribbean Sea.
Management Entity	NMFS, Highly Migratory Species Management Division
Management Contacts SERO / Council	Karyl Brewster-Geisz N/A
Current stock exploitation status	Overfishing
Current stock biomass status	Overfished

Table 10 Specific management criteria for sandbar shark

Criteria	Sandbar - Current		Sandbar - Proposed	
	Definition	Value	Definition	Value
MSST	$\begin{aligned} & \hline \hline \text { MSST }=\left[(1-\mathrm{M}) * \mathrm{~B}_{\mathrm{MSY}}\right. \\ & \text { when } \mathrm{M}<0.5 ; 0.5^{*} \\ & \mathrm{~B}_{\mathrm{MSY}} \text { when } \mathrm{M} \geq 0.5 \\ & \hline \end{aligned}$	4.75-5.35E+05	$\begin{aligned} & \hline \hline \text { MSST }=\left[(1-\mathrm{M})^{*} \mathrm{~B}_{\mathrm{MSY}}\right. \\ & \text { when } \mathrm{M}<0.5 ; 0.5^{*} \mathrm{~B}_{\mathrm{MSY}} \\ & \text { when } \mathrm{M} \geq 0.5 \end{aligned}$	SEDAR 21
MFMT	$\mathrm{F}_{\text {MSY }}$	0.015	$\mathrm{F}_{\text {MSY }}$	SEDAR 21
MSY	Yield at $\mathrm{F}_{\text {MSY }}$	$4.03 \mathrm{E}+05(\mathrm{~kg})$	Yield at $\mathrm{F}_{\text {MSY }}$	SEDAR 21
$\mathrm{F}_{\text {MSY }}$	MFMT	0.015	MFMT	SEDAR 21
OY	Yield at $\mathrm{F}_{\text {OY }}$	Not Specified	Yield at F_{OY}	SEDAR 21
F_{OY}	$0.75 \mathrm{~F}_{\mathrm{MSY}}$	0.011	$0.75 \mathrm{~F}_{\mathrm{MSY}}$	SEDAR 21
$\mathrm{F}_{\text {current }}$	Current Fishing Mortality rate	0.06	$\mathrm{F}_{\text {current }}$	SEDAR 21
M	n/a	Varied (see SEDAR 11)	n/a	SEDAR 21
OFL	n/a	n/a	MFMT* $\mathrm{B}_{\text {current }}$	SEDAR 21
ABC*	n/a	n/a	P*; probability level TBD	SEDAR 21
SSF_{2004}	Current Spawning Stock fecundity	$4.28 \mathrm{E}+0.5$	SSF ${ }_{\text {current }}$	SEDAR 21
$\mathrm{SSF}_{\text {MSY }}$	Spawning Stock fecundity at MSY	$5.94 \mathrm{E}+05$	$\mathrm{SSF}_{\text {MSY }}$	SEDAR 21
B_{2004}	Current biomass	$3.06 \mathrm{E}+07$	$\mathrm{B}_{\text {current }}$	SEDAR 21
$\mathrm{B}_{\text {MSY }}$	Biomass at MSY	Not Specified	$\mathrm{B}_{\mathrm{MSY}}$	SEDAR 21

Table 11 Specific management criteria for dusky shark.

Criteria	Dusky - Current		Dusky - Proposed	
	Definition	Value	Definition	Value
MSST	$\begin{aligned} & \hline \text { MSST }=\left[(1-\mathrm{M}) * \mathrm{~B}_{\mathrm{MSY}}\right. \\ & \text { when } \mathrm{M}<0.5 ; 0.5^{*} \mathrm{~B}_{\mathrm{MSY}} \\ & \text { when } \mathrm{M} \geq 0.5 \end{aligned}$	Not Specified	$\begin{aligned} & \hline \mathrm{MSST}=\left[(1-\mathrm{M}) * \mathrm{~B}_{\mathrm{MSY}}\right. \\ & \text { when } \mathrm{M}<0.5 ; 0.5^{*} \mathrm{~B}_{\mathrm{MSY}} \\ & \text { when } \mathrm{M} \geq 0.5 \end{aligned}$	SEDAR 21
MFMT	$\mathrm{F}_{\text {MSY }}$	0.00005-0.0115	$\mathrm{F}_{\text {MSY }}$	SEDAR 21
MSY	Yield at $\mathrm{F}_{\text {MSY }}$	152 (kg)	Yield at $\mathrm{F}_{\text {MSY }}$	SEDAR 21
$\mathrm{F}_{\text {MSY }}$	MFMT	0.00005-0.0115	MFMT	SEDAR 21
OY	Yield at $\mathrm{F}_{\text {OY }}$	Not Specified	Yield at $\mathrm{F}_{\text {OY }}$	SEDAR 21
F_{OY}	$0.75 \mathrm{~F}_{\mathrm{MSY}}$	0.000038-0.0086	$0.75 \mathrm{~F}_{\mathrm{MSY}}$	SEDAR 21
F_{2003}		0.0194 (BSP model)	$\mathrm{F}_{\text {current }}$	SEDAR 21
M	n/a	$\begin{aligned} & \text { Varied (see Cortés et al., } \\ & \text { 2006) } \end{aligned}$	n/a	SEDAR 21
OFL	n/a	n/a	MFMT* B $_{\text {current }}$	SEDAR 21
ABC	n/a	n/a	P*; probability level TBD	SEDAR 21
B_{2003}	Current Biomass	687,290 lb dw (BSP model)	$\mathrm{B}_{\text {current }}$	SEDAR 21
$\mathrm{B}_{\text {MSY }}$	Biomass at MSY	4,409,144 (BSP model)	$\mathrm{B}_{\mathrm{MSY}}$	SEDAR 21

Table 12 Specific management criteria for blacknose shark.

Criteria	Blacknose - Current		Blacknose - Proposed	
	Definition	Value	Definition	Value
MSST	MSST $=\left[(1-\mathrm{M}) * \mathrm{~B}_{\mathrm{MSY}}\right.$ when $\mathrm{M}<0.5$; $0.5^{*} \mathrm{~B}_{\mathrm{MSY}}$ when $\mathrm{M} \geq 0.5$	4.3 E+05	$\begin{aligned} & \hline \text { MSST }=\left[(1-\mathrm{M}) * \mathrm{~B}_{\mathrm{MSY}}\right. \\ & \text { when } \mathrm{M}<0.5 ; 0.5^{*} \mathrm{~B}_{\mathrm{MSY}} \\ & \text { when } \mathrm{M} \geq 0.5 \end{aligned}$	SEDAR 21
MFMT	$\mathrm{F}_{\text {MSY }}$	0.07	$\mathrm{F}_{\text {MSY }}$	SEDAR 21
MSY	Yield at $\mathrm{F}_{\text {MSY }}$	89,415 (number of sharks)	Yield at $\mathrm{F}_{\text {MSY }}$	SEDAR 21
$\mathrm{F}_{\text {MSY }}$	MFMT	0.07	MFMT	SEDAR 21
OY	Yield at $\mathrm{F}_{\text {OY }}$	Not Specified	Yield at $\mathrm{F}_{\text {OY }}$	SEDAR 21
F_{OY}	$0.75 \mathrm{~F}_{\text {MSY }}$	0.053	$0.75 \mathrm{~F}_{\text {MSY }}$	SEDAR 21
F_{2005}		0.24	$\mathrm{F}_{\text {current }}$	SEDAR 21
M	n/a	$\begin{aligned} & \text { Varied (see SEDAR } \\ & \text { 13) } \end{aligned}$	n / a	SEDAR 21
OFL	n/a	n/a	MFMT* $\mathrm{B}_{\text {current }}$	SEDAR 21
ABC	n/a	n/a	P*; probability level TBD	SEDAR 21
$\mathrm{N}_{\text {MSY }}$	Number of sharks at MSY	570,753 (number of sharks)	$\mathrm{N}_{\text {MSY }}$	SEDAR 21
N_{2005}	Current number of sharks	349,308 (number of sharks)	$\mathrm{N}_{\text {current }}$	SEDAR 21
$\mathrm{SSF}_{\text {MSY }}$	Spawning Stock fecundity at MSY	349,060 (number of sharks)	$\mathrm{SSF}_{\text {MSY }}$	SEDAR 21
SSF_{2005}	Current Spawning Stock fecundity	168,140 (number of sharks)	$\mathrm{SSF}_{\text {current }}$	SEDAR 21

Stock Rebuilding Information

Sandbar Sharks

The following rebuilding information is requested:

- Include information regarding significance of catch-per-unit effort (CPUE) trend series for sandbar sharks. The HMS Management Division finds these series helpful for management;
- Estimate the acceptable biological catch (ABC) according to the control rule guidelines established by the SEFSC in both weight and numbers of sharks. A table showing different values of ABC at various P* levels is acceptable;
- Determine the probability of rebuilding sandbar sharks by 2070, which is the current rebuilding timeframe for sandbars under Amendment 2 to the 2006 Consolidated HMS FMP. Such projections should consider current harvest (including commercial landings, discards, and recreational landings) as well as the current total allowable catch (TAC) of 220 mt ww (158 mt dw);
- If the current TAC would not allow rebuilding by 2070, calculate the TAC corresponding to 50 and 70 percent probability of rebuilding by 2070 in both weight and number of sharks and the corresponding F value;
- If rebuilding could occur before 2070, please provide the appropriate TAC (in both weight and number of sharks) to ensure a 50 and 70 percent probability of rebuilding and the new timeframe. Please also estimate the corresponding F value;
- Provide the average weight of sandbar sharks caught in the commercial (by gear type) and recreational fisheries in 2008 and 2009; and,
- It is requested that the analysts provide estimates of the following items in both weight and numbers of sharks:
o MSY;
o Reduction in harvest needed to reach MSY (if harvest needs to be different from current management regime);
o Commercial landings through 2009;
o Dead discard estimates through 2009; and
o Recreational harvest through 2009.

Dusky Sharks

The following rebuilding information is requested:

- Include information regarding significance of CPUE trend series for dusky sharks. The HMS Management Division finds these series helpful for management;
- Estimate the ABC according to the control rule guidelines established by the SEFSC in both weight and numbers of sharks. A table showing different values of ABC at various P^{*} levels is acceptable;; although dusky sharks have been prohibited in the commercial and recreational fisheries since 2000, it would be helpful to have this estimate to determine if levels of discards are sustainable;
- Determine the probability of rebuilding within at least 100 years, which is the current rebuilding timeframe for dusky sharks under Amendment 2 to the 2006 Consolidated HMS FMP. Such projections should consider current harvest (including commercial landings, discards, and recreational landings). In addition, the HMS Management Division requests that the analysts investigate how decreased or increased landings/discards would affect rebuilding for this species;
- If rebuilding will not occur within at least 100 years, calculate the new rebuilding timeframe and an associated TAC (in both weight and number of sharks) and F value that would allow a 50 and 70 percent probability of rebuilding. Again, although dusky sharks have been prohibited since 2000, this information would be helpful for determining whether or not current discard levels are sustainable;
- Provide the average weight of dusky sharks caught in the commercial (by gear type) and recreational fisheries in 2008 and 2009; and,
- It is requested that the analysts provide estimates of the following items in both weight and numbers of sharks:
o MSY;
o Reduction in landings and discards needed to reach MSY (if harvest needs to be different from current management regime);
o Commercial landings through 2009;
o Dead discard estimates through 2009; and
o Recreational harvest through 2009.

Blacknose Sharks

The following rebuilding information is requested:

- Include information regarding significance of CPUE trend series for blacknose sharks. The HMS Management Division finds these series helpful for management;
- Estimate the ABC according to the control rule established by the SEFSC in both weight and numbers of sharks;
- Determine the probability of rebuilding blacknose sharks by 2027, which is the current rebuilding timeframe for sandbars under Amendment 3 to the 2006 Consolidated HMS FMP. Such projections should consider current harvest (including commercial landings, discards, and recreational landings) as well as the current total allowable catch (TAC) of 19,200 blacknose sharks;
- If the current TAC would not allow rebuilding by 2027 , calculate the TAC corresponding to 50 and 70 percent probability of rebuilding by 2027 in both weight and number of sharks and the corresponding F value;
- If rebuilding could occur before 2027, please provide the appropriate TAC (in both weight and number of sharks) to ensure a 50 and 70 percent probability of rebuilding and the new timeframe. Please also estimate the corresponding F value;
- Provide the average weight of blacknose sharks caught in the commercial (by gear type) and recreational fisheries in 2008 and 2009; and,
- It is requested that the analysts provide estimates of the following items in both weight and numbers of sharks:
o MSY;
o Reduction in harvest needed to reach MSY (if harvest needs to be different from current management regime);
o Commercial landings through 2009;
o Dead discard estimates through 2009; and
o Recreational harvest through 2009.

Table 13 Stock Projection Information for Sandbar Sharks

Requested Information	Value
First year under current rebuilding program	2008
End year under current rebuilding program	2070
First Year of Management based on this assessment	2013
Projection Criteria during interim years should be based on (e.g., exploitation or harvest)	F=0; Fixed Exploitation; Modified Exploitation; Fixed Harvest*; F=220 mt ww (current TAC)
Projection criteria values for interim years should be determined from (e.g., terminal year, avg of X years)	Average landings of previous 2 years (2008, 2009)

Table 14 Stock Projection Information for Dusky Sharks

Requested Information	Value
First year under current rebuilding program	2008
End year under current rebuilding program	>2108
First Year of Management based on this assessment	2013
Projection Criteria during interim years should be	F=0; Fixed Exploitation; Modified
based on (e.g., exploitation or harvest)	Exploitation; Fixed Harvest*
Projection criteria values for interim years should be determined from (e.g., terminal year, avg of X years)	Average landings of previous 2 years (2008, 2009)

Table 15 Stock Projection Information for Blacknose Sharks

Requested Information	Value
First year under current rebuilding program	2010
End year under current rebuilding program	2027
First Year of Management based on this assessment	2013
Projection Criteria during interim years should be based on (e.g., exploitation or harvest)	F=0; Fixed Exploitation; Modified Exploitation; Fixed Harvest*; F=19,200 blacknose sharks (current TAC)
Projection criteria values for interim years should be determined from (e.g., terminal year, avg of X years)	Average landings of previous 2 years (2008, 2009)

*Fixed Exploitation would be $\mathrm{F}=\mathrm{F}_{\text {MSY }}$ (or $\mathrm{F}<\mathrm{F}_{\text {MSY }}$) that would rebuild overfished stock to $\mathrm{B}_{\text {MSY }}$ in the allowable timeframe. Modified Exploitation would be allow for adjustment in $\mathrm{F}<=\mathrm{F}_{\text {MSY }}$, which would allow for the largest landings that would rebuild the stock to $\mathrm{B}_{\mathrm{MSY}}$ in the allowable
timeframe. Fixed harvest would be maximum fixed harvest with $\mathrm{F}<=\mathrm{F}_{\text {MSY }}$ that would allow the stock to rebuild to $\mathrm{B}_{\text {MSY }}$ in the allowable timeframe.

First year of Management: Earliest year in which management changes resulting from this assessment are expected to become effective

Interim years:

Projection Criteria:
Those years between the terminal assessment year and the first year that any management could realistically become effective.

The parameter which should be used to determine population removals, typically either an exploitation rate or an average landings value or a prespecified landings target.

Quota Calculations
Sandbar Sharks
Table 16 Quota calculation details for sandbar sharks.

Current Quota Value	Commercial Quota $=87.9 \mathrm{mt} \mathrm{dw}(2008-2012)$
Next Scheduled Quota Change	2013 ; commercial quota $=116.6 \mathrm{mt} \mathrm{dw}$
Annual or averaged quota ?	
If averaged, number of years to average	Annual quota
Does the quota include bycatch/discard?	No, but the quota is a subset of overall TAC of 158.3
	mt dw; the rest of the TAC is partitioned between dead discards and recreational landings

How is the quota calculated - conditioned upon exploitation or average landings?
The quota was determined based on the TAC calculated during SEDAR 11 (158.3 mt dw). Based on that TAC, the HMS Management Division subtracted average annual recreational landings from 2003-2005 (27 mt dw) and discards from 2003-2005 (14.7 mt dw), resulting in a commercial quota of 116.6 mt dw . However, large overharvests during 2007 resulted in the HMS Management Division reducing the commercial quota to 87.9 mt dw during 2008-2012 to account for the overharvests. The quota is scheduled to increase to 116.6 mt dw in 2013.

Does the quota include bycatch/discard estimates? If so, what is the source of the bycatch/discard values? What are the bycatch/discard allowances?

The commercial quota does not include bycatch/discards estimates.
Are there additional details of which the analysts should be aware to properly determine quotas for this stock?

The quota is adjusted each year through a season rule. Overharvests are deducted from the following year. No overharvests have been experienced for sandbar sharks since implementation of Amendment 2 in 2008. Table 3 shows the history of shark quotas adjusted for under and overharvest. Underharvests are no longer applied to stocks that have been determined to be overfished, have overfishing occurring, or an unknown stock status.

Dusky Sharks
Table 17 Quota calculation details for dusky sharks.

Current Quota Value	0
Next Scheduled Quota Change	N/A
Annual or averaged quota?	N/A
If averaged, number of years to average	-
Does the quota include bycatch/discard ?	N/A

How is the quota calculated - conditioned upon exploitation or average landings?
Dusky sharks have been prohibited from commercial and recreational harvest since 2000. The commercial quota set for this species is 0 mt dw ; howeyer, they are caught and discarded in the shark fisheries, and also show up in the commercial logbôoks and in recreational landings.

Does the quota include bycatch/discard estimates? If so, what is the source of the bycatch/discard values? What are the bycatch/discard allowances?

As mentioned above, there is no commercial quota.
Are there additional details of which the analysts should be aware to properly determine quotas for this stock?

The HMS Management Division requests the analysts to estimate discards of dusky sharks in both the shark fisheries and other fisheries and how discards may have changed since the implementation of Amendment 2 (July 2008).

Blacknose Sharks

Table 18 Quota calculation details for blacknose sharks.

Current Quota Value	Commercial Quota = (SCS complex) 454 mt dw
Next Scheduled Quota Change	Summer 2010; preferred commercial quota $=19.9 \mathrm{mt} \mathrm{dw}$ (blacknose specific)
Annual or averaged quota?	Annual quota
If averaged, number of years to average	-
Does the quota include bycatch/discard ?	Current quota does not include discards

How is the quota calculated - conditioned upon exploitation or average landings?
The quota was determined in 2003 for the SCS complex under Amendment 1 to the 1999 FMP. The quota was based upon 75 percent of the average MSY for the complex, multiplied by the percent contribution of the commercial catch to total catch of the SCS complex.

Does the quota include bycatch/discard estimates? If so, what is the source of the bycatch/discard values? What are the bycatch/discard allowances?

The commercial quota does not include bycatch/discards estimates.
Are there additional details of which the analysts should be aware to properly determine quotas for this stock?

The HMS Management Division requests that the analysts keep in mind that Amendment 3 will be implemented for the SCS fishery during the summer of 2010, and blacknose sharks will be subject to a new quota of 19.9 mt dw, which is a 64 percent reduction in blacknose shark landings relative to average landings from 2004-2008.

Management and Regulatory Timeline

The following tables provide a timeline of Federal management actions by fishery. It should be noted that federally permitted fishermen must follow federal regulations unless state regulations are more restrictive.

Table 19 Annual commercial sandbar shark regulatory summary (managed in the LCS complex until 2008 when separate quota and sandbar shark research fishery established under Amendment 2 except in 2003 where it was managed as a ridgeback).

		Fishing Year			Possession Limit
Year	Base Quota (LCS complex)	N. Atlantic	S. Atlantic	Gulf	All regions
1993	2,436 mt dw	One region; calendar year with two fishing periods			No trip limit
1994	2,346 mt dw	One region; calendar year with two fishing periods			4,000 lb dw LCS combined/trip
1995	2,570 mt dw	One region; calendar year with two fishing periods			$4,000 \mathrm{lb} \mathrm{dw} \mathrm{LCS} \mathrm{combined/trip}$
1996	2,570 mt dw	One region; calendar year with two fishing periods			4,000 lb dw LCS combined/trip
1997	1,285 mt dw	One region; calendar year with two fishing periods			4,000 lb dw LCS combined/trip
1998	1,285 mt dw	One region; calendar year with two fishing periods			$4,000 \mathrm{lb} \mathrm{dw} \mathrm{LCS} \mathrm{combined/trip}$
1999	1,285 mt dw	One region; calendar year with two fishing periods (but fishing season open and closed twice during $2^{\text {nd }}$ season-see Table 3)			4,000 lb dw LCS combined/trip; 5 LCS for incidental permit holders*
2000	1,285 mt dw	One region; calendar year with two fishing periods			4,000 lb dw LCS combined/trip; 5 LCS for incidental permit holders
2001	1,285 mt dw	One region; calendar year with two fishing periods			4,000 lb dw LCS combined/trip; 5 LCS for incidental permit holders
2002	1,285 mt dw	One region; calendar year with two fishing periods			4,000 lb dw LCS combined/trip; 5 LCS for incidental permit holders
2003	783 mt dw	One region; calendar year with two fishing periods but ridgeback and nonridgeback split-see Table 3)			4,000 lb dw LCS combined/trip; 5 LCS for incidental permit holders
2004	1,107 mt dw	Regions \dagger with two fishing seasons	Regions \dagger with two fishing seasons	Regions \dagger with two fishing seasons	4,000 lb dw LCS combined/trip; 5 LCS for incidental permit holders
2005	1,107 mt dw	Trimesters/Regionst	Trimesters/Regions \dagger	Trimesters/Regions \dagger	4,000 lb dw LCS combined/trip; 5 LCS for incidental permit holders
2006	1,107 mt dw	Trimesters/Regions \dagger	Trimesters/Regions \dagger	Trimesters/Regions \dagger	4,000 lb dw LCS combined/trip; 5 LCS for incidental permit holders
2007	1,107 mt dw	Trimesters/Regions \dagger	Trimesters/Regions \dagger	Trimesters/Regions \dagger	4,000 lb dw LCS combined/trip; 5 LCS for incidental permit holders
2008**	87.9 mt dw	One region; calendar year			2,750 lb dw of LCS/trip of which no more than $2,000 \mathrm{lb} \mathrm{dw}$ could be sandbar inside research fishery; trip limit= 0 outside research fishery
2009**	87.9 mt dw	One region; calendar year			45 sandbar/trip inside research fishery; trip limit= 0 outside research fishery

*Limited Access Permits (LAPs) were implemented for the shark and swordfish fisheries under 1999 FMP; \dagger Regions $=$ Gulf of Mexico, South Atlantic, and North Atlantic.
**Sandbar specific quota; Sharks required to be offloaded with all fins naturally attached under Amendment 2.

Table 20 Annual commercial dusky shark regulatory summary (managed in LCS complex until 2000 when placed on the prohibited species complex).

Year	Base Quota (LCS complex)	Fishing Year	Possession Limit
1993	2,436 mt dw	One region; calendar year with two fishing periods	No trip limit
1994	2,346 mt dw	One region; calendar year with two fishing periods	4,000 lb dw LCS combined/trip
1995	2,570 mt dw	One region; calendar year with two fishing periods	$4,000 \mathrm{lb}$ dw LCS combined/trip
1996	2,570 mt dw	One region; calendar year with two fishing periods	4,000 lb dw LCS combined/trip
1997	1,285 mt dw	One region; calendar year with two fishing periods	4,000 lb dw LCS combined/trip
1998	1,285 mt dw	One region; calendar year with two fishing periods	4,000 lb dw LCS cômbined/trip
1999	1,285 mt dw	One region; calendar year with two fishing periods (but fishing season open and closed twice during $2^{\text {nd }}$ season-see Table 3)	4,000 lb dw LCS combined/trip; 5 LCS for incidental permit holders*
2000	0-prohibited	None	0 -prohibited
2001	0 -prohibited	None	0 -prohibited
2002	0 -prohibited	None	0 -prohibited
2003	0 -prohibited	None	0 -prohibited
2004	0 -prohibited	None	0 -prohibited
2005	0 -prohibited	None	0 -prohibited
2006	0 -prohibited	D None	0 -prohibited
2007	0 -prohibited	None	0 -prohibited
2008	0 -prohibited	- None	0 -prohibited
2009	0 -prohibited	None	0-prohibited

*Limited Access Permits (LAPs) were implemented for the shark and swordfish fisheries under 1999 FMP

Table 21 Annual commercial blacknose shark regulatory summary (managed within the SCS complex).
Note: Regions = Gulf of Mexico, South Atlantic, and North Atlantic

		Fishing Year			Possession Limit
Year	Base Quota (SCS complex)	N. Atlantic	S. Atlantic	Gulf	All regions
1993	No quota	One region; calendar year with two fishing periods			No trip limit
1994	No quota	One region; calendar year with two fishing periods			No trip limit
1995	No quota	One region; calendar year with two fishing periods			No trip limit
1996	No quota	One region; calendar year with two fishing periods			No trip limit
1997	1,760 mt dw	One region; calendar year with two fishing periods			No trip limit
1998	1,760 mt dw	One region; calendar year with two fishing periods			No trip limit
1999	1,760 mt dw	One region; calendar year with two fishing periods			No trip limit for SCS/pelagics for directed permit holders; 16 SCS \& pelagic sharks combined/trip for incidental permit holders*
2000	1,760 mt dw	One region; calendar year with two fishing periods			No trip limit for SCS/pelagics for directed permit holders; 16 SCS \& pelagic sharks combined/trip for incidental permit holders
2001	1,760 mt dw	One region; calendar year with two fishing periods			No trip limit for SCS/pelagics for directed permit holders; 16 SCS \& pelagic sharks combined/trip for incidental permit holders
2002	1,760 mt dw	One region; calendar year with two fishing periods			No trip limit for SCS/pelagics for directed permit holders; 16 SCS \& pelagic sharks combined/trip for incidental permit holders
2003	326 mt dw	One region; calendar year with two fishing periods but ridgeback and non-ridgeback split-see Table 3)			No trip limit for SCS/pelagics for directed permit holders; 16 SCS \& pelagic sharks combined/trip for incidental permit holders
2004	454 mt dw	Regions with two fishing seasons	Regions with two fishing seasons	Regions with two fishing seasons (fishery closed on March 18, 2004 - see Table 4)	No trip limit for SCS/pelagics for directed permit holders; 16 SCS \& pelagic sharks combined/trip for incidental permit holders
2005	454 mt dw	Trimesters/Regions	Timesters/Regions	Trimesters/Regions	No trip limit for SCS/pelagics for directed permit holders; 16 SCS \& pelagic sharks combined/trip for incidental permit holders
2006	454 mt dw	Trimesters/Regions	Trimesters/Regions	Trimesters/Regions	No trip limit for SCS/pelagics for directed permit holders; 16 SCS \& pelagic sharks combined/trip for incidental permit holders
2007	454 mt dw	Trimesters/Regions	Trimesters/Regions	Trimesters/Regions (fishery closed on Feb. 23, 2007 - see Table 4)	No trip limit for SCS/pelagics for directed permit holders; 16 SCS \& pelagic sharks combined/trip for incidental permit holders
2008**	454 mt dw	One region; calendar year			No trip limit for SCS/pelagics for directed permit holders; 16 SCS \& pelagic sharks combined/trip for incidental permit holders

$2009 * * \dagger$	454 mt dw	One region; calendar year	No trip limit for SCS/pelagics for directed permit holders; 16 SCS \& pelagic sharks combined/trip for incidental permit holders

*Limited Access Permits (LAPs) were implemented for the shark and swordfish fisheries under 1999 FMP
**Sharks required to be offloaded with all fins naturally attached under Amendment 2
\dagger DEIS for Amendment 3 proposed a blacknose-specific quota of 14.9 mt dw and a non-blacknose SCS quota of 56.9 mt dw and prohibition of landing sharks with gillnet gear from South Carolina south.

Table 22. Annual recreational sandbar shark regulatory summary (managed in the LCS complex until 2008 recreational retention prohibited under Amendment 2).

Year	Fishing Year	Size Limit	Bag Limit
1993	Calendar Year	No size limit	4 LCS or pelagic sharks/vessel
1994	Calendar Year	No size limit	4 LCS or pelagic sharks/vessel
1995	Calendar Year	No size limit	4 LCS or pelagic sharks/vessel
1996	Calendar Year	No size limit	4 LCS or pelagic sharks/vessel
1997	Calendar Year	No size limit	2 LCS/SCS/pelagic sharks combined/vessel
1998	Calendar Year	No size limit	2 LCS/SCS/pelagic sharks combined/vessel
1999	Calendar Year	No size limit	2 LCS/SCS/pelagic sharks combined/vessel
2000	Calendar Year	Minimum size $=4.5 \mathrm{ft}$	1 LCS/SCS/pelagic shark combined/vessel/trip
2001	Calendar Year	Minimum size $=4.5 \mathrm{ft}$	1 LCS/SCS/pelagic shark combined/vessel/trip
2002	Calendar Year	Minimum size $=4.5 \mathrm{ft}$	1 LCS/SCS/pelagic shark combined/vessel/trip
2003	Calendar Year	Minimum size $=4.5 \mathrm{ft}$	1 LCS/SCS/pelagic shark combined/vessel/trip
2004	Calendar Year	Minimum size $=4.5 \mathrm{ft}$	1 LCS/SCS/pelagic shark combined/vessel/trip
2005	Calendar Year	Minimum size $=4.5 \mathrm{ft}$	1 LCS/SCS/pelagic shark combined/vessel/trip
2006	Calendar Year	Minimum size $=4.5 \mathrm{ft}$	1 LCS/SCS/pelagic shark combined/vessel/trip
2007	Calendar Year	Minimum size $=4.5 \mathrm{ft}$	1 LCS/SCS/pelagic shark combined/vessel/trip
2008*	Prohibited	N/A	0
2009*	Prohibited	N/A	0

*Retention prohibited in recreational fishery under Amendment 2.

Table 23. Annual recreational dusky shark regulatory summary (managed within the LCS complex until 2000 when prohibited in commercial and recreational fisheries).

Year	Fishing Year	Size Limit	Bag Limit
1993	Calendar Year	No size limit	4 LCS or pelagic sharks/vessel
1994	Calendar Year	No size limit	4 LCS or pelagic sharks/vessel
1995	Calendar Year	No size limit	4 LCS or pelagic sharks/vessel
1996	Calendar Year	No size limit	4 LCS or pelagic sharks/vessel
1997	Calendar Year	No size limit	2 LCS/SCS/pelagic sharks combined/vessel
1998	Calendar Year	No size limit	2 LCS/SCS/pelagic sharks combined/vessel
1999	Calendar Year	No size limit	2 LCS/SCS/pelagic sharks combined/vessel
2000	Prohibited	N/A	0
2001	Prohibited	N/A	0
2002	Prohibited	N/A	0
2003	Prohibited	N/A	0
2004	Prohibited	N/A	0
2005	Prohibited	N/A	0
2006	Prohibited	N/A	0
2007	Prohibited	N/A	0
2008	Prohibited	N/A	0
2009	Prohibited	N/A	0

Table 24. Annual recreational blacknose shark regulatory summary (managed within the SCS complex).

Year	Fishing Year	Size Limit	Bag Limit
1993	Calendar Year	No size limit	5 SCS sharks/person
1994	Calendar Year	No size limit	5 SCS sharks/person
1995	Calendar Year	No size limit	5 SCS sharks/person
1996	Calendar Year	No size limit	5 SCS sharks/person
1997	Calendar Year	No size limit	2 LCS/SCS/pelagic sharks combined/vessel
1998	Calendar Year	No size limit	2 LCS/SCS/pelagic sharks combined/vessel
1999	Calendar Year	No size limit	2 LCS/SCS/pelagic sharks combined/vessel
2000	Calendar Year	Minimum size $=4.5 \mathrm{ft}$	1 LCS/SCS/pelagic shark combined/vessel/trip
2001	Calendar Year	Minimum size $=4.5 \mathrm{ft}$	1 LCS/SCS/pelagic shark combined/vessel/trip
2002	Calendar Year	Minimum size $=4.5 \mathrm{ft}$	1 LCS/SCS/pelagic shark combined/vessel/trip
2003	Calendar Year	$\text { Minimum size }=4.5 \mathrm{ft}$	1 LCS/SCS/pelagic shark combined/vessel/trip
2004	Calendar Year	Minimum size $=4.5 \mathrm{ft}$	1 LCS/SCS/pelagic shark combined/vessel/trip
2005	Calendar Year	Minimum size $=4.5 \mathrm{ft}$	1 LCS/SCS/pelagic shark combined/vessel/trip
2006	Calendar Year	Minimum size $=4.5 \mathrm{ft}$	1 LCS/SCS/pelagic shark combined/vessel/trip
2007	Calendar Year	Minimum size $=4.5 \mathrm{ft}$	1 LCS/SCS/pelagic shark combined/vessel/trip
2008	Calendar Year	Minimum size $=4.5 \mathrm{ft}$	1 LCS/SCS/pelagic shark combined/vessel/trip
2009	Calendar Year	Minimum size $=4.5 \mathrm{ft}$	1 LCS/SCS/pelagic shark combined/vessel/trip

Table 7. State Regulatory History

Alabama (not confirmed by state):
Pre-1995: No shark regulations
1996: First shark regulations implemented: state shark fishery closes with the federal shark fishery
1998: By 1998: only short lines in state waters; time/area and size restrictions on the recreational use of gillnets

2004: By Feb 2004: Recreational daily bag limit - 2 sharpnose/person/day; all other species 1fish/person/day; Recreational minimum size all sharks (except sharpnose) - 54" FL

2006: By May 2006: Recreational \& Commercial non-sharpnose min size - 54" FL or 30" dressed; Prohibition: Atlantic angel, bigeye thresher, dusky, longfin make, sand tiger, basking, whale, white, and nurse sharks

2007: No new shark regulations
2008: No new shark regulations
2009: Recreational \& commercial sharpnose bag limit dropped to 1 sharpnose per person per day; no shark fishing on weekends, Memorial Day, Independence Day, or Labor Day

Connecticut (confirmed by state):
Pre-1995-2008: No shark regulations
2009: July: No possession or landing of large coastal shark species by any commercial fishing gear or for commercial purposes.

2010: Feb: Commercial possession of prohibited Small Coastal Sharks: Atlantic sharpnose, finetooth, blacknose, bonnethead until a 2010 quota is set by NMFS; Sandbar shark take prohibited in the commercial and recreational fisheries per ASMFC FMP except under Scientific Collection Permit

Delaware (confirmed by state):
Pre-1995: No shark regulations
1998: Commercial shark fishermen must hold a federal shark permit even when fishing in state waters, therefore, state regulations match federal regulations; sharks must be landed with meat and fins intact, but head can be removed; any shark not kept must be released in a manner that maximizes survival; taking of basking, white, whale, sand tiger, and bigeye sand tiger prohibited; seasonal gillnet restrictions. Recreational regulations: no more than two sharks per vessel except that 2 sharpnose can also be landed; prohibition on finning and filleting or taking of the 5 prohibited species

2000: Creel limit on regulated sharks of 1 shark per vessel per day; creel limit for sharpnose is 2 sharks per day; minimum size on regulated sharks is 54 inches FL; fins must be naturally attached; 14 prohibited species added (Atlantic angel shark, bigeye sixgill shark, bigeye thresher, bignose shark, Caribbean reef shark, Caribbean sharpnose shark, dusky shark, Galapagos shark, longfin mako, narrowtooth shark, night shark, sevengill shark, sixgill shark, smalltail shark)

2009: ASMFC Plan

Florida (confirmed by state):

Pre-1995: 1992: first shark-specific regulations: must hold federal shark permit; commercial and recreational possession limit of 1 shark per person per day or 2 sharks per vessel per day, whichever is less (virtually no commercial shark fishery in state waters); prohibition on landing fins without corresponding carcass; released sharks should be released in a manner that maximizes survival; recreationally caught sharks cannot be transferred at sea; recreationally caught sharks cannot be sold; prohibition on harvest, landing and sale of basking and whale sharks; state shark fishery closes with federal shark fishery; 1994: prior to landing, fins cannot be removed from a shark harvested in state waters; fishermen returning from federal waters with sharks or shark parts harvested in federal waters, cannot fish in state waters; 1995: ban on the use of entanglement nets larger than 500 square feet

1998: By 1998: ban on longlines; 1998: Added sand tiger, bigeye sandtiger, and white sharks to prohibited species list; prohibition on filleting sharks at sea.

2006: March: Same prohibited species as federal regulations, except Caribbean sharpnose is not included

2010: Jan: Commercial/recreational min size - 54" except no min. size on blacknose, blacktip, bonnethead, smooth dogfish, finetooth, Atlantic sharpnose; Allowable gear - hook and line only; prohibition on the removal of shark heads and tails in state waters; prohibition on harvest of sandbar, silky, and Caribbean sharpnose sharks in state waters; March: prohibition on all harvest of lemon sharks in state waters.

Georgia (confirmed by state):

Pre-1995: 1950s: ban on gillnets and longlines; All finfish spp. must be landed with head and fins intact
1998: First shark regulation: prohibition on taking sand tiger sharks; Small Shark Composite (Atl. Sharpnose, bonnethead, spiny dogfish) 30"TL min. size; Creel: 2/person/day; All other sharks 2/person/day or 2 /boat/day, whichever is less. 54"TL min. size, only one shark over 84" TL

2000: Sharks may not be landed in Georgia if harvested using gillnets
2009: Recreational: 1 shark from the Small Shark Composite (bonnethead, sharpnose, and spiny dogfish, min size 30" FL; All other sharks - 1 shark/person or boat, whichever is less, min size 54 " FL, Prohibited Species: sand tiger sharks, sandbar, silky, bigeye sandtiger, whale, basking,
white, dusky, bignose, Galapagos, night, reef, narrowtooth, Caribbean sharpnose, smalltail, Atlantic angel, longfin mako, bigeye thresher, sharpnose sevengill, bluntnose sixgill, and bigeye sixgill.

Louisiana (not confirmed by state):
Pre-1995:
1997: Ban on entanglement nets
1998: No new shark regulations
2004: By Feb 2004: Minimum size - 54" except sharpnose; Possession limit - 1 fish/vessel/trip; Trip limit 4,000 lbs dw LCS; Reference to federal regulations; State waters closed to rec/commercial April 1 through June 30

2006: By May 2006: Recreational: min size - 54" FL, except Atlantic sharpnose and bonnethead; bag limit - 1 sharpnose/person/day; all other sharks - 1 fish/person/day; Commercial: 4,000 lb LCS trip limit, no min size; Com \& Rec Harvest Prohibited: 4/1-6/30; Prohibition: same as federal regulations

2008: By Oct 2008: Commercial: 33 per vessel per triplimit, no min size
Maine (not confirmed by state):
Pre-1995: No shark regulations
1998: By 1998: large state water closures to gillnets resulting in virtually no gillnet fishery; 1998: no shark regulations

2009: Maximum 5 \% fin-to-carcass ratio
Maryland (not confirmed by state):
1996: 4000 lb shark limit per person per day; fins must accompany carcass and not exceed 5% fin-tocarcass ratio, state shark fishery closes with federal shark fishery

1998: Size limit of 58 inches FL or a carcass less than 31 inches; recreational bag limit of one shark per person per day; by 1998: maximum gillnet mesh size of 6 inches; no longlining in tidal waters.

2004: By Feb 2004: minimum FL reduced to 54 inches, carcass length the same (31 inches); recreational catch limit of 1 shark per person per day; reference to federal regs 50 CFR 635.

2009: ASMFC Plan
Massachusetts (not confirmed by state):
Pre-1995-2006: No shark regulations

2006: By May 2006: Prohibition on harvest, catch, take, possession, transportation, selling or offer to sell any basking, dusky, sand tiger, or white sharks.

Mississippi (not confirmed by state):
1997: Prohibit taking and possession of sand tiger, bigeye sand tiger, whale, basking, and white sharks; Recreational: bag limit of 4 small coastal sharks (Atlantic sharpnose, Caribbean sharpnose, finetooth, blacknose, smalltail, bonnethead and Atlantic angel shark) per person per day; limit of 3 large coastal and pelagic sharks, in aggregate per vessel per day, same prohibited species as commercial fishers; minimum size of 25 inches total length for small coastal sharks and 37 inches total length for large coastal sharks

2008: By Oct 2008: Recreational bag limit - LCS/Pelagics 1/person up to 3/vessel; SCS 4/person; Commercial \& Prohibited Species - Reference to federal regulations

New Hampshire (not confirmed by state):
Pre-1995-2008: No shark regulations
2009: No commercial take of porbeagle
New Jersey (not confirmed by state):
Pre-1995: No shark regulations
1998: No shark-specific regulations; by 1998: no longline fishing; restrictions on the use of gillnets
2004: By Feb 2004: commercial/recreational possession limit of 2 sharks per vessel; prohibition on finning; dorsal fin to pre-caudal pit must be at least 23 inches in length; total length must be 48 inches in length

2006: By May 2006: no sale during federal closures; Finning prohibited; Prohibited Species: basking, bigeye sand tiger, sand tiger, whale and white sharks

New York (not confirmed by state):
1998: By 1998: prohibition on finning sharks; no other shark regulations
2004: By Feb 2004: reference to federal regs 50 CFR part 635; prohibited sharks listed
North Carolina (confirmed by state):
Pre-1995: 1990: prohibition on finning 1990 - 7500 lbs per trip, dogfish exempt; unlawful to land fins without carcass; fins no more than 10%; unlawful to land dried fins; required record keeping; Recreational - bag limit is 2 per day

1992: Reduced fins to no more than 7\%

1997: No sharks, except Atlantic sharpnose and pelagic sharks, can be taken by commercial gear in state waters; fins must be landed with the carcass; maximum 5\% fin-to-carcass ratio; fishers cannot possess or land dried shark fins

2000: One shark per vessel per day with commercial gear (except Atlantic sharpnose and dogfish) while federal waters are open for species group; 84 inch maximum size limit except for tiger, thresher, bigeye thresher, shortfin mako and hammerhead species; must be landed with head, tail and fins intact; Recreational - bag limit is 1 per person per day with a minimum size of 54 " (none on Atlantic sharpnose) and a maximum of 84" (except for tiger, thresher, bigeye thresher, shortfin mako and hammerhead species); Prohibited species - basking, white, sand tiger and whale sharks

2003: April: Prohibited ridgebacks (sandbar, silky, and tiger sharks) from Large Coastal Group
2006: Open seasons and species groups same as federal; 4000 lb trip limit for LCS; retain fins with carcass through point of landing; longline shall only be used to harvest LCS during open season, shall not exceed 500 yds or have more than 50 hooks (state waters reopened to commercial fishing); Recreational: LCS (54" FL min size) - no more than 1 shark/vessel/day or 1 shark/person/day, SCS (no min size) - no more than 1 finetooth or blacknose shark/vessel/day and no more than 1 Atlantic sharpnose and 1 bonnethead/person/day, pelagics (no min size) -1 shark/vessel/day; Same prohibited shark species as federal regulations

2008: July: Adopted federal regulations of 33 Large Coastal sharks per trip and fins must be naturally attached to carcass

2009: Fins must be naturally attached to shark carcass
Puerto Rico (confirmed by state):
Pre-1995-2004: No shark regulations
2004: Year-round closed season on nurse sharks Shark "finning" is prohibited. PR regulations indicate the need for compliance by local fishers with federal shark regulations.

Rhode Island (not confirmed by state):
No shark regulations
South Carolina (not confirmed by state):
1998: By 1998: federal regs adopted by reference; use of gillnets prohibited in the shark fishery
2004: By Feb 2004: retention limit of 2 Atlantic sharpnose per person per day and 1 bonnethead per person per day; no min size for recreationally caught bonnethead sharks; reference to federal commercial regulations and closures

2006: By May 2006: non-Atlantic sharpnose/bonnethead sharks - 1 shark/boat/trip, min size - 54" FL

Texas (confirmed by state):

Pre-1995: Sept. 1989: Bag limit set at five sharks per day for both rec and commercial anglers; Sept 1992: Bag limit increased to ten sharks per day. Trotlines were added as allowable gear for sharks.

1997: Commercial bag limit of 5 sharks; possession limit of 10 sharks; no min or max size. Recreational bag, possession, and lack of size restrictions same as commercial

1998: Commercial fishing for sharks can only be done with rod and reel; no entanglement nets
2004: Sept: Commercial/Recreational retention limit 1 fish/person/day; Commercial/Recreational possession limit is twice the daily bag limit (i.e., 1 fish/person/day); Commercial/Recreational minimum size 24 in TL

2009: Sept: Min size 24" TL for Atlantic sharpnose, blacktip, and bonnethead sharks and 64" TL for all other lawful sharks. Prohibited species: same as federal regulations

Virginia (not confirmed by state):

Pre-1995: 1991: no longlines in state waters; recreational bag limit of 1 shark per person per day; established a commercial trip limit of__; 1993: mandatory reporting of all shark landings

1997: 7500 lb commercial trip limit; minimum size of 58 inches FL or 31 inches carcass length (but can keep up to 200 lbs dw of sharks per day less than 31 inches carcass length); prohibition on finning; recreational: possession limit of 1 shark per person per day

1998: By 1998: no longlining in state waters
2006: By May 2006: Recreational: bag limit - 1 LCS, SCS, or pelagic shark/vessel/day with a min size of 54 " FL or 30 " CL; 1 Atlantic sharpnose and bonnethead/person/day with no min size; Commercial: possession limit - 4000 lb dw/day, min size -58 " FL or 31 " CL west of the COLREGS line and no min size limit east of the COLREGS line; Prohibitions: fillet at sea, finning, longlining, same prohibited shark species as federal regulations

2009: ASMFC Plan

3. ASSESSMENT HISTORY AND REVIEW

The sandbar shark was first assessed individually in 1998 and later in 2002 and 2006. Prior to that, it was part of the Large Coastal Shark complex, which was first assessed in 1991 and subsequently updated in 1994, 1996, and 1998. In the 1998 Shark Evaluation Workshop (NMFS 1998), a Bayesian surplus production modeling approach was used to assess sandbar sharks, concluding that the 1998 stock size was $58-70 \%$ of the stock size at MSY. The 2002 Stock Evaluation Workshop saw the use of
multiple assessment methodologies, which resulted in contradictory conclusions on stock status, but the report (Cortés et al. 2002) noted that the status of the resource had improved compared to the conclusions from the 1998 assessment. It was noted, however, that when averaged over the range of models judged plausible, overfishing of the resource could be occurring but current biomass was near or somewhat above that producing MSY.

The first assessment of sandbar sharks under the SEDAR framework took place in 2006 (SEDAR 11, NMFS 2006). Although up to 5 models were initially presented, it was decided that an age-structured production model would be used as the base model given that catch and age-specific biological and selectivity information were available. The 2006 assessment concluded that the stock was overfished $\left(\mathrm{SSF}_{2004} / \mathrm{SSF}_{\mathrm{MSY}}=0.72-0.85\right.$; range of base and sensitivity model runs) with overfishing occurring ($\mathrm{F}_{2004} / \mathrm{F}_{\mathrm{MSY}}=1.73-18.3$; range of base and sensitivity model runs). The main changes between the 2002 and 2006 assessments included differences in the CPUE series used, a maturity ogive shifted towards older ages in 2006, the use of age-specific values of M in 2006 vs. a fixed M at age in 2002, and differing assumptions relating to virgin conditions and historic exploitation.

References

Cortés, E., L. Brooks, and G. Scott. 2002. Stock assessment of large coastal sharks in the U.S. Atlantic and Gulf of Mexico. Sustainable Fisheries Division Contribution SFD-02/03-177. 222 pp.

NMFS (National Marine Fisheries Service). 1998. Report of the Shark Evaluation Workshop. NOAA/NMFFS Panama City Laboratory.

NMFS (National Marine Fisheries Service). 2006. Southeast Data, Assessment and Review (SEDAR) 11. Large Coastal Shark complex, blacktip and sandbar shark stock assessment report. NOAA/NMFS Highly Migratory Species Division, Silver Spring, MD.

4. ASSESSMENT SUMMARY

The Summary Report provides a broad but concise view of the salient aspects of the stock assessment. It recapitulates: (a) the information available to and prepared by the Data Workshop; (b) the application of those data, development and execution of one or more assessment models, and identification of the most reliable model configuration as the base run by the Assessment Process (AP); and (c) the findings and advice determined during the Review Workshop.

TO BE COMPLETED FOLLOWING THE REVIEW WORKSHOP

Stock Status and Determination Criteria

Table 1. Summary of stock status determination criteria.

Criteria	Recommended Values from SEDAR 21	
	Definition	Value
M (Instantaneous natural mortality; per year)	Average of Lorenzen M (if used)	
F_{2009} (per year)	Apical Fishing mortality in 2009	
$\mathrm{F}_{\text {current }}$ (per year)	Geometric mean of the directed fishing mortality rates in 2007 2009	
$\mathrm{F}_{\text {MSY }}$ (per year)	$\mathrm{F}_{\text {MSY }}$	
$\mathrm{B}_{\text {MSY }}$ (metric tons)	Biomass at MSY	
SSB_{2009} (metric tons)	Spawning stock biomâss in 2009	
$\mathrm{SSB}_{\text {MSY }}$ (metric tons)	$\mathrm{SSB}_{\text {MŜY }}$	
MSST (metric tons)	(1-M)*SSB MSY	
MFMT (per year)	$\mathrm{F}_{\text {MSY }}$	
MSY (1000 pounds)	- Yield at MSY	
OY (1000 pounds)	Yield at F_{OY}	OY ($65 \% \mathrm{~F}_{\mathrm{MSY}}$) $=$ OY ($75 \% \mathrm{~F}_{\text {MSY }}$) $=$ OY (85\% F $\mathrm{FSY}=$
$\mathrm{F}_{\text {OY }}$ (per year)	$\mathrm{F}_{\mathrm{OY}}=65 \%, 75 \%, 85 \% \mathrm{~F}_{\mathrm{MSY}}$	$\begin{aligned} & 65 \% \mathrm{~F}_{\mathrm{MSY}}= \\ & 75 \% \mathrm{~F}_{\mathrm{MSY}}= \\ & 85 \% \mathrm{~F}_{\mathrm{MSY}}= \end{aligned}$
Biomass Status	$\mathrm{SSB}_{2009} / \mathrm{MSST}$	
Exploitation Status	$\mathrm{F}_{\text {current }} / \mathrm{F}_{\text {MSY }}$	

***All weights are whole weight

Stock Identification and Management Unit

Species Distribution:

Stock Life History - summary of life history characteristics of the stock under assessment

Assessment Methods

Assessment Data

Release Mortality

Catch Trends

Fishing Mortality Trends

Stock Abundance and Biomass Trends - summary of abundance, biomass, and recruitment over time

Projections - results of model runs conducted to estimate stock conditions under various potential future levels of fishing mortality

Scientific Uncertainty

Significant Assessment Modifications

Sources of Information

Tables

- Table 1: Summary of stock status and determination criteria (above)
- Table 2: Summary of life history parameters by age
- Table 3: Catch and discards by fishery sector
- Table 4: Fishing mortality estimates
- Table 5: Stock abundance and biomass
- Table 6: Spawning stock biomass and Recruitment

Figures

- Figure 1: Landings by fishery sector
- Figure 2: Discards by fishery sector
- Figure 3: Fishing Mortality
- Figure 4: Stock Biomass
- Figure 5: Abundance Indices
- Figure 6: Stock-Recruitment
- Figure 7: Yield per Recruit
- Figure 8: Stock Status and Control Rule
- Figure 9: Projections

Table 2: Summary of Life History Parameters:
Table 3: Catch and discards by fishery sector
Table 4: Fishing mortality estimates
Table 5: Stock abundance and biomass
Table 6: Spawning stock biomass and recruitment

Figure 1: Landings by fishery sector
Figure 2: Discards by fishery sector
Figure 3: Fishing Mortality
Figure 4: Stock Biomass
Figure 5: Abundance Indices
Figure 6: Stock-Recruitment
Figure 7: Yield per Recruit

Figure 8: Stock Status and Control Rule
Figure 9: Projections

5. SEDAR ABBREVIATIONS

ABC	Allowable Biological Catch
ACCSP	Atlantic Coastal Cooperative Statistics Program
ADMB	AD Model Builder software program
ALS	Accumulated Landings System; SEFSC fisheries data collection program
ASMFC	Atlantic States Marine Fisheries Commission
B	stock biomass level
BMSY	value of B capable of producing MSY on a continuing basis
CFMC	Caribbean Fishery Management Council
CIE	Center for Independent Experts
CPUE	catch per unit of effort
F	fishing mortality (instantaneous)
$\mathrm{F}_{\text {MAX }}$	fishing mortality that maximizes the average weight yield per fish recruited to the fishery
$\mathrm{F}_{\text {MSY }}$	fishing mortality to produce MSY under equilibrium conditions
F_{OY}	fishing mortality rate to produce Optimum Yield under equilibrium
$\mathrm{F}_{\mathrm{XX} \% \mathrm{SPR}}$	fishing mortality rate that will result in retaining XX\% of the maximum spawning production under equilibrium conditions
F_{0}	a fishing mortality close to, but slightly less than, Fmax
FL FWCC	Florida Fish and Wildlife Conseryation Commission
FWRI	(State of) Florida Fisheries and Wildlife Research Institute
GA DNR	Georgia Department of Natural Resources
GLM	general linear model
GMFMC	Gulf of Mexico Fishery Management Council
GSMFC	Gulf States Marine Fisheries Commission
GULF FIN	GSMFC Fisheries Information Network
M	natural mortality (instantaneous)
MARMAP	Marine Resources Monitoring, Assessment, and Prediction
MFMT	maximum fishing mortality threshold, a value of F above which overfishing is deemed to be occurring
MRFSS	Marine Recreational Fisheries Statistics Survey; combines a telephone survey of households to estimate number of trips with creel surveys to estimate catch and effort per trip
MRIP	Marine Recreational Information Program
MSST	minimum stock size threshold, a value of B below which the stock is deemed to be overfished

MSY	maximum sustainable yield
NC DMF	North Carolina Division of Marine Fisheries
NMFS	National Marine Fisheries Service
NOAA	National Oceanographic and Atmospheric Administration
OY	optimum yield
SAFMC	South Atlantic Fishery Management Council
SAS	Statistical Analysis Software, SAS Corporation
SC DNR	South Carolina Department of Natural Resources
SEDAR	Southeast Data, Assessment and Review
SEFSC	Fisheries Southeast Fisheries Science Center, National Marine Fisheries Service
SERO	Fisheries Southeast Regional Office, National Marine Fisheries Service
SPR	spawning potential ratio, stock biomass relative to an unfished state of the stock
SSB	Spawning Stock Biomass
SSC	Science and Statistics Committee
TIP	Trip Incident Program; biological data collection program of the SEFSC and Southeast
Z	States. total mortality, the sum of M and F

SEDAR

Southeast Data, Assessment, and Review

SEDAR 21
 Highly Migratory Species

Sandbar Shark

SECTION II: Data Workshop Report

SEDAR
4055 Faber Place Drive, Suite 201
North Charleston, SC 29405

This information is distributed solely for the purpose of peer review. It does not represent and should not be construed to represent any agency determination or policy.

Table of Contents

1. INTRODUCTION 6
1.1. WORKSHOP TIME AND PLACE 6
1.2. TERMS OF REFERNCE 6
1.3. LIST OF PARTICIPANTS 7
1.4. LIST OF DATA WORKSHOP WORKING PAPERS AND REFERNCE DOCUMENTS 8
2. LIFE HISTORY 17
2.1. OVERVIEW 17
2.2. REVIEW OF WORKING PAPERS 17
2.3. STOCK DEFINITION AND DESCRIPTION 20
2.4. NATURAL MORTALITY 20
2.5. DISCARD MORTALITY (SCIENTIFIC STUDIES) 20
2.6. AGE AND GROWTH 21
2.7. REPORDUCTION 21
2.8. SUMMARY OF LIFE HISTORY PARAMETERS 22
2.9. LITERATURE CITED 26
2.10. TABLES 28
3. COMMERCIAL FISHERY STATISTICS 31
3.1. OVERVIEW 31
3.1.1. Membership 31
3.1.2. Issues 31
3.2. REVIEW OF WORKING PAPERS 31
3.3. COMMERCIAL LANDINGS 34
3.3.1. Commercial U.S. catches 34
3.3.2. Mexican Catches 35
3.3.3. Unreported Catches 36
3.3.4. Reconstruction of Historical Catches. 36
3.3.5. Year of Virgin Biomass 37
3.4. COMMERCIAL DISCARDS 37
3.4.1. Fishery Discards 37
3.5. COMMERCIAL EFFORT 41
3.6. BIOLOGICAL SAMPLING 41
3.6.1. Sampling Intensity Length/Age/Weight 41
3.6.2. Length/Age Distributions 42
3.6.3. Adequacy for Characterizing Catch 42
3.6.4. Alternatives for Characterizing Discard Length/Age 42
3.7. COMMERCIAL CATCH AT AGE/LENGTH; DIRECTED, DISCARDS 43
3.8. COMMENTS ON ADEQUACY OF DATA FOR ASSESSMENT ANALYSES 43
3.9. LITERATURE CITED 43
3.10. TABLES 43
3.11. FIGURES 46
4. RECREATIONAL FISHERY STATISTICS 47
4.1. OVERVIEW 47
4.1.2. Issues 47
4.2. REVIEW OF WORKING PAPERS 47
4.3. RECREATIONAL LANDINGS 48
4.3.1. Recreational Fisheries 48
4.3.2. Reconstruction of historical catches 48
4.4. RECREATIONAL DISCARDS 49
4.4.1. Historic discards 49
4.4.2. Post-release mortality 49
4.5. BIOLOGICAL SAMPLING 50
4.5.1. Sampling Intensity Length/Age/Weight 50
4.5.2. Length - Age distributions 50
4.5.3. Adequacy for characterizing catch 50
4.5.4. Alternatives for characterizing discards. 50
4.6. RECREATIONAL CATCH-AT-AGE/LENGTH; DIRECTED DISCARD 50
4.7. RECREATIONAL EFFORT 50
4.8. COMMENTS ON ADEQUACY OF DATA FOR ASSESSMENT ANALYSES 50
4.9. LITERATURE CITED 51
4.10. TABLES 51
4.11. FIGURES 53
5. INDICES OF POPULATION ABUNDANCE 55
5.1. OVERVIEW 55
5.1.1. Group Membership 56
5.2. REVIEW OF INDICES 56
5.3. FISHERY INDEPENDENT INDICES. 57
5.3.1. Panama City Gill Net (SEDAR21-DW-01) 57
5.3.2. VIMS Longline (SEDAR21-DW-18) 57
5.3.3. Dauphin Island Sea Lab Bottom Longline (SEDAR21-DW-25) 58
5.3.4. NMFS COASTSPAN Longline (SEDAR21-DW-27) 58
5.3.5. NMFS Northeast Longline (SEDAR21-DW-28) 59
5.3.6. GA COASTSPAN Longline / GADNR Red drum Longline (SEDAR21-DW-29) 59
5.3.7. SC COASTSPAN / SCDNR Red drum Longline (SEDAR21-DW-30) 59
5.3.8. NMFS Historical Longline (SEDAR21-DW-31) 60
5.3.9. UNC Longline (SEDAR21-DW-33). 61
5.3.10. Mote Marine Lab Longline (SEDAR21-DW-34) 61
5.3.11. NMFS Southeast Bottom Longline (SEDAR21-DW-39) 61
5.3.12. NMFS SEAMAP Groundfish Trawl (SEDAR21-DW-43) 62
5.4. FISHERY DEPENDENT INDICES. 62
5.4.1. SEFSC Shark Bottom Longline Observer Program (SEDAR21-DW-02) 62
5.4.2. Drift Gillnet Observer Program (SEDAR21-DW-03) 63
5.4.3. \quad Sink Gillnet Observer Program (SEDAR21-DW-04) 63
5.4.4. Southeast Pelagic Longline Observer Program / Southeast Pelagic Longline Logbook (SEDAR21-DW-08) 64
5.4.5. MRFSS (SEDAR21-DW-11) 64
5.4.6. Northeast Gillnet Observer Program (SEDAR21-DW-32) 65
5.4.7. Coastal Fishery Logbook Gillnet (SEDAR21-DW-40) 65
5.4.8. Coastal Fishery Logbook Bottom Longline (Sandbar) (SEDAR21-DW-41) 65
5.4.9. Coastal Fishery Logbook Bottom Longline (Dusky) (SEDAR21-DW-42) 66
5.4.10. Large Pelagic Survey (SEDAR21-DW-44) 66
5.5. CONSENSUS RECOMMENDATIONS AND SURVEY EVALUATIONS 67
5.6. LITERATURE CITED 69
5.7. TABLES 70
5.8. FIGURES 94
5.9. Appendix: Evaluation of Abundance Indices for SEDAR 21 102

1. INTRODUCTION

1.1. WORKSHOP TIME AND PLACE

The SEDAR 21 Data Workshop was held June 21-25, 2010 in Charleston, South Carolina.

1.2. TERMS OF REFERNCE

1. Characterize stock structure and develop a unit stock definition. Provide maps of species and stock distribution.
2. Review, discuss and tabulate available life history information (e.g., age, growth, natural mortality, reproductive characteristics); provide appropriate models to describe growth, maturation, and fecundity by age, sex, or length as applicable. Evaluate the adequacy of available life-history information for conducting stock assessments and recommend life history information for use in population modeling.
3. Provide measures of population abundance that are appropriate for stock assessment. Consider and discuss all available and relevant fishery dependent and independent indices. Document all programs evaluated, addressing program objectives, methods, coverage, sampling intensity, and other relevant characteristics. Provide maps of survey coverage. Develop CPUE and index values by appropriate strata (e.g., age, size, area, and fishery); characterize uncertainty. Evaluate the degree to which available indices adequately represent fishery and population conditions. Consider implications of changes in gear, management, fishing effort, etc. in relationship to the different indices. Recommend which indices are considered statistically adequate and biologically plausible for use in assessment modeling.
4. Characterize commercial and recreational catch by gear. Include both landings and discards, in pounds and number by gear type as feasible. Provide estimates of dead discard proportions by fishery and other strata as appropriate or feasible. Evaluate and discuss the adequacy of available data for accurately characterizing fishery removals by species, area, gear type, and fishery sector. Consider implications of changes in gear, management, fishing effort, etc. in reconstructing historic catches. Provide length and age distributions if feasible. To provide context and spatial scale of species distribution, fishery effort, and data coverage, provide maps of fishery effort and harvest, as available.
5. Provide recommendations for future research in areas such as sampling, fishery monitoring, and stock assessment. Include specific guidance on sampling intensity (number of samples including age and length structures) and appropriate strata and coverage.
6. Develop a spreadsheet of assessment model input data that reflects the decisions and recommendations of the Data Workshop. Review and approve the contents of the input spreadsheet.
7. Prepare the Data Workshop report providing complete documentation of workshop actions and decisions (Section II. of the SEDAR assessment report). Provide a list of tasks that were not completed during the meeting week, who is responsible for completing each task, and when each task will be completed.

1.3. LIST OF PARTICIPANTS

Workshop Panel

Alan Bianchi ..
Beth Babcock .. RSMAS
Bill Gazey ... LGL Ecological Research Associates, Inc.
Bryan Frazier SCDNR
Cami McCandless NMFS Narragansett
Carolyn Belcher GADNR
Chris Hayes ACCSP
Chris Vonderweidt ASFMC
Christian Jones NMFS Pascagoula
David Stiller Alabama (Industry Representative)
Enric Cortés NMFS Panama City
Frank Hester .. Southeast Fishery Association - East Coast Section
George Burgess UF
Heather Balchowsky NMFS Miami
Ivy Baremore NMFS Panama City
Jason Romine. Western Fisheries Research Center
John K. Carlson NMFS Panama City
Jose Castro NMFS/Mote Marine Laboratory
Katie Andrews NMFS Panama City
Ken Keene. NMFS - Miami
Kevin McCarthy .NMFS Miami
Kristene Parsons. VIMS
Lori Hale .NMFS Panama City
Marcus Drymon Univ. of AL
Michelle Passerotti NMFS Panama City
Rusty Hudson DSF, Inc.
Trey Driggers NMFS Pascagoula
Walter Ingram NMFS Pascagoula
CIE ReviewerRobin Cook

HMS Representation

Karyl Brewster-Geisz NMFS - Silver Spring

Observers

Dewey Hemilwright.	North Carolina
Glen Hopkins .. North Carolina	
Charlie Locke.. North Carolina	
Joe Klostermann...Fort Pierce, Florida	
Benny Galloway.	LGL

Staff

Julie A. Neer .. SEDAR
Rachael Lindsay... SEDAR
Tyree Davis
NMFS Miami

1.4. LIST OF DATA WORKSHOP WORKING PAPERS AND REFERNCE DOCUMENTS

Document \#	Title	Authors	Working Group
Documents Prepared for the Data Workshop			
SEDAR21-DW-01	Standardized catch rates of sandbar and blacknose shark from a fishery independent survey in northwest Florida, 1996-2009.	John Carlson and Dana Bethea	Indices
SEDAR21-DW-02	Standardized catch rates of sandbar, dusky and blacknose sharks from the Commercial Shark Fishery Longline Observer Program, 1994-2009	John Carlson, Loraine Hale, Alexia Morgan and George Burgess	Indices
SEDAR21-DW-03	Standardized Catch Rates of Blacknose Shark from the Southeast Shark Drift Gillnet Fishery: 1993-2009	John Carlson and Michelle Passerotti	Indices
SEDAR21-DW-04	Standardized Catch Rates of Blacknose Shark from the Southeast Sink Gillnet Fishery: 2005-2009	John Carlson and Michelle Passerotti	Indices
SEDAR21-DW-05	The effect of turtle excluder devices (TEDS) on the bycatch of small coastal sharks in the Gulf of	S.W. Raborn, K.I. Andrews, B.J. Gallaway, J.G. Cole,	Catch Statistics

	Mexico Peneid shrimp fishery	and W.J. Gazey	
SEDAR21-DW-06	Reproduction of the sandbar shark Carcharhinus plumbeus in the U.S. Atlantic Ocean and Gulf of Mexico	Baremore, I.E. and L.F. Hale	Life History
SEDAR21-DW-07	Description of data sources used to quantify shark catches in commercial and recreational fisheries in the U.S. Atlantic Ocean and Gulf of Mexico	Baremore, I.E., Balchowski, H., Matter, V, Cortes, E.	Catch Statistics
SEDAR21-DW-08	Standardized catch rates for dusky and sandbar sharks from the US pelagic longline logbook and observer programs using generalized linear mixed models.	Enric Cortés	Enric Cortés

	fishery from 1972 to 2009		
SEDAR21-DW-16	A Negative Binomial Loglinear Model with Application for the Estimation of Bycatch of Blacknose Shark in the Gulf of Mexico Penaeid Shrimp Fishery	W.J. Gazey, K. Andrews, and B.J. Gallaway	Catch Statistics
SEDAR21-DW-17	Life history parameters for the sandbar shark in the Northwest Atlantic and Eastern Gulf of Mexico	Romine and Musick	Life History
SEDAR21-DW-18	Standardized catch rates of sandbar sharks and dusky sharks in the VIMS Longline Survey: 19752009	Romine, Parsons, Grubbs, Musick, and Sutton	Indices
SEDAR21-DW-19	Updating the blacknose bycatch estimates in the Gulf of Mexico using the Nichols method	Katie Andrews	Catch Statistics
SEDAR21-DW-20	Tag and recapture data for blacknose, Carcharhinus acronotus, sandbar, C. plumbeus, and dusky shark, C. obscurus, as kept in the NOAA Fisheries Southeast Fisheries Science Center Elasmobranch Tagging Management System, 1999-2009	D. Bethea and Carlson, J.K.	Life History
SEDAR21-DW-21	Age and growth of the sandbar shark, Carcharhinus plumbeus, in the Gulf of Mexico and southern Atlantic Ocean.	L. Hale and I. Baremore	Life History
SEDAR21-DW-22	Catch and bycatch in the bottom longline observer program from 2005 to 2009	Hale, L.F., S.J.B. Gulak, and J.K. Carlson	Catch Statistics
SEDAR21-DW-23	Identification and evaluation of shark bycatch in Georgia's commercial shrimp trawl fishery with implications for management	C. N. Belcher and C. A. Jennings	Catch Statistics
SEDAR21-DW-24	Increases in maximum observed	Bryan S. Frazier,	Life History

	age of blacknose sharks, Carcharhinus acronotus, based on three long term recaptures from the Western North Atlantic	William Driggers, and Christian Jones	
SEDAR21-DW-25	Catch rates and size distribution of blacknose shark Carcharhinus acronotus in the northern Gulf of Mexico, 2006-2009	J. M. Drymon, S.P. Powers, J. Dindo and G.W. Ingram	Indices
SEDAR21-DW-26	Reproductive cycle of sandbar sharks in the northwestern Atlantic Ocean and Gulf of Mexico	Andrew Piercy	Life History
SEDAR21-DW-27	Standardized catch rates for juvenile sandbar sharks caught during NMFS COASTSPAN longline surveys in Delaware Bay	Camilla T. McCandless	Indices
SEDAR21-DW-28	Standardized catch rates for sandbar and dusky sharks caught during the NEFSC coastal shark bottom longline survey	Camilla T. McCandless and Lisa J. Natanson	Indices
SEDAR21-DW-29	Standardized catch rates for sandbar and blacknose sharks caught during the Georgia COASTSPAN and GADNR red drum longline surveys	Camilla T. McCandless and Carolyn N. Belcher	Indices
SEDAR21-DW-31	Standardized catch rates of sandbar and dusky sharks from historical exploratory longline surveys conducted by the NMFS Sandy Hook, NJ and Narragansett, RI Labs	Camilla T. McCandless and John J. Hoey	Indices
	Standardized catch rates for sandbar and blacknose sharks caught during the South Carolina COASTSPAN and SCDNR red drum surveys	Camilla T. McCandless and Bryan Frazier	Indices

SEDAR21-DW-32	Standardized catch rates of dusky and sandbar sharks observed in the gillnet fishery by the Northeast Fisheries Observer Program	NOT RECEIVED	Indices
SEDAR21-DW-33	Standardized catch rates for blacknose, dusky and sandbar sharks caught during a UNC longline survey conducted between 1972 and 2009 in Onslow Bay, NC	Frank J. Schwartz, Camilla T. McCandless, and John J. Hoey	Indices
SEDAR21-DW-34	Sandbar and blacknose shark occurrence in standardized longline, drumline, and gill net surveys in southwest Florida coastal waters of the Gulf of Mexico	Robert Hueter, John Morris, and John Tyminski	Indices
SEDAR21-DW-35	Atlantic Commercial Landings of blacknose, dusky, sandbar, unclassified, small coastal, and requiem sharks provided by the Atlantic Coastal Cooperative Statistics Program (ACCSP)	Christopher Hayes	Catch Statistics
SEDAR21-DW-36	Life history and population structure of blacknose sharks, Carcharhinus acronotus, in the western North Atlantic Ocean	William B. Driggers III, John K. Carlson, Bryan Frazier, G. Walter Ingram Jr., Joseph M. Quattro, James A. Sulikowski and Glenn F. Ulrich	Life History
SEDAR21-DW-37	Movements and environmental preferences of dusky sharks, Carcharhinus obscurus, in the northern Gulf of Mexico	Eric Hoffmayer, James Franks, William Driggers, and Mark Grace	Life History
SEDAR21-DW-38	Preliminary Mark/Recapture Data for the Sandbar Shark (Carcharhinus plumbeus), Dusky	Nancy E. Kohler and Patricia A. Turner	Life History

	Shark (C. obscurus), and Blacknose Shark (C. acronotus) in the Western North Atlantic		
SEDAR21-DW-39	Catch rates, distribution and size composition of blacknose, sandbar and dusky sharks collected during NOAA Fisheries Bottom Longline Surveys from the U.S. Gulf of Mexico and U.S. Atlantic Ocean	Walter Ingram	Indices
SEDAR21-DW-40	Standardized catch rates of the blacknose shark (Carcharhinus acronotus) from the United States south Atlantic gillnet fishery, 1998-2009	Kristin Erickson and Kevin McCarthy	Indices
SEDAR21-DW-41	Index of Abundance of Sandbar Shark (Carcharinus plumbeus) in the Southeast Region, 1992-2007, From United States Commercial Fisheries Longline Vessels	Heather Balchowsky and Kevin McCarthy	Indices
SEDAR21-DW-42	Examination of commercial bottom longline data for the construction of indices of abundance of dusky shark in the Gulf of Mexico and US South Atlantic	Kevin McCarthy	Indices
SEDAR21-DW-43	Indices of abundance for blacknose shark from the SEAMAP trawl survey	Walter Ingram	Indices
SEDAR21-DW-44	Standardized catch rates of sandbar sharks (Carcharhinus plumbeus) and dusky sharks (Carcharhinus obscurus) from the large pelagic rod and reel survey 1986-2009	John F. Walter and Craig Brown	Indices
SEDAR21-DW-45	A note on the number of pups for two blacknose sharks (Carcharhinus acronotus) from	David Stiller	Life History

	the Gulf of Mexico		
SEDAR21-DW-46	Mote LL index	Walter Ingram	Indices
Reference Documents			
SEDAR21-RD01	SEDAR 11 (LCS) Final Stock Assessment Report	SEDAR 11 Panels	
SEDAR21-RD02	SEDAR 13 (SCS) Final Stock Assessment Report	SEDAR 13 Panels	
SEDAR21-RD03	Stock assessment of dusky shark in the U.S. Atlantic and Gulf of Mexico	E. Cortés, E. Brooks, P. Apostolaki, and C.A. Brown	
SEDAR21-RD04	Report to Directed Shark Fisheries, Inc. on the 2006 SEDAR 11 Assessment for Sandbar Shark	Frank Hester and Mark Maunder	
SEDAR21-RD05	Use of a Fishery-Independent Trawl Survey to Evaluate Distribution Patterns of Subadult Sharks in Georgia	Carolyn Belcher and Cecil Jennings	
SEDAR21-RD06	Demographic analyses of the dusky shark, Carcharhinus obscurus, in the Northwest Atlantic incorporating hooking mortality estimates and revised reproductive parameters	Jason G. Romine \& John A. Musick \& George H. Burgess	
SEDAR21-RD07	Observations on the reproductive cycles of some viviparous North American sharks	José I. Castro	
SEDAR21-RD08	Sustainability of elasmobranchs caught as bycatch in a tropical prawn (shrimp) trawl fishery	Ilona C. Stobutzki, Margaret J. Miller, Don S. Heales, David T. Brewer	
SEDAR21-RD09	Age and growth estimates for the dusky shark, Carcharhinus obscurus, in the western North Atlantic Ocean	Lisa J. Natanson, John G. Casey and Nancy E. Kohler	

SEDAR21-RD10	Reproductive cycle of the blacknose shark Carcharhinus acronotus in the Gulf of Mexico	J. A. Sulikowski, W. B. Driggers III, T. S. Ford, R. K. Boonstra and J. K. Carlson
SEDAR21-RD11	A preliminary estimate of age and growth of the dusky shark Carcharhinus obscurus from the south-west Indian Ocean, with comparison to the western north Atlantic population	L.J. Natanson and N.E. Kohler
SEDAR21-RD12	Bycatch and discard mortality in commercially caught blue sharks Prionace glauca assessed using archival satellite pop-up tags	Steven E. Campana, Warren Joyce, Michael J. Manning
SEDAR21-RD13	Short-term survival and movements of Atlantic sharpnose sharks captured by hook-and-line in the north-east Gulf of Mexico	C. W. D. Gurshin and S. T.
SEDAR21-RD14	Player indicators of the post-release survivorship of juvenile pelagic sharks caught on experimental drift longlines in the Southern California Bight	Barbara V. Hight, David Holts, Jeffrey B. Graham, Brian P. Kennedy, Valerie Taylor, Chugey A. Sepulveda, Diego Bernal, Darlene RamonB, Randall
SEDAR21-RD16	The estimated short-term discard mortality of a trawled elasmobranch, Chin Lai the spiny dogfish (Squalus acanthias)	John W. Mandelman \& Marianne A. Farrington
SEDAR21-RD15	The physiological response to capture and handling stress in the Atlantic sharpnose shark, Rhizoprionodon terraenovae	Eric R. Hoffmayer \& Glenn R. Parsons
AeDAR21-RD17	At-vessel fishing mortality for six species of sharks caught in the northwest Atlantic and Gulf of Mexico	Alexia Morgan and George H. Burgess

SEDAR21-RD18	Evaluating the physiological and physical consequences of capture on post-release survivorship in large pelagic fishes	G.B. Skomal
SEDAR21-RD19	The Physiological Response of Port Jackson Sharks and Australian Swellsharks to Sedation, Gill-Net Capture, and Repeated Sampling in Captivity	L. H. Frick, R. D. Reina, and T. I. Walker
SEDAR21-RD20	Serological Changes Associated with Gill-Net Capture and Restraint in Three Species of Sharks	C. Manire, R. Hueter, E. Hull and R. Spieler
SEDAR21-RD21	Differential sensitivity to capture stress assessed by blood acid-base status in five carcharhinid sharks	John W. Mandelman \& Gregory B. Skomal
SEDAR21-RD22	Review of information on cryptic mortality and the survival of sharks and rays released by recreational fishers	Kevin McLoughlin and Georgina Eliason
SEDAR21-RD23	Pathological and physiological effects of stress during capture and transport in the juvenile dusky shark, Carcharhinus obscurus	G. Cliff and G.D. Thurman
SEDAR21-RD24	Pop-offsatellite archival tags to chronicle the survival and movements of blue sharks following release from longline gear	Michael Musyl and Richard Brill
	Evaluation of bycatch in the North Carolina Spanish and king mackerel sinknet fishery with emphasis on sharks during October and November 1998 and 2000 including historical data from 1996-1997	Chris Jensen and Glen Hopkins

2. LIFE HISTORY

2.1. OVERVIEW

The sandbar shark life history working group was led by Dr. John Carlson, NOAA Fisheries Panama City, and rapporteured by Loraine Hale, NOAA Fisheries Service-Panama City Laboratory. Members of the group included George Burgess, University of Florida, Dr. Jose Castro, NOAA Fisheries Service-Miami Laboratory, Dr. William Driggers, NOAA Fisheries Service-Mississippi Laboratories, Christian Jones, NOAA Fisheries Service-Mississippi Laboratories, Dr. Andrew Piercy, University of Florida, Bryan Frazier, South Carolina Department of Natural Resources, Dr. Jason Romine, USGS, and Dr. Frank Hester, consultant for Directed Shark Fisheries.

2.2. REVIEW OF WORKING PAPERS

SEDAR21-DW-06 - Reproduction of the sandbar shark Carcharhinus plumbeus in the U.S. Atlantic Ocean and Gulf of Mexico - I. Baremore and L. Hale

A total of 1,194 (701 females, 493 males) sandbar sharks Carcharhinus plumbeus were examined for reproductive assessment. Size and age at 50% maturity for males was 151.6 cm FL (13.1 years) and 154.9 cm FL (14.1 years) for females, while the size at which 50% of females were in reproductive condition was 162.6 cm FL (15.5 years). Males and females showed distinct seasonal reproduction patterns, with peak mating and parturition occurring from April through June. Female fecundity averaged 8.0 pups, and there was a weakly significant increase in fecundity with size and a significant increase in fecundity with age. Patterns of maximum ova diameter and gonadosomatic indices in females suggest that sandbar sharks may have a triennial reproductive cycle.

SEDAR21-DW-17 - Life history parameters for the sandbar shark in the Northwest Atlantic and Eastern Gulf of Mexico - J. Romine and J. Musick

Age and growth parameters of the sandbar shark, Carcharhinus plumbeus, were estimated through analyses of vertebral centra collected from 2000 to 2004 in the Northwest Atlantic Ocean and Gulf of Mexico. Samples were collected from both fishery-dependent and fisheryindependent surveys. Fishing gears included longline, trawl, gillnet, and recreational fishing gear. Five models were fit to age estimates for both sexes from 464 vertebral samples consisting
of 250 females and 206 males. The three parameter von Bertalanffy model provided the best fit for the female age estimates. The logistic model provided a better fit for male age estimates, but the model underestimated empirical asymptotic length. The three parameter von Bertalanffy model growth parameter estimates were $L_{\infty}=163.6 \mathrm{~cm}$ pre-caudal length (PCL) for females and 158.8 cm PCL for males, $K=0.1055$ for females and 0.1124 for males, and $t_{0}=-3.26$ for females and -3.16 for males. Maximum likelihood estimation of age at 50% maturity for females was approximately 12.49 years, which corresponded to approximately 132 cm PCL.

SEDAR21-DW-20 - Tag and recapture data for blacknose, Carcharhinus acronotus, sandbar, C. plumbeus, and dusky shark, C. obscurus, as kept in the NOAA Fisheries Southeast Fisheries Science Center Elasmobranch Tagging Management System, 1999-2009-D. Bethea and J. Carlson

Tag and recapture information for blacknose, Carcharhinus acronotus, sandbar, C. plumbeus, and dusky shark, C. obscurus, is summarized from the NOAA Fisheries Cooperative Gulf of Mexico States Shark Pupping and Nursery (GULFSPAN) survey at the Panama City Laboratory from 1999 to 2009 and the NOAA Fisheries Mississippi Laboratories bottom and pelagic longline cruises 2004-2009. Summary information includes number of males and females tagged by life stage, number of sharks recaptured, and overall recapture rate, time at liberty, and distance traveled per recaptured individual.

SEDAR21-DW-21 - Age and growth of the sandbar shark, Carcharhinus plumbeus, in the Gulf of Mexico and southern Atlantic Ocean - L. Hale and I. Baremore

Age and growth analysis of the sandbar shark, Carcharhinus plumbeus, from the Gulf of Mexico and southern Atlantic Ocean was completed with vertebral samples primarily gathered from the sandbar shark research fishery $(\mathrm{n}=1,194)$. Three parameter von Bertalanffy growth curves were run for male and female sandbar sharks separately and growth parameters were estimated as a male $L \infty=172.97 \pm 1.30 \mathrm{~cm}$ FL, female $\mathrm{L} \infty=181.15 \pm 1.45 \mathrm{~cm}$ FL, male $\mathrm{k}=0.15 \pm 0.005$, female $\mathrm{k}=0.12 \pm 0.004$, male $\mathrm{t} 0=-2.33 \pm 0.19$, and female $\mathrm{t} 0=-3.09 \pm 0.16$. The oldest aged sandbar shark was a 27 year old female. The age and growth analysis of the sandbar shark in this study represented a concerted effort to collect current samples from the commercial shark bottom
longline fishery to better describe the age structure of the sandbar shark population based on recommendations from SEDAR 11.

SEDAR21-DW-26 - Reproductive cycle of sandbar sharks in the northwestern Atlantic Ocean and Gulf of Mexico - A. Piercy

The goal of this study was to gather contemporary data on the reproduction of the sandbar shark in the northwestern Atlantic Ocean and Gulf of Mexico. Specific objectives were to determine the size of maturity for male and female sandbar sharks, determine the timing of reproductive events (e.g. sperm production, vitellogenesis, ovulation, mating, and gestation), and determine if regional variations exist in reproductive parameters. Male sharks exhibited sizes at 50% and 100% maturity of 140 cm FL and 170 cm FL respectively. Female sharks exhibited sizes at 50% and 100% maturity of 148 cm FL and 165 cm FL respectively. Both male and female sharks have a defined reproductive cycle. Male reproductive tracts were active from January to June. Mature female sharks exhibited a 3 year reproductive cycle. Egg development occurs from January/February to June. The gestation period for shark embryos is approximately 12 months, with the placental stage beginning in late September after approximately 3 months of development, and parturition occurring in late June. A mean litter size of 9.65 embryos was recorded and no relationship between maternal size and litter size was observed. No variation in reproductive cycles was seen between sharks caught in the Gulf of Mexico and those in the northwestern Atlantic.

SEDAR-DW-XX - Preliminary Mark/Recapture Data for the sandbar Shark (Carcharhinus plumbeus), dusky shark (C. obscurus), and blacknose shark (C. acronotus) in the western North Atlantic - N. Kohler and P. Turner

Mark/recapture information from the National Marine Fisheries Service (NMFS) Cooperative Shark Tagging Program (CSTP) covering the period from 1962 through 2009 are summarized for the sandbar shark (Carcharhinus plumbeus), dusky shark (C. obscurus), and blacknose shark (C. acronotus) in the western North Atlantic. The extent of the tagging effort, areas of release and recapture, movements, and length frequencies of tagged sharks are reported. Areas were distinguished in order to identify regional trends in size and quantify exchange between the Atlantic and Gulf of Mexico. Only data with information on size and mark/recapture location
were included in these regional analyses. Data synopses include overall recapture rates, maximum and mean distances traveled, maximum times at liberty, and numbers of fish tagged and recaptured, mean lengths, and length frequencies by region. Overall, movement between the Atlantic and Gulf of Mexico and between the US and the Mexican-managed portion of the Gulf of Mexico occurred for the sandbar and dusky shark. Blacknose sharks showed no movement between regions. The true extent of these movements is unclear due to the possibility of underreporting of recaptures.

2.3. STOCK DEFINITION AND DESCRIPTION

After considering the available data, the working group decided that sandbar sharks inhabiting the U.S. waters of the western North Atlantic Ocean (including the Gulf of Mexico) should be considered as a single stock. Genetic data indicate no significant differentiation between the Gulf of Mexico and western North Atlantic Ocean (Heist et al. 1995, Heist and Gold 1999) and tag-recapture data showed a high frequency of movements between basins (SEDAR21-DW-38).

2.4. NATURAL MORTALITY

There are currently no natural mortality estimates for sandbar shark available based on direct empirical data. To determine the most appropriate indirect method, a member of the analyst group discussed with the life history group the methods and assumptions to be used for estimating survivorship and mortality. It was determined that survivorship of age 1 and adult sharks should be based on the maximum estimate from methods described in Hoenig (1983), Chen and Watanabe (1989), Peterson and Wroblewski (1984), and Lorenzen (1996). Theoretical estimates indicate the Hoenig model produces lower survivorship estimates in later ages than the Peterson and Wroblewski method, but higher than the Chen and Watanabe method. The group concluded that the range of survivorship estimates by age to be used for priors are to be based on Peterson and Wroblewski and Lorenzen estimates without using the Lorenzen-Hoenig hybrid because the models for Lorenzen and Hoenig produced similar results. Mortality schedules by age are in section 2.8.

2.5. DISCARD MORTALITY (SCIENTIFIC STUDIES)

To attempt to determine post-release survivorship the working group reviewed 16 papers examining at-vessel and discard mortality, involving both field and laboratory studies. Values of discard survival were available for mako (longline), blue (longline), blacktip (gillnet), tiger (hook and line), dusky (hook and line) and Atlantic sharpnose (hook and line) sharks. Because at least two publications (Mandleman and Skomal 2009; Morgan and Carlson 2010) provided evidence that mortality rates vary among species, even those that are closely related, the working group chose to provide the following estimates of discard mortality. One paper on blue sharks (Campana et al. 2009) had values for both at-vessel (13\%) and post-release (19\%) mortality. This represented a 6% difference in mortality. Assuming the relationship between these two mortality rates is applicable to other species, we applied this 6% increase in mortality to the atvessel mortality estimates for sandbar sharks from observer data collected during 1994 to 2009 in the longline fishery. This resulted in an estimate of discard mortality for longline captured sandbar sharks of 38.24%.

To develop estimates of hook and line post-release mortality, we reviewed the available literature and projected values based on the data presented by Cliff and Thurman (1984). They reported 6\% post-release mortality rate for dusky sharks. We then used at-vessel hooking mortality from Morgan and Burgess (2007) and two observer program data sets (CSFOP and SBLOP) as proxies for a comparison of the survival of sandbar sharks compared to dusky sharks. Sandbar sharks exhibited 54% less at-vessel mortality than dusky sharks. Using these relationships, we calculated that sandbar sharks have hook and line post-release mortality of 3.25%.

2.6. AGE AND GROWTH

Two studies were presented with age and growth analyses of the sandbar shark (SEDAR21-DW17, SEDAR21-DW21). Both studies found similar results in age and growth. As the assessment requires the most up to date information, the working group concluded that document SEDAR21-DW21 would be used as the source of life history parameter inputs. Life history parameter estimates are listed in section 2.8.

2.7. REPORDUCTION

The working group agreed to use the sandbar shark maturity ogive from Baremore and Hale (SEDAR 21-DW-6). The reproductive periodicity for female sandbar sharks has been historically
considered to be biennial (females reproducing every other year). However, data presented by Piercy (SEDAR 21-DW-26), Baremore and Hale (SEDAR 21-DW-6) and a reference document by Merson (SEDAR11-DW-47) suggested a triennial cycle (females reproducing every three years) for female sandbar sharks in U.S. waters of the western North Atlantic Ocean (including the Gulf of Mexico). These documents were intensely debated within the life history working group with some proponents suggesting there was sufficient to data to indicate a 3-year reproductive cycle while others felt that data was insufficient and would not be accepted under a peer-reviewed system. However, some individuals felt that the SEDAR process is a peer reviewed system and in some cases research is subjected to a higher level of scrutiny than manuscripts submitted to a professional journal. After discussion, there was a general recommendation to propose a 2-year reproductive cycle for a baseline stock assessment run and a 3-year reproductive cycle as a sensitivity run but in the end because of the lack of consensus, the chair of the life history group proposed to take the discussion to plenary. During plenary, similar debate occurred. While data indicated a 3-year reproductive cycle, it was also suggested that only a portion of the population may exhibit a 3 year reproductive whereas other individuals may use a 2 year cycle. As there was insufficient data to determine the percentage of individuals with a 3-year cycle, it was agreed that a 2.5 year reproductive cycle would be accepted, providing a balance between a biennial and triennial reproductive period.

Several estimates of fecundity were also discussed within the working group. However, new data from Baremore and Hale (SEDAR 21-DW-6) indicate a positive relationship between maternal age and litter size (\#pups $=0.2591 *$ age +3.9897). Taking this into account the group recommended using this relationship instead of an average litter size estimate for all age classes. The sex ratio of embryos was not significantly different from 1:1 for all data sources discussed.

2.8. SUMMARY OF LIFE HISTORY PARAMETERS

Summary of sandbar -- Biological Inputs for 2010 Assessment

Life history Workgroup	Sandbar		
1st year (age-0) survivorship	male $=0.72$, female $=0.61$	Section 2.4	
Juvenile survivorship	male $=0.76-0.86$, female $=0.69-0.85$	Section 2.4	
Adult survivorship	male $=0.86-0.87$, female $=0.857-0.87$	Section 2.4	
S-R function	Beverton Holt	From SEDAR11	
S-R parameters, priors			
steepness or alpha	0.25-0.4	From SEDAR11	
Pupping month	June	SEDAR21-DW-06	
Growth parameters	Male \| Female	Combined sexes	
$L_{\infty}(\mathrm{cm} \mathrm{FL})$	172.97 \| 181.15	177.89	SEDAR21-DW-21
k	0.15 \| 0.12	0.13	SEDAR21-DW-21
$\mathrm{t}_{\text {}}$	-2.33\|-3.09	-2.76	SEDAR21-DW-21
		SEDAR21-DW-21, SEDAR21-DW-	
Maximum observed age	27 female, 22 male	17	
Sample size	1194 (701 female, 493 male)	SEDAR21-DW-21	
Length-weight relationships	Females: FL=1.07(PCL) + $3.21 \mathrm{r} 2=0.99$	SEDAR21-DW-17	
FL in cm	Males: $\mathrm{FL}=1.07(\mathrm{PCL})+3.07 \mathrm{r} 2=0.99$	SEDAR21-DW-17	
WT in kg	$\mathrm{FL}=(0.8175) \mathrm{TL}+2.5675$	Kohler et al. (1996)	
	WT $=\left(1.0885^{\wedge}-5\right)^{\star} \mathrm{FL}$ ^3.0124	Kohler et al. (1996)	
Median age at maturity or maternity	males 13.1, females 14.1, maternal females 15.5	SEDAR21-DW-06	
	- 2.5	SEDAR21-DW-06, SEDAR21-DW26, decided at plenary	
Reproductive cycle		SEDAR21-DW-06, SEDAR21-DW-	
Fecundity	\# pups $=0.2591 *$ age +3.9897 ;mean $=9.65$ (S.D. $=1.87$, range $=6-14$, mean=8 (S.D. $=2.39$, range $3-12)$)	26	
		SEDAR21-DW-06, SEDAR21-DW-	
Gestation	12 months	26	
Sex-ratio	1:01	SEDAR21-DW-17, Castro (2009)	
		SEDAR21-DW-38, Heist and Gold	
Stock structure	high exchange between Atlantic and Gulf based on tagging data, genetic information suggests one stock	(1999)	

Survivorship by age for male and female sandbar sharks

MaleAge	Mortality	Survival StDev	Survivorship
0.0	0.278	0.052	0.722
1.0	0.236	0.041	0.764
2.0	0.209	0.033	0.791
3.0	0.191	0.029	0.809
4.0	0.178	0.025	0.822
5.0	0.168	0.023	0.832
6.0	0.160	0.021	0.840
7.0	0.154	0.019	0.846
8.0	0.149	0.018	0.851
9.0	0.145	0.017	0.855
10.0	0.142	0.016	0.858
11.0	0.139	0.016	0.861
12.0	0.137	0.015	0.863
13.0	0.135	0.015	0.865
14.0	0.134	0.014	0.866
15.0	0.133	0.014	0.867
16.0	0.131	0.014	0.869
17.0	0.131	0.014	0.869
18.0	0.130	0.014	0.870
19.0	0.129	0.013	0.871
20.0	0.129	0.013	0.871
21.0	0.128	0.013	0.872
22.0	0.128	0.013	0.872

Female

Age	Mortality	Survival StDev	Survivorship
0.0	0.389	0.048	0.611
1.0	0.311	0.034	0.689
2.0	0.264	0.027	0.736
3.0	0.234	0.022	0.766
4.0	0.213	0.020	0.787
5.0	0.197	0.018	0.803
6.0	0.185	0.017	0.815
7.0	0.175	0.016	0.825
8.0	0.168	0.015	0.832
9.0	0.162	0.014	0.838
10.0	0.157	0.014	0.843
11.0	0.152	0.014	0.848
12.0	0.149	0.013	0.851
13.0	0.146	0.013	0.854
14.0	0.143	0.013	0.857
15.0	0.141	0.013	0.859
16.0	0.139	0.013	0.861
17.0	0.138	0.013	0.862
18.0	0.136	0.013	0.864
19.0	0.135	0.013	0.865
20.0	0.134	0.013	0.866
21.0	0.133	0.013	0.867
22.0	0.132	0.013	0.868
23.0	0.132	0.012	0.868
24.0	0.131	0.012	0.869
25.0	0.130	0.012	0.870
26.0	0.130	0.012	0.870
27.0	0.129	0.012	0.871

2.9. LITERATURE CITED

Campana, S.E., Joyce W. and Manning M.J. 2009. Bycatch and discard mortality in commercially caught blue sharks Prionace glauca assessed using archival satellite popup tags. Marine Ecology Progress Series 387: 241-253.

Cliff, G. and Thurman, G.D. 1984. Pathological and physiological effects of stress during capture and transport in the juvenile dusky shark, Carcharhinus obscurus. Comparative Biochemistry and Physiology 78A: 167-173.

Chen, S.B. and Watanabe, S. 1989. Age dependence of natural mortality coefficient in fish population dynamics. Nippon Suisan Gak 55:205-208.

Frick, L.H., Reina, R.D. and Walker, T.I. 2009. The Physiological Response of Port Jackson Sharks and Australian Swellsharks to Sedation, Gill-Net Capture, and Repeated Sampling in Captivity. North American Journal of Fisheries Management 29:127-139.

Gurshin, C.W.D. and Szedlmayer, S.T. 2004. Short-term survival and movements of Atlantic sharpnose sharks captured by hook-and-line in the north-east Gulf of Mexico. Journal of Fish Biology 65: 973-986 (SEDAR21-RD09).

Heist, E.J. and Gold, J.R.. 1999. Genetic identification of sharks in the U.S. Atlantic large coastal shark fishery Fishery Bulletin 97:53-61.

Heist, E. J., Graves, J. E. and Musick, J. A. 1995. Population genetics of the sandbar shark (Carcharhinus plumbeus) in the Gulf of Mexico and Mid-Atlantic Bight. Copeia 1995:555-562.

Hight, B.V., Holts D., Graham, J.B., Kennedy, B.P., Taylor, V., Sepulveda, C.A., Bernal, D., Ramon, D., Rasmussen, R., and Lai, N.C. 2007. Plasma catecholamine levels as indicators of the post-release survivorship of juvenile pelagic sharks caught on experimental drift longlines in the Southern California Bight. Marine and Freshwater Research 58:145-151.

Hoffmayer, E.R. and Parsons, G.R. 2001. The physiological response to capture and handling stress in the Atlantic sharpnose shark, Rhizoprionodon terraenovae. Fish Physiology and Biochemistry 25: 277-285.

Hoenig, J. M. 1983. Empirical use of longevity data to estimate mortality rates. Fishery Bulletin 81:898-903.

Hueter, R.E., Manire, C.A., Tyminski, J.P., Hoenig, J.M. and Hepworth, D.A. 2006. Assessing Mortality of Released or Discarded Fish Using a Logistic Model of Relative Survival Derived from Tagging Data. Transactions of the American Fisheries Society 135:500508.

Lorenzen, K. 1996. The relationship between body weight and natural mortality in juvenile and adult fish: a comparison of natural ecosystems and aquaculture. Journal of Fish Biology 49:627-647.

Mandelman, J.W. and Farrington, M.A. 2007. The estimated short-term discard mortality of a trawled elasmobranch, the spiny dogfish (Squalus acanthias). Fisheries Research 83:238245.

Mandleman, J.W. and Skomal, G.K. 2009. Differential sensitivity to capture stress assessed by blood acid-base status in five carcharhinid sharks. Journal of Comparative Physiology, Part B 179:267-277.

Manire C, Heuter R, Hull E and Spieler R (2001) Serological changes associated with gillnet capture and restraint in three species of sharks. Transactions of the American Fisheries Society 130:1038-1048.

Merson, R. R. 1998. Nursery grounds and maturation of the sandbar shark in the western North Atlantic. University of Rhode Island. (SEDAR11-DW47).

Morgan, A. and Burgess, G.H. 2007. At-vessel fishing mortality for six species of sharks caught in the northwest Atlantic and Gulf of Mexico. Gulf and Caribbean Research. 19: 123129.

Morgan, A. and Carlson, J.K. 2010. Capture time, size and hooking mortality of bottom longline-caught sharks. Fisheries Research 101:32-37.

Musyl MK and Brill R (2001) Pop-off satellite archival tags to chronicle the survival and movements of blue sharks following release from longline gear. JIMAR, PFRP Annual Progress Report FY 2001. 4pp.

Musyl, M.K., Moyes, C., Brill, R. and Fragoso, N. 2009. Factors influencing mortality estimates in post-release survival studies. Marine Ecology Progress Series 396: 157-159.

Peterson, I., and Wroblewski, J.S. 1984. Mortality rates of fishes in the pelagic ecosystem. Canadian Journal of Fisheries and Aquatic Science 41:1117-1120.

Rulifson, R.A. 2007. Spiny dogfish mortality induced by gill-net and trawl capture and tag and release. North American Journal of Fisheries Management 27:279-285.

Skomal, G. 2007. Evaluating the physiological and physical consequences of capture on postrelease survivorship in large pelagic fishes. Fisheries Management and Ecology 14:8189.

Spargo, A. 2001. The physiological effects of catch and release angling on the post-release survivorship of juvenile sandbar sharks (Carcharhinus plumbeus). Masters thesis, University of Rhode Island, 99pp.

Stobutzki, I.C., Miller, M.J., Heales, D.S., Brewer, D.T. 2002. Sustainability of elasmobranchs caught as bycatch in a tropical prawn (shrimp) trawl fishery. Fishery Bulletin 100(4): 800-821.

2.10. TABLES

Table 1: Maturity schedule (proportion mature) for ages of Carcharhinus plumbeus. The parameters for the model are a and b , avg pr mat is the average proportion mature for each size bin, and SE is standard error.

	Females	$a=-8.6056$	$\mathrm{b}=0.6571$		Males	$a=-11.3954$	$\mathrm{b}=0.9411$		Maternity	$a=-6.4554$	$b=0.4151$	
Age	Avg pr mat	SE a	SE b	n	Avg pr mat	SE a	SE b	n	Avg pr mat	SE a	SE b	n
0	0.000	0.716	0.509	11	0.000	1.185	0.09	9	0.002	0.507	0.035	11
1	0.000			5	0.000			5	0.002			5
2	0.001			2	0.000			1	0.004			2
3	0.001			4				0	0.005			4
4	0.003			4	0.000		\cdots	2	0.008			4
5	0.005			4	0.001			1	0.012			4
6	0.009			6	0.003			3	0.019			5
7	0.018			10	0.008		-	14	0.028			9
8	0.034			16	0.021			17	0.042			15
9	0.063			49	0.051			33	0.062			48
10	0.116			73	0.121			55	0.091			70
11	0.201			67	0.261	,		44	0.131			66
12	0.327			57	0.474			38	0.186			57
13	0.484			58	0.698			40	0.257			57
14	0.644			43	0.856			44	0.344			43
15	0.777			63	0.938			29	0.443			60
16	0.871			37	0.975			26	0.546			37
17	0.929			38	0.990			34	0.646			38
18	0.962			25	0.996			22	0.734			25
19	0.980			27	0.998			18	0.807			26
20	0.989			19	0.999			5	0.864			19
21	0.994			17	1.000			4	0.906			16
22	0.997			7	1.000			5	0.936			7
23	0.999			3					0.957			2

24	0.999		7					0.971				
25	1.000			2					0.981			
26	1.000			1					0.987			
27	1.000			1								

3. COMMERCIAL FISHERY STATISTICS

3.1. OVERVIEW

3.1.1. Membership

Ivy Baremore (chair, SEFSC), Elizabeth Babcock (RSMAS), Heather Balchowsky (HMS), Carolyn Belcher (GADNR), Alan Bianchi (NCDENR), Enric Cortés (SEFSC), Bill Gazey (LGL), Chris Hayes (ACCSP), Rusty Hudson (DSF), Michelle Passerotti (SEFSC), David Stiller (Fisherman-Alabama)

3.1.2. Issues

The catch working group (WG) discussed a number of issues concerning the catch data for sandbar sharks including: 1) creating the commercial landings stream; 2) estimation of the Mexican catches; 3) post release discard mortality rates; 4) setting the year for virgin biomass; and 5) estimating commercial landings back to the year of virgin biomass (catch reconstruction).

3.2. REVIEW OF WORKING PAPERS

SEDAR 21-DW-07 Description of data sources used to quantify shark catches in commercial and recreational fisheries in the U.S. Atlantic Ocean and Gulf of Mexico.
I.E. Baremore, H. Balchowsky, V. Matter, E. Cortes

Quantitative information on the marine resources caught and sold commercially in the United States (U.S.) Atlantic Ocean and Gulf of Mexico (GOM) is collected by a variety of state and federal agencies. These data are collated by the National Oceanic and Atmospheric Administration (NOAA) Fisheries Service (henceforth called "NOAA Fisheries") Northeast Fisheries Science Center (NEFSC) for Atlantic states Virginia and north (referred to as the "northeast region"), and by the Southeast Fisheries Science Center (SEFSC) for states along the GOM and Atlantic states of North Carolina and south (referred to as the "southeast region"). Data from many sources are used to evaluate trends in shark catches and to assess changes in size over time since limited biological information is collected in some of these programs.

SEDAR 21-DW-09 Updated catches of sandbar, dusky, and blacknose sharks
E. Cortés and I.E. Baremore

This document presents updated commercial and recreational landings and discard estimates of sandbar, dusky and blacknose sharks up to 2009. Information on the geographical distribution of both commercial and recreational catches is presented along with gear-specific information of commercial landings. Length-frequency information and trends in average size of the catches from several commercial and recreational sources are also included.

SEDAR 21-DW-10 Large and Small Coastal Sharks Collected Under the Exempted Fishing Program Managed by the Highly Migratory Species Management Division.
J. Wilson

The National Marine Fisheries Service (NMFS) may grant individuals exemptions from fishing regulations in Federal waters, consistent with provisions of the Magnuson-Stevens Fishery Conservation and Management Act, such as exemptions from species size limits, closed seasons, and prohibited species, for activities like limited testing of fishing gear, collection of specimens for public display, scientific data collection, investigating bycatch, and methods to improve safety at sea. The Highly Migratory Species (HMS) Management Division monitors the take of sharks in the Atlantic Ocean, Gulf of Mexico, and Caribbean Sea under the exempted fishing program. This working document describes the number of sandbar, dusky, and blacknose sharks taken under the exempted fishing program from 2000 to 2009 and includes descriptive statistics (e.g., mean and median length) by gear type of these takes.

SEDAR 21-DW-12 Catches of Sandbar Shark from the Southeast US Gillnet Fishery: 19992009.
M.S. Passerotti and J.K. Carlson

This document presents information on catch and discards of sandbar sharks in the southeast commercial gillnet fishery from 1999 through 2009. Average sizes of sandbar sharks caught are also presented by gear type and year, when available.

SEDAR 21-DW-13 Errata Sheet for 'CATCH AND BYCATCH IN THE SHARK GILLNET FISHERY: 2005-2006', NOAA Technical Memorandum NMFS-SEFSC-552.
M.S. Passerotti and J.K. Carlson

Since the publication of 'Catch and Bycatch in the Shark Gillnet Fishery: 2005-2006', March 2007, we have become aware of a number of errors within the catch information reported. This document corrects those errors and provides revised catch tables.

SEDAR 21-DW-14 Update to Illegal Shark Fishing off the coast of Texas by Mexican Lanchas.

K. Brewster-Geisz, S. Durkee, and P. Barelli

This document updates the United States Coast Guard detected fishery-related lancha incursions data reported in Illegal Shark Fishing off the Coast of Texas by Mexican Lanchas document (LCS05/06-DW-07) from SEDAR-11 Large Coastal Shark Complex, Blacktip, and Sandbar Shark Stock Assessment

SEDAR 21-DW-22 Catch and bycatch in the bottom longline observer program from 2005 to 2009.
L.F. Hale, S.J.B. Gulak, and J.K. Carlson

Data gathered from observation of the bottom longline fishery in the southern U.S. Atlantic Ocean and Gulf of Mexico from 2005 through 2009 are reported. Number caught, disposition, and percentages of the large and small coastal complex for sandbar sharks, blacknose sharks, and dusky sharks are reported by year, area, and target when available.

SEDAR 21-DW-23 Identification and evaluation of shark bycatch in Georgia's commercial shrimp trawl fishery with implications for management.
C. N. Belcher and C. A. Jennings

Many US states have recreational and commercial fisheries that occur in nursery areas occupied by subadult sharks and can potentially affect their survival. Georgia is one of few US states without a directed commercial shark fishery, but the state has a large, nearshore penaeid shrimp trawl fishery in which small sharks occur as bycatch. During a 1995-1998 investigation of bycatch in fishery-dependent sampling events, 34% of 127 trawls contained sharks. This bycatch totaled 217 individuals from six species, with Atlantic sharpnose shark, Rhizoprionodon terraenovae (Richardson), the most common and finetooth shark, Carcharhinus isodon (Müller and Henle), and spinner shark, Carcharhinus brevipinna (Müller and Henle), the least common. The highest catch rates for sharks occurred during June and July and coincided with the peak
months of the pupping season for many species. Trawl tow speed and tow time did not significantly influence catch rates for shark species. Gear configurations (net type, turtle excluder device, bycatch reduction device) affected catch rates for shark species. Management strategies that may reduce shark bycatch in this fishery include gear restrictions, a delayed season opening, or reduced bar spacing on turtle excluder devices.

SEDAR 21-DW-35 Atlantic Commercial Landings of blacknose, dusky, sandbar, unclassified, small coastal, and requiem sharks provided by the Atlantic Coastal Cooperative Statistics Program (ACCSP).
C. Hayes

This working document was developed by the Atlantic Coastal Cooperative Statistics Program (ACCSP) to provide commercial landings of blacknose, dusky, sandbar, unclassified, small coastal, and requiem sharks from 1950 to 2009 to the Southeast Fisheries Science Center for the Southeast Data, Assessment, and Review (SEDAR) 21. Species-specific and non-specific data are presented by year, annually by gear, and annually by subregion.

3.3. COMMERCIAL LANDINGS

3.3.1. Commercial U.S. catches

Sandbar commercial landings are summarized in SEDAR 21-DW-09. U.S. commercial landings of sandbar sharks in 1996-2009 were compiled based on Northeast regional general canvass landings data and Southeast regional general canvass landings data (now known as Accumulated Landings System, ALS), and the SEFSC Quota Monitoring System (QMS) data based on southeastern region permitted shark dealer reports (now known as Pelagic Dealer Compliance, PDC). The larger of the two values reported for sandbar sharks in the southeast general canvass and the SEFSC quota monitoring was taken as the value of sandbar shark landings for the southeast. The landings from the northeast general canvass data were then added to the southeast landings to produce total U.S. estimates. Unclassified sharks in 1996-2009 attributed to the LCS grouping were proportionally allocated to sandbar sharks by using the proportion of sandbar sharks in the large coastal shark (LCS) complex (in the total U.S. landings estimates) and multiplying the unclassified sharks by that value to estimate the weight of sandbar sharks likely
listed as unclassified. The value was then added to the value reported from the total U.S. estimates to determine the final total landings for sandbar sharks.

The data are collected in landed or dressed weight. Various conversions were used to convert dressed weight to number of sharks. From 1981 to 1985, an average weight of 35.9 was used (SEDAR 11). From 1986 to 1993, an average weight of 34.5, the average of the average weights from 1994 to 1996 from the bottom longline shark fishery observer program (BLLOP), was used. From 1994 onward, the average weight was determined from data provided directly by the bottom longline shark fishery observer program (Table 1). All weights were predicted from fork length measurements taken by observers in the directed shark bottom longline fishery. Predicted weights (obtained by back-transforming from fork lengths) are preferred over directly measured weights because the latter are hard to take during observer operations and are thus very rare. Average weights were calculated by applying a published length-weight regression (Kohler et al. 1995). The commercial landings of sandbar sharks increased overall from 1981 to a peak in 1994 (126,300 sharks) and has since declined overall (Table 2, Fig. 1).

Although sandbar sharks were caught in a variety of different gear types, since 1987 the majority occurred in longline and gillnet fisheries. Landings of sandbar sharks were reported in the North Atlantic (Maine to New Jersey), Mid-Atlantic (New Jersey to Virginia), South Atlantic (North Carolina to east coast of Florida) and Gulf of Mexico (west coast of Florida to Texas) regions. The majority of sandbar shark landings from 1987 to 2009 occurred in the Gulf of Mexico (53\%) and in the South Atlantic (31%) regions with a minority of landings in the Mid-Atlantic (16\%). Most landings were along the east and west coast of Florida and in North Carolina (SEDAR21-DW-09).

Decision 1. Landings as provided in SEDAR21-DW-09 were recommended for use in the assessment.

3.3.2. Mexican Catches

Mexican commercial catches of sandbar sharks were also considered as in previous assessments. Catches of small sharks ("cazón" $<1.5 \mathrm{~m}$) and large sharks ("tiburón" $>1.5 \mathrm{~m}$) are available in the annual fisheries statistics from Conapesca
(http://www.conapesca.sagarpa.gob.mx/wb/cona/cona_anuario_estadistico_de_pesca). Bonfil
and Babcock (LCS05/06-DW-06) used these data to estimate the number of sandbar sharks caught in the Mexican fishery by assuming that sandbar sharks were only caught in the "large shark" category and only in the states of Tamaulipas, Veracruz and Yucatán. They assumed that sandbar sharks were 7\% of large sharks (in live weight) in Yucatán, and 7.3% in Tamaulipas and Veracruz. They assumed average weights of 38 kg in Tamaulipas and Veracruz and 29.5 kg in Yucatán to convert catch in weight to catch in numbers. The time series was updated through 2008 using the same methodology. Commercial catches of sandbars in Mexico declined from 2000 to 2003 and remained relatively stable from 2003 to 2007 at approximately 4,000 sharks and then declined to about 2,500 sharks in 2008. Catches in 2009 were assumed to be equal to those in 2008.

Decision 2. The same method from SEDAR 11 was used to estimate sandbar shark catch in Mexico and to update that data series.

3.3.3. Unreported Catches

For the previous sandbar shark stock assessment (SEDAR 11), unreported catches of large coastal sharks were brought forward by Mr. Chris Brannon for the years of 1986 to 1991 for both the Gulf of Mexico and South Atlantic fisheries. For the Gulf of Mexico, Brannon estimated that landings were approximately $2 / 3$ blacktip sharks, with the remaining third being a combination of sandbar sharks and other large coastal species (LCS) species. For the Atlantic, Brannon reported that landings were approximately 80% sandbar sharks, with the remaining being a combination of blacktip sharks and other LCS species. Given the general belief that landings before the current reporting systems were underreported, the WG made the assumption that none of the catches were included and kept these data separate, listing them as unreported.

Following the information provided by Mr. Brannon, for the years 1986, 1987, 1990, and 1991, it was assumed that $11 \%(0.33 x 0.33)$ of the total landings in the Gulf of Mexico consisted of sandbar sharks. For 1988 and 1989, 40\% (0.5 x 0.8) of the total landings in the Atlantic consisted of sandbar sharks. We thus kept the catch history derived in SEDAR 11 for 1986-1991.

Decision 3. Unreported catches were estimated using the same methods from SEDAR 11.

3.3.4. Reconstruction of Historical Catches

In the previous assessment (SEDAR 11), the commercial catches (commercial landings + unreported commercial catches) were assumed to be of the same magnitude from 1975 to 1980 as they were in 1981. However, a new definition of the year of virgin biomass led to discussion of another method employing an exponential decline back to 1975, preceded by a linear decline from 1975 back to 1960. The Gulf of Mexico menhaden fishery bycatch estimates were also extrapolated back to 1960 by taking the average bycatch estimates from 1981 to 2009 and applying that value from 1960 to 1980.

Decision 4. An exponential decline was implemented back to 1975 and then a linear decline from 1975 to 1960 was used to estimate historical catches. Bycatch estimates in the Gulf of Mexico menhaden purse seine fishery were also calculated back to 1960 by applying the average bycatch estimate from 1981 to 2009 to 1960 through 1980.

3.3.5. Year of Virgin Biomass

Expert opinion from the industry representatives was elicited regarding the year when the sandbar shark stock could be considered virgin. The previously estimated year of virgin biomass (1975) was thought to be inaccurate and, based on that expert opinion, it was moved back from 1975 to 1960. A linear increase in catches corresponding to an increase in effort was further assumed from 1960 to 1975 (see section 3.3.4 above).

Decision 5. The year of virgin biomass for sandbar sharks was changed from 1975 to 1960.

3.4. COMMERCIAL DISCARDS

3.4.1. Fishery Discards

3.4.1.1. Commercial Fisheries

U.S. commercial discards of sandbar sharks were negligible until 2007 because a targeted fishery existed until this time, and because the value of the product was high. Discard rates of sandbar sharks after 2007 were not considered due to the low numbers of observations and because of the short time period between the closure of the targeted fishery and the assessment.

3.4.1.2. Gulf Menhaden Fishery Bycatch

For the previous assessment, effort-adjusted estimates of dead discards were calculated for the Gulf of Mexico menhaden purse seine fishery. De Silva et al. (2001) reported that sandbar sharks represented 1.8% of the total observed shark bycatch in 1994-1995. Considering the reported 75% mortality rate among all sharks, this resulted in an estimated bycatch of 486 $(36,000 * 0.018 * 0.75)$ and $445(33,000 * 0.018 * 0.75)$ dead sandbar sharks in 1994 and 1995, respectively. The number of vessels operating in the fishery each year (1981-2004) was divided by 53.5 vessels, the average number of vessels operating for the years in which bycatch estimates were available (1994 and 1995). The year-specific multipliers were then multiplied by the average number of sandbar sharks discarded dead (465), as determined previously. This provided for year-specific bycatch estimates adjusted for the annual number of vessels in the fleet for the period 1981-2004. Because more recent effort estimates for the menhaden fleet were not available and there were no other reasonable methods available to change the estimates, the same estimate for the last year of data (374 fish) was used to populate the rest of the series (20052009) (Table 2).

Decision 6. The discard estimate for sandbar sharks from the last year of data for the Gulf menhaden fishery was applied to the remainder of the time series.

3.4.2. Post-Release Mortality

3.4.2.1 Recommendations

At-vessel mortality can be approximated using observer data. However, there is very little data on which to base an estimate of post-release discard mortality for shark species. The catch group invited industry representatives from both bottom longline and gillnet fisheries to provide observational data on this topic. Industry representatives were asked to give a probability (\%) that a shark would die after being released alive. Gear-specific recommendations are as follows: Gillnet: 5\%

Bottom longline: 5\%
Pelagic longline: 2\%

3.4.2.2. Justifications:

The industry representatives noted the robustness of sandbar sharks, indicating that sharks boated alive were very likely to survive if released.

3.4.2.3. Decisions

The life history (LH) WG was tasked with a literature search on post-release mortality. Based on Campana et al. (2009), the LH WG reported that post-release mortality of blue sharks was approximately 6% greater than the percentage of sharks that were boated dead (at-vessel mortality). Therefore, the group applied a ' 6% rule' to the boated dead portion of the catch (estimate of boated dead portion is available from observer reports). The LH WG stated that the percent of at-vessel mortality was used as a proxy for discard mortality. The LH WG expressed an opinion that this rate would most likely be higher for sandbar, blacknose, and dusky sharks due to increased water temperatures in the western North Atlantic Ocean and the notable robustness of blue sharks. The plenary discussion focused on whether the blue shark was an appropriate model species for mortality rates, and the LH representatives stated that it was the only species for which actual post-release discard mortality data were available.

The catch WG presented the estimates of post-release discard mortality provided by the industry. Due to confusion about the terms 'discard mortality,' and 'post-release discard mortality' among most of the panel members at plenary, there was much discussion as to the wide disparity in the numbers presented by each group. Members of the LH WG insisted that the total numbers they presented ($\%$ at-vessel mortality $+6 \%$) only represented post-release mortality. Many panel members expressed hesitation at using these numbers as a proxy for post-release mortality, but LH WG members stated that sharks released alive were not uninjured and therefore were more likely to suffer mortality. One industry representative expressed his opinion that sandbar sharks were very robust, and therefore the rates should be lower than those presented by the LH WG.

Other panel members expressed skepticism about the ' 6% rule' introduced by the LH WG. The LH members stated that they knew it was a poor approximation, but that a little information was better than a blind guess. There was also some discussion about using mortality rates from a pelagic longline to inform estimates from bottom longline, but it was again noted that very little data were available.

A panel member noted that gear and regulatory changes would also have an impact on postrelease mortality. Circle hooks were mandated in the pelagic fishery in 2004, which would most
likely decrease injury and mortality. The bottom longline fishery has also undergone drastic gear changes, mostly due to regulations. An analyst stated that changes in mortality due to gear/management changes could be incorporated into the model, however mortality rates before and after changes were not further discussed.

The numbers that were eventually decided upon for bottom longline and pelagic longline actually represent total discard mortality, though many members of the panel thought that the discussion only centered on the post-release discard mortality. Due to the wide-spread confusion on this topic, it would be prudent to revisit these numbers at the assessment workshop.

Because of a lack of literature, the LH WG mostly deferred to the catch WG discard mortality estimates for gillnet gear.

Bottom longline

The LH WG estimated discard mortality to be 38% (32% at vessel plus 6% post-release) for sandbar sharks caught by bottom longline, and the catch group suggested a rate of 5% postrelease discard mortality. A consensus number could not be reached, but all agreed that mortality would be higher for bottom longline gear than for pelagic gear. Therefore, a range between the pelagic longline discard mortality rate and the discard mortality estimate provided by the LH group was chosen. The discard mortality for sandbar sharks on bottom longline was between 28.5-38.0\%.

Pelagic longline

The LH WG provided an estimate for discard mortality for sandbar sharks caught by bottom longline of 38% (32% at vessel plus 6%), but did not present any other gear-specific estimates. The catch group suggested a post-release discard mortality (percentage of sharks that would die after being released alive) of 2% for sandbar sharks on pelagic longline. At-vessel mortality for pelagic longline gear from the PLLOP was calculated at plenary. It was stated that discard mortality would be lower for pelagic longline than for bottom longline. Therefore the difference between at-vessel mortality for pelagic and bottom longlines was applied to the overall discard mortality estimated by the LH WG. The at-vessel mortality rate from the PLLOP was 24%, and was 32% for the BLLOP. The difference between these two mortality estimates was 25%,
therefore 38% (the LH WG estimate) was multiplied by 0.75 (taking the 25% difference between gears into account) to get a discard mortality rate of 28.5%.

Gillnet

The catch group estimated a 5% post-release discard mortality for sandbar sharks caught in gillnet gear. A new paper was introduced by the catch group at plenary (Jensen and Hopkins 2001), which estimated at-vessel mortality of 10% for sandbar sharks. The final discard mortality rate was a range of $5-10 \%$, which took both the catch group estimates and literature into account. It should be noted that gillnet observer data were not used for discard mortality estimates.

Decision 7: Post-release discard mortality for sandbar sharks caught on commercial bottom longline gear was estimated to range between 28.5-38.0\%.

Decision 8: Post-release mortality for sandbar sharks caught on commercial pelagic longline gear was estimated to be $\mathbf{2 8 . 5 \%}$.

Decision 9: Post-release discard mortality for sandbar sharks caught on commercial gillnet gear was estimated to be between $\mathbf{5 - 1 0 \%}$.

3.5. COMMERCIAL EFFORT

Commercial effort was not taken into account because commercial effort directed to sharks is not reported for the various coastal commercial fisheries that catch sandbar sharks. However, the Indices WG calculated effort estimates and catch-per-unit effort estimates to develop various indices of abundance.

3.6. BIOLOGICAL SAMPLING

Biological samples of sandbar sharks were available from three main sources: BLLOP, PLLOP, and SGNOP. Biological samples are available from the BLLOP from 1994 to 2009, from the PLLOP 1992 to 2009 and from the SGNOP from 1992 to 2009 (SEDAR 21-DW-07, SEDAR 21-DW-09, SEDAR 21-DW-12, SEDAR 21-DW-22).

3.6.1. Sampling Intensity Length/Age/Weight

The number of samples of sandbar sharks obtained from the BLLOP and PLLOP were reported in SEDAR 21-DW-09. For the BLLOP, the number of sandbar shark samples ranged from a low of 68 animals in 1993 to a maximum of 3, 106 in 2001 (SEDAR 21-DW-09). For the PLLOP, the number of sandbar shark samples ranged from 1 animal in 2000 and 2001 to 59 in 1995 (SEDAR 21-DW-09)

3.6.2. Length/Age Distributions

The average length trends from the BLLOP and PLLOP were illustrated in SEDAR 21-DW-09. The predicted average weight and observed fork length of sandbar shark from the BLLOP showed a declining trend in 1993-1998, but followed an increasing trend since then (SEDAR21-DW-09). Sample size was low in the PLLOP ($\mathrm{n}=248$), which showed no trend. Data from the dealer weighout (for animals weighed individually) revealed a fairly stable trend for the period with a large number of observations (1992-2006).

Length-frequency distributions of sandbar sharks observed in the BLLOP show that both immature and mature animals ($\mathrm{ca} .>152-155 \mathrm{~cm} \mathrm{FL}$) are caught in the directed shark fishery (SEDAR21-DW-09). Although based on few observations, a similar trend is seen in the PLLOP.

3.6.3. Adequacy for Characterizing Catch

The commercial fishery data for the sandbar commercial shark fishery was considered to be adequate to characterize the fishery. The commercial landings data are provided directly from dealer reports. The conversion factors used to create the commercial landings stream in numbers are based on data gathered from the observer programs and are therefore a good characterization of the size distribution of the sandbar sharks typically encountered in the commercial fishery. The Mexican catches have the most uncertainty around them because the estimates are based on an assumption that the species catch composition and length-frequency distribution remained unchanged since the mid 1990s. The Catch WG agreed that this is an adequate estimation of the Mexican catches.

3.6.4. Alternatives for Characterizing Discard Length/Age

The Catch WG did not discuss any alternatives for characterizing discard length or age for sandbar sharks because of the historic lack of discards. However, these should be taken into account after 2007, when the species was listed as prohibited and the sandbar shark research fishery was established.

3.7. COMMERCIAL CATCH AT AGE/LENGTH; DIRECTED, DISCARDS

Length-frequency information of the catch from the observer programs (BLLOP and PLLOP) will be converted to age-frequency data through age-length keys. Length- and age-frequency distributions will be used to fit selectivity curves for use in the assessment model(s).

3.8. COMMENTS ON ADEQUACY OF DATA FOR ASSESSMENT ANALYSES

The commercial data gathered to illustrate the landings trends for the commercial sandbar shark fishery were considered to be adequate for assessment analyses by the Catch WG. The commercial landings data were considered to be reliable as they are generated from dealer reports and since this fishery has little misidentification issues. Perhaps the weakest set of data that the Catch WG discussed were the estimation of Mexican catches but the commercial group felt that the estimates were still reliable and adequate for assessment analyses, as they are consistent with what was done in SEDAR 11.

3.9. LITERATURE CITED

Jensen, C.F. and G.A. Hopkins. 2001. Evaluation of bycatch in the North Carolina Spanish and king mackerel sinknet fishery with emphasis on sharks during October and November 1998 and 2000 including historical data from 1996-1997. Report to North Carolina Sea Grant. Project \# 98FEG-47.

3.10. TABLES

Table 1. Average weight (lb dw) of sandbar sharks by year from the Bottom Longline Observer Program.

Table 2. Baseline scenario: Catches of sandbar sharks (in numbers of individuals) in the Gulf of Mexico, 1960-2009.

Year	Commercial Landings	Recreational catches	Unreported catches	Menhaden fish. Bycatch	Mexican catches	Total	Com+Unrep	Rec+Mex	Menhaden
1960							0.085	0.065	0.5
1961							0.169	0.129	0.5
1962							0.254	0.194	0.5
1963							0.339	0.259	0.5
1964							0.424	0.323	0.5
1965							0.508	0.388	0.5
1966							0.593	0.453	0.5
1967							0.678	0.517	0.5
1968							0.763	0.582	0.5
1969							0.847	0.647	0.5
1970							0.932	0.711	0.5
1971							1.017	0.776	0.5
1972							1.101	0.841	0.5
1973							1.186	0.905	0.5
1974							1.271	0.970	0.5
1975							1.356	1.0	0.5
1976							1.383	1.0	0.5
1977							1.474	1.1	0.5
1978							1.764	2.3	0.5
1979							2.581	25.4	0.5
1980							4.309	98.0	0.5
1981	6.6	128.9		0.7	10.1	146.3	6.6	138.9	0.7
1982	6.6	33.6		0.7	11.8	52.8	6.6	45.4	0.7
1983	7.2	415.9		0.7	11.1	434.9	7.2	427.0	0.7
1984	9.8	56.4		0.7	11.7	78.6	9.8	68.1	0.7
1985	9.1	67.7		0.6	7.9	85.3	9.1	75.6	0.6
1986	23.1	124.8	2.739	0.6	9.4	160.6	25.8	134.2	0.6
1987	66.3	30.5	7.733	0.7	7.0	112.1	74.0	37.4	0.7
1988	79.4	63.6	45.32	0.6	9.1	198.1	124.7	72.8	0.6
1989	122.2	26.2	38.52	0.7	8.3	195.9	160.7	34.5	0.7
1990	116.7	57.7	5.731	0.7	10.7	191.6	122.4	68.5	0.7
1991	95.4	35.4	1.243	0.5	9.1	141.6	96.7	44.4	0.5
1992	100.6	33.8		0.4	9.7	144.5	100.6	43.5	0.4
1993	72.0	23.8		0.5	9.1	105.4	72.0	32.9	0.5
1994	126.3	14.6		0.5	8.8	150.2	126.3	23.4	0.5
1995	84.4	25.3		0.4	9.9	120.0	84.4	35.2	0.4

1996	65.5	36.1	0.4	10.7	112.8	65.5	46.8	0.4
1997	41.5	41.0	0.5	8.4	91.2	41.5	49.3	0.5
1998	62.7	34.6	0.4	7.2	104.9	62.7	41.8	0.4
1999	53.3	19.4	0.5	8.0	81.1	53.3	27.3	0.5
2000	37.3	10.8	0.4	7.03	55.5	37.3	17.8	0.4
2001	48.2	35.7	0.4	6.41	90.7	48.2	42.1	0.4
2002	56.4	8.0	0.4	5.03	69.8	56.4	13.1	0.4
2003	45.2	4.9	0.4	4.33	54.8	45.2	9.3	0.4
2004	39.1	3.2	0.4	4.23	46.9	39.1	7.4	0.4
2005	33.4	1.7	0.4	4.42	39.9	33.4	6.1	0.4
2006	42.1	0.4	0.4	4.65	47.6	42.1	5.1	0.4
2007	16.9	6.6	0.4	4.08	27.9	16.9	10.6	0.4
2008	2.2	4.8	0.4	2.57	9.9	2.2	7.3	0.4
2009	4.0	4.5	0.4	2.57	11.4	4.0	7.0	0.4

3.11. FIGURES

Figure 1. Catches of sandbar sharks (in thousands of individuals), 1960-2009.

4. RECREATIONAL FISHERY STATISTICS

4.1. OVERVIEW

4.1.1. Members

Ivy Baremore (chair, SEFSC), Elizabeth Babcock (chair, RSMAS), Heather Balchowsky (HMS), Carolyn Belcher (GADNR), Alan Bianchi (NCDENR), Enric Cortés (SEFSC), Bill Gazey (LGL), Chris Hayes (ACCSP), Rusty Hudson (DSF), Michelle Passerotti (SEFSC), David Stiller (Fisherman-Alabama)

4.1.2. Issues

Several issues were discussed by the recreational catch working group (WG), including: 1) Changes to the catch data were made from the previous assessment. 2) The year of virgin biomass and increase in fishing effort. 3) Post-release discard mortality for sandbar sharks caught by recreational hook and line. 4) Number of live releases from the recreational fishery.

4.2. REVIEW OF WORKING PAPERS

SEDAR21-DW-07. Description of data sources used to quantify shark catches in commercial and recreational fisheries in the U.S. Atlantic Ocean and Gulf of Mexico.
I.E. Baremore, H. Balchowsky, V. Matter, V, E. Cortes

This document presents descriptions of the available data sources. Recreational landings data are collected by state and federal agencies. Currently three databases exist, from which recreational landings of sharks are estimated: the Marine Recreational Fishery Statistics Survey (MRFSS), the NOAA Headboat Survey (Headboat), and the Texas Parks and Wildlife Department's (TXPWD) survey. There is a fourth recreational data source, the Large Pelagic Survey (LPS), which also collects shark data but from which catch estimates for sandbar sharks have not typically been produced as observations for sandbar sharks in this dataset are low.

SEDAR21-DW-09. Updated catches of sandbar, dusky and blacknose sharks.
E. Cortés and I.E. Baremore

This document presents updated commercial and recreational landings and discard estimates of sandbar, dusky and blacknose sharks up to 2009. Information on the geographical distribution of both commercial and recreational catches is presented along with gear-specific information of
commercial landings. Length-frequency information and trends in average size of the catches from several commercial and recreational sources are also included.

4.3. RECREATIONAL LANDINGS

4.3.1. Recreational Fisheries

Recreational catches of sandbar sharks (Table 1) correspond to estimates from three data collection programs: the Marine Recreational Fishery Statistics Survey (MRFSS), the NMFS Headboat Survey (HBOAT) operated by the SEFSC Beaufort Laboratory, and the Texas Parks and Wildlife Department Recreational Fishing Survey (TXPWD). As explained in the SEDAR 11 Data Workshop report, during 1998-1999, the MRFSS tested a new methodology for the estimation of charterboat effort, the For Hire Survey (FHS), which was deemed to provide better estimates of charterboat fishing effort and was officially adopted in 2000. The MRFSS catches reported for the period 1981-2009 are thus those incorporating the "new' methodology described in SEDAR 11 and detailed in SEDAR7-AW-03. Total, annual recreational catch estimates of sandbar sharks are the sum of the MRFSS ($\mathrm{A}+\mathrm{B} 1=$ fished landed or killed), HBOAT (fish landed), and TXPWD (fish landed) survey estimates. Only sharks that have been identified as sandbar shark are included; there is a large catch of unidentified carcharhinid sharks in the recreational fishery, some of which could be sandbar sharks.

4.3.2. Reconstruction of historical catches

In the previous assessment (SEDAR 11), recreational catches were assumed to decrease linearly from 1981 to 1975 . However, a new definition of the year of virgin biomass led to discussion of another method employing an exponential decline back to 1975, preceded by a linear decline from 1975 back to 1960. This was based on the perception that there were a few headboat vessels, and perhaps some shore-based fishing, but very little private fishing for sharks in the 1960s and early 1970s.

Decision 1. Based on the perception that there were a few headboat vessels, and perhaps some shore-based fishing, but very little private fishing for sharks in the 1960s and early

1970s, the catches of sharks in the recreational fishery were assumed to increase linearly from 1960 to 1975 and then exponentially from 1975 to 1981.

Decision 2. As a potential sensitivity analysis, the catch in 1983, which looked like an outlier, was replaced with the geometric mean of the catches in 1982 and 1984.

4.4. RECREATIONAL DISCARDS

4.4.1. Historic discards

The total catches of sandbar sharks (Table 1) include individuals that were discarded dead in the MRFSS data set (catch type B1), but discards are not included for the HBOAT and TXPWD data sets. For the MRFSS data (SEDAR21-DW-11), the catches can be divided into types A1 (landings), B1 (dead discards) and B2 (live releases). Previous assessments assumed that all of the live releases survived.

4.4.2. Post-release mortality

Recommendations

Because sandbar sharks tend to be alive and in very good shape when they are caught by recreational fishers, the catch WG considered that the post release survival of sharks released alive (type B2) would be high. The life history WG was tasked with a literature search on postrelease mortality, and suggested a mortality rate of 3.25% be applied to the sandbar sharks released alive. This was calculated in a two step process. First, the post-release mortality of dusky sharks was reported to be 6% (Cliff and Thurman 1984). The at-vessel mortalities from the bottom longline observer program were used to calculate the relative vulnerability of sandbar, dusky and blacknose sharks ($32 \%, 59 \%, 65 \%$, respectively). Because sandbar shark discard mortality was only 54% (32/59) of dusky mortality, the post release mortality of sandbar shark was estimated to be 3.25% (6×0.54). The live release (type B2) catches from MRFSS, multiplied by this mortality rate, are shown in Table 2 and Fig. 2. No information was available on live releases from the HBOAT and TXPDWD data sets.

Decision 3. A 3.25% post-release mortality rate was applied to $\mathbf{B} 2$ (released alive) sandbar sharks.

4.5. BIOLOGICAL SAMPLING

4.5.1. Sampling Intensity Length/Age/Weight

There were 422 length and weight observations for sandbar shark from MRFSS. There were 97 size observations in the HBOAT survey and 41 in TXPWD (SEDAR21-DW-9).

4.5.2. Length - Age distributions

Length distributions were available from MRFSS data, though in low numbers (SEDAR21-DW09). Length data were too few to report from HBOAT and TXPWD.

4.5.3. Adequacy for characterizing catch

Because samplers are only able to measure fish that are landed (Type A catch), the sample size of the length and weight data is low and they are only useful for characterizing size/age distributions in the landed catch. The average sizes were stable through 2000 and increased through 2009 (SEDAR21-DW-9).

4.5.4. Alternatives for characterizing discards

No biological data is available for the dead discarded and live released sharks.

4.6. RECREATIONAL CATCH-AT-AGE/LENGTH; DIRECTED DISCARD

Length-frequency information of the catch from MRFSS will be converted to age-frequency data through an age-length key. Length- and age-frequency distributions will be used to fit selectivity curves for use in the assessment model(s).

4.7. RECREATIONAL EFFORT

Recreational effort data are available from MRFSS, HBOAT, and TXPWD, and are used to calculate the total catches from these fisheries (SEDAR21-DW-9, SEDAR21-DW-11).

4.8. COMMENTS ON ADEQUACY OF DATA FOR ASSESSMENT ANALYSES

Because the recreational data are based on extrapolations from a subsample of the fishery, they are highly uncertain, particularly in the 1980s. However, given the paucity of recreational data, the catch group determined the data to be the best available.

4.9. LITERATURE CITED

Cliff, G. and G. D. Thurman. 1984. Pathological and physiological effects of stress during capture and transport in the juvenile dusky shark, Carcharhinus obscurus. Comp Biochem Physiol 78A(1):167-173.

4.10. TABLES

Table 1. Catches of sandbar sharks (in numbers of individuals), 1960-2009.

Year	Commercial Landings	Recreational catches	Unreported catches	Menhaden fish. Bycatch	Mexican catches	Total	Com+Unrep	Rec + Mex	Menhaden
1960							0.085	0.065	0.5
1961						-	0.169	0.129	0.5
1962							0.254	0.194	0.5
1963							0.339	0.259	0.5
1964					\bigcirc		0.424	0.323	0.5
1965					-		0.508	0.388	0.5
1966							0.593	0.453	0.5
1967				D			0.678	0.517	0.5
1968				+			0.763	0.582	0.5
1969							0.847	0.647	0.5
1970							0.932	0.711	0.5
1971							1.017	0.776	0.5
1972			,				1.101	0.841	0.5
1973			-				1.186	0.905	0.5
1974							1.271	0.970	0.5
1975							1.356	1.0	0.5
1976		,					1.383	1.0	0.5
1977							1.474	1.1	0.5
1978							1.764	2.3	0.5
1979							2.581	25.4	0.5
1980							4.309	98.0	0.5
1981	6.6	128.9		0.7	10.1	146.3	6.6	138.9	0.7
1982	6.6	33.6		0.7	11.8	52.8	6.6	45.4	0.7
1983	7.2	415.9		0.7	11.1	434.9	7.2	427.0	0.7
1984	9.8	56.4		0.7	11.7	78.6	9.8	68.1	0.7
1985	9.1	67.7		0.6	7.9	85.3	9.1	75.6	0.6
1986	23.1	124.8	2.739	0.6	9.4	160.6	25.8	134.2	0.6
1987	66.3	30.5	7.733	0.7	7.0	112.1	74.0	37.4	0.7

1988	79.4	63.6	45.32	0.6	9.1	198.1	124.7	72.8	0.6
1989	122.2	26.2	38.52	0.7	8.3	195.9	160.7	34.5	0.7
1990	116.7	57.7	5.731	0.7	10.7	191.6	122.4	68.5	0.7
1991	95.4	35.4	1.243	0.5	9.1	141.6	96.7	44.4	0.5
1992	100.6	33.8		0.4	9.7	144.5	100.6	43.5	0.4
1993	72.0	23.8		0.5	9.1	105.4	72.0	32.9	0.5
1994	126.3	14.6		0.5	8.8	150.2	126.3	23.4	0.5
1995	84.4	25.3		0.4	9.9	120.0	84.4	35.2	0.4
1996	65.5	36.1		0.4	10.7	112.8	65.5	46.8	0.4
1997	41.5	41.0		0.5	8.4	91.2	41.5	49.3	0.5
1998	62.7	34.6		0.4	7.2	104.9	62.7	41.8	0.4
1999	53.3	19.4		0.5	8.0	81.1	53.3	27.3	0.5
2000	37.3	10.8		0.4	7.03	55.5	37.3	17.8	0.4
2001	48.2	35.7		0.4	6.41	90.7	48.2	42.1	0.4
2002	56.4	8.0		0.4	5.03	69.8	56.4	13.1	0.4
2003	45.2	4.9		0.4	4.33	54.8	45.2	9.3	0.4
2004	39.1	3.2		0.4	4.23	46.9	39.1	7.4	0.4
2005	33.4	1.7		0.4	4.42	39.9	33.4	6.1	0.4
2006	42.1	0.4		0.4	4.65	47.6	42.1	5.1	0.4
2007	16.9	6.6		0.4	. 08	27.9	16.9	10.6	0.4
2008	2.2	4.8		0.4	2.57	9.9	2.2	7.3	0.4
2009	4.0	4.5		0.4	2.57	11.4	4.0	7.0	0.4

Table 2. Estimates of live-discarded sandbar sharks (B2) from MRFSS, with a 3.25% postrelease discard mortality (DM) applied by year.

| Year | B2 | DM |
| ---: | ---: | ---: | :---: |
| 1981 | 120767 | 3925 |
| 1982 | 323516 | 10514 |
| 1983 | 1010991 | 32857 |
| 1984 | 347103 | 11281 |
| 1985 | 200630 | 6520 |
| 1986 | 410681 | 13347 |
| 1987 | 172402 | 5603 |
| 1988 | 118659 | 3856 |
| 1989 | 35179 | 1143 |
| 1990 | 74844 | 2432 |
| 1991 | 86335 | 2806 |
| 1992 | 93588 | 3042 |
| 1993 | 92785 | 3016 |
| 1994 | 66790 | 2171 |
| 1995 | 81880 | 2661 |
| 1996 | 128973 | 4192 |
| 1997 | 157999 | 5135 |
| 1998 | 176110 | 5724 |
| 1999 | 127209 | 4134 |
| 2000 | 99499 | 3234 |
| 2001 | 173188 | 5629 |
| 2002 | 249095 | 8096 |
| 2003 | 161777 | 5258 |
| 2004 | 55355 | 1799 |
| 2005 | 145734 | 4736 |
| 2006 | 38174 | 1241 |
| 2007 | 224561 | 7298 |
| 2008 | 80128 | 2604 |
| 2009 | 243615 | 7917 |
| | | |

4.11. FIGURES

Figure 1. Catches of sandbar sharks (in thousands of sharks), 1960-2009.

Figure 2. Number of sandbar sharks released alive (B2) from MRFSS that are predicted to die based on a 3.25% post-release discard mortality.

5. INDICES OF POPULATION ABUNDANCE

5.1. OVERVIEW

Fifty-eight indices of abundance were considered for use in the assessment models for blacknose, sandbar and dusky sharks. Indices were constructed using both fishery independent and dependent data. Following the Data Workshop (DW) separate models for blacknose sharks were recommended for Gulf of Mexico (GOM) and Atlantic Ocean (ATL). For the GOM stock of blacknose sharks, the DW recommended the following indices for use in the stock assessment model for the base run: NMFS Southeast Bottom Longline, NMFS SEAMAP Groundfish Trawl (Summer and Fall), Panama City Gillnet (Adult and Juvenile), Mote Marine Lab Longline, SEFSC Shark Bottom Longline Observer Program and Dauphin Island Sea Lab Bottom Longline. For the ATL stock of blacknose sharks, the DW recommended the following indices for use in the stock assessment model for the base run: NMFS Southeast Bottom Longline, SCDNR Red Drum Longline (Historical), SEFSC Shark Bottom Longline Observer Program, Drift Gillnet Observer Program, UNC Longline, GADNR Red Drum Longline, and Coastal Fishery Logbook Gillnet. The Sink Gillnet Observer Program index was recommended for a sensitivity run for blacknose sharks. For sandbar sharks, the DW recommended the following indices for use in the stock assessment model for the base run: NMFS Southeast Bottom Longline, NMFS COASTSPAN Longline (Total juveniles, YOY and Age 1+), VIMS Longline, NMFS Northeast Longline, SEFSC Shark Bottom Longline Observer Program, Southeast Pelagic Longline Observer Program, SC COASTSPAN Longline, SCDNR Red Drum Longline (Historical), Panama City Gillnet (Juvenile), GA COASTSPAN Longline (Juvenile) and Large Pelagic Survey. The NMFS Historical Longline, Coastal Fishery Logbook Bottom Longline and Southeast Pelagic Longline Logbook indices were recommended for a model sensitivity run for sandbar sharks. For dusky sharks, the DW recommended the following indices for use in the stock assessment model for the base run: NMFS Northeast Longline, SEFSC Shark Bottom Longline Observer Program, Southeast Pelagic Longline Observer Program, VIMS Longline and Large Pelagic Survey. The NMFS Historical Longline and UNC Longline indices were recommended for a sensitivity run for dusky sharks. Four indices were reviewed, but not recommended for use: the SCDNR red drum longline survey index (sandbar shark), GADNR red drum longline survey index (sandbar shark), UNC longline sampling program index (sandbar shark), and the SCDNR red drum longline survey index (blacknose shark). Those indices were
not recommended for use because they had either a short time series, very low sample size, or were not conducted in appropriate habitat.

5.1.1. Group Membership

Membership of this DW working group included Heather Balchowsky, John Carlson, Marcus Drymon, Kristin Erickson, Walter Ingram (leader), Cami McCandless, Kevin McCarthy, Kristene Parsons, Adam Pollack and John Walter. Enric Cortes assisted with ranking the abundance indices during a follow-up webinar.

5.2. REVIEW OF INDICES

The working group reviewed sixteen working papers describing index construction:
SEDAR21-DW-01 (Panama City Gillnet)
SEDAR21-DW-02 (SEFSC Shark Bottom Longline Observer Program)
SEDAR21-DW-03 (Drift Gillnet Observer Program)
SEDAR21-DW-04 (Sink Gillnet Observer Program)
SEDAR21-DW-08 (Southeast Pelagic Longline Observer Program / Southeast Pelagic Longline Logbook)
SEDAR21-DW-11 (MRFSS)
SEDAR21-DW-18 (VIMS Longline)
SEDAR21-DW-25 (©auphin Island Sea Lab Bottom Longline)
SEDAR21-DW-27 (NMFS COASTSPAN Longline (total juveniles, YOY and age 1+))
SEDAR21-DW-28 (NMFS Northeast Longline)
SEDAR21-DW-29 (GA COASTSPAN Longline / GADNR Red Drum Longline)
SEDAR21-DW-30 (SC COASTSPAN Longline / SCDNR Red Drum Longline
(Historical and Recent))
SEDAR21-DW-32 (Northeast Gillnet Observer Program)
SEDAR21-DW-33 (UNC Longline)
SEDAR21-DW-34 (Mote Marine Lab Longline)
SEDAR21-DW-39 (NMFS Southeast Bottom Longline)
SEDAR21-DW-40 (Coastal Fishery Logbook Gillnet)
SEDAR21-DW-41 (Coastal Fishery Logbook Bottom Longline (Sandbar))

SEDAR21-DW-42 (Coastal Fishery Logbook Bottom Longline (Dusky))
SEDAR21-DW-43 (NMFS SEAMAP Groundfish Trawl)
SEDAR21-DW-44 (Large Pelagic Survey)
The working group also conducted analyses on one other data source after the data workshop. The following working paper was reviewed during a webinar following the data workshop.

SEDAR21-DW-31 (NMFS Historical Longline)

5.3. FISHERY INDEPENDENT INDICES

5.3.1. Panama City Gill Net (SEDAR21-DW-01)

Fishery-independent catch rates were standardized using a two-part generalized linear model analysis. One part modeled the proportion of sets that caught any sharks (at least one shark was caught) assuming a binomial distribution with a logit link function while the other part modeled the catch rates of sets with positive catches assuming a lognormal distribution. Standardized indices were developed for sandbar shark and juvenile (age 1+) and adult for blacknose shark. Depending on species, the final models varied with factors area, season, year. Although factors such as area and season were significant in most models, results from this study indicate any bias associated with these aspects did not significantly change the trends between nominal and standardized data. Trends in abundance declined for sandbar shark, juvenile blacknose shark but were stable for adult blacknose shark.

5.3.2. VIMS Longline (SEDAR21-DW-18)

The Virginia Institute of Marine Science (VIMS) has conducted a fishery-independent longline survey during summer months since 1974. Data for sandbar sharks and dusky sharks captured in the survey between 1975 and 2009 were presented. Most of the sandbar sharks encountered by the survey were immature, with females composing almost all of the mature sandbar catch. Almost all dusky sharks captured were immature. Most of the catch since the early 1990's has been composed of 0-4 year age classes. Nominal and standardized catch rates were presented. CPUE for both species decreased from the early 1980's to minima in 1992. CPUE then slightly increased and has oscillated since. The Indices working group recommended removal of all years where less than five standard stations were sampled, thus these years were removed and
analyses were conducted on the new data sets. Removal of these years did not change explanatory factors in the models. The Indices working group recommended the VIMS sandbar and dusky indices be used as base indices.

5.3.3. Dauphin Island Sea Lab Bottom Longline (SEDAR21-DW-25)

Blacknose sharks, Carcharhinus acronotus, were one of the most frequently caught sharks on a monthly longline survey initiated off the coast of Alabama in 2006. Between May 2006 and December 2009, 623 blacknose sharks (389 male, 234 female) were captured during 475 bottom longline sets. Nominal and delta lognormal standardized catch per unit effort (CPUE, sharks/100 hooks/hour) and length frequency distributions by sex were presented. It was decided by the working group to exclude stations deeper than $20 \mathrm{~m}(\mathrm{n}=55)$ due to the trûncated times series. Stations north of 30.2 degrees north latitude $(\mathrm{n}=39)$ were excluded because they occur in areas not inhabited by blacknose shark. Reanalysis of standardized CPUE values showed a decline from 2006 through 2009, with increasing coefficients of variation each year. The Indices working group suggested these data be included as a baseline, and recommended the continuation of this time series for future assessments.

5.3.4. NMFS COASTSPAN Longline (SEDAR21-DW-27)

This document detailed the young of the year (YOY), age $1+$ juvenile and the total juvenile sandbar shark catch from the Northeast Fisheries Science Center (NEFSC), Cooperative Atlantic States Shark Pupping and Nursery (COASTSPAN) survey conducted in Delaware Bay. Catch per unit effort (CPUE) in number of sharks per 50-hook set per hour was used to examine the relative abundance of juvenile sandbar sharks between the summer nursery seasons from 2001 to 2009. The CPUE was standardized using a two-step delta-lognormal approach originally proposed by Lo et al (1992) that models the proportion of positive catch with a binomial error distribution separately from the positive catch, which is modeled using a lognormal distribution. All three juvenile sandbar shark time series showed a fairly stable trend in relative abundance from 2001 to 2005 with only a brief decrease in abundance in 2002, which may be attributed to a large storm (associated with a hurricane offshore) that passed through the Bay that year. This stable trend was followed by a decreasing trend from 2005 to 2008 and ended with an increase in relative abundance in 2009.

5.3.5. NMFS Northeast Longline (SEDAR21-DW-28)

This document detailed sandbar and dusky shark catch from the Northeast Fisheries Science Center (NEFSC) coastal shark bottom longline survey, conducted by the Apex Predators Program, Narragansett Laboratory, Narragansett, RI from 1996-2009. Data from this survey were used to look at the trends in relative abundance of sandbar and dusky sharks in the waters off the east coast of the United States. Catch per unit effort (CPUE) by set in number of sharks/(hooks*soak time) were examined for each year of the bottom longline survey, 1996, 1998, 2001, 2004, 2007, and 2009. The CPUE was standardized using a two-step deltalognormal approach originally proposed by Lo et al. (1992) that models the proportion of positive catch with a binomial error distribution separately from the positive catch, which was modeled using a lognormal distribution. Sandbar sharks showed a declining trend from 1998 to 2004 followed by an increase in relative abundance through 2009. Dusky sharks showed an increasing trend in relative abundance across the time series.

5.3.6. GA COASTSPAN Longline / GADNR Red drum Longline (SEDAR21-DW-29)

This document detailed the shark catches from the Georgia Department of Natural Resources (GADNR), Cooperative Atlantic States Shark Pupping and Nursery (COASTSPAN) survey conducted in Georgia's estuarine waters from 2000-2009 and the GADNR adult red drum survey conducted in Georgia's estuarine and neârshore waters from 2007-2009. Catch per unit effort (CPUE) in number of sharks per hook hour for GA COASTSPAN longline sets and in number of sharks per number of hooks for the GADNR red drum sets were used to examine blacknose and/or sandbar shark relative abundance in Georgia's coastal waters. The CPUE was standardized using a two-step delta-lognormal approach originally proposed by Lo et al. (1992) that models the proportion of positive catch with a binomial error distribution separately from the positive catch, which is modeled using a lognormal distribution. Sandbar sharks from the GADNR COASTSPAN survey showed a fairly stable trend in relative abundance throughout the time series. Blacknose and sandbar sharks from the GADNR red drum survey also showed a relatively stable trend during the three year time frame this survey has been in existence.

5.3.7. SC COASTSPAN / SCDNR Red drum Longline (SEDAR21-DW-30)

This document detailed shark catches from the South Carolina Department of Natural Resources (SCDNR), Cooperative Atlantic States Shark Pupping and Nursery (COASTSPAN) survey and the SCDNR adult red drum survey, both conducted in South Carolina's estuarine and nearshore waters from 1998-2009. Catch per unit effort (CPUE) in number of sharks per hook hour were used to examine blacknose and/or sandbar shark relative abundance for all SCDNR time series. The SCDNR red drum time series had to be analyzed in two separate time segments (1998-2006 and 2007-2009) due to a change in gear and sampling design. The CPUE for all time series was standardized using a two-step delta-lognormal approach originally proposed by Lo et al. (1992) that models the proportion of positive catch with a binomial error distribution separately from the positive catch, which is modeled using a lognormal distribution. Sandbar sharks from the SCDNR COASTSPAN survey showed a fairly stable trend in relative abundance from 1998 to 2003, followed by a slight increasing trend during the mid-2000s. Sandbar sharks from the 1998-2006 SCDNR red drum survey showed a drop in abundance from 1999 to 2000 followed by a more stable trend in the 2000s and blacknose sharks appeared to be stable throughout the time series. Blacknose and sandbar sharks from the 2007-2009 SCDNR red drum survey also showed a relatively stable trend during the three year time frame this survey has been in existence.

5.3.8. NMFS Historical Longline (SEDAR21-DW-31)

This document detailed shark catch from the exploratory longline surveys conducted by the National Marine Fisheries Service, Sandy Hook, NJ and Narragansett, RI labs from 1961-1996. Data from these surveys were used to look at the trends in relative abundance of sandbar and dusky sharks in the waters off the east coast of the United States. Catch per unit effort (CPUE) by set in number of sharks/hooks was used to examine trends in relative abundance. The CPUE was standardized using a two-step delta-lognormal approach originally proposed by Lo et al. (1992) that models the proportion of positive catch with a binomial error distribution separately from the positive catch, which is modeled using a lognormal distribution. The resulting time series for sandbar sharks showed an initial decline in relative abundance in the early 1960s, followed by a sharp increase in 1964. Sandbar shark relative abundance then dropped down again to lower levels and held steady until the mid-1980s when a slight increase in relative abundance was seen. For dusky sharks, the time series also began with a decreasing trend, but it
continued throughout the 1960s followed by a more stable trend throughout the remainder of the time series with a few small peaks in the early 1970s, mid 1980s and early 1990s.

5.3.9. UNC Longline (SEDAR21-DW-33)

This document detailed the blacknose, sandbar and dusky shark catch from the University of North Carolina bottom longline survey conducted biweekly from April-November, 1972-2009, at two fixed stations in Onslow Bay south of Shackleford Banks, North Carolina. Catch per unit effort (CPUE) by set in number of sharks/number of hooks were examined by year. The CPUE was standardized using a two-step delta-lognormal approach originally proposed by Lo et al. (1992) that models the proportion of positive catch with a binomial error distribution separately from the positive catch, which is modeled using a lognormal distribution. All three species showed a declining trend from the mid-1970s to the mid-1990s followed by a more stable trend into the 2000s.

5.3.10. Mote Marine Lab Longline (SEDAR21-DW-34)

Mote Marine Laboratory's Center for Shark Research (CSR) has conducted relative abundance studies of coastal sharks along the Florida Gulf coast since 1991. In 2001, the CSR launched a new series of studies on larger sharks inhabiting southwest Florida offshore waters utilizing standardized, stratified drumline and longline surveys. This offshore sampling was conducted as regular quarterly surveys and continued through 2009. Although large coastal sharks were the primary target of these fishing efforts, small coastal species also were a regular component of the catch. The dataset from these surveys includes sandbar (Carcharhinus plumbeus) and blacknose (C. acronotus) sharks. No dusky sharks (C. obscurus) were found in these surveys; in fact, no dusky sharks had been observed in Mote Marine Laboratory's area of coverage in the eastern Gulf of Mexico since 1992, including all sampling efforts by the CSR and other Mote research centers and all fishing and collecting activities of the Mote Aquarium. The DW recommended the use of the blacknose longline index for a base run.

5.3.11. NMFS Southeast Bottom Longline (SEDAR21-DW-39)

The Southeast Fisheries Science Center (SEFSC) Mississippi Laboratories has conducted standardized bottom longline surveys in the Gulf of Mexico, Caribbean Sea, and Western North Atlantic Ocean since 1995. The objective of this longline survey was to provide fisheries
independent data for stock assessment for as many species as possible. This survey, which was conducted annually in U.S. waters of the Gulf of Mexico (GOM) and/or the western north Atlantic Ocean (Atlantic), provided an important source of fisheries independent information on dusky shark in the GOM and Atlantic. The entire time series of data was used to develop abundance indices for blacknose, sandbar and dusky sharks for both the GOM and Atlantic. To develop standardized indices of annual average CPUE for blacknose and sandbar sharks for both the GOM and Atlantic, a delta-lognormal model, as described by Lo et al. (1992), was employed. Due to the extremely low catches of dusky shark, no abundance indices were developed for this species.

5.3.12. NMFS SEAMAP Groundfish Trawl (SEDAR21-DW-43)

The Southeast Fisheries Science Center (SEFSC) Mississippi Laboratories has been conducting groundfish surveys in the northern Gulf of Mexico under the Southeast Area Management and Assessment Program (SEAMAP) since 1987. This survey, which was conducted twice a year (summer and fall), provided an important source of fisheries independent information on blacknose sharks (Carcharhinus acronotus). A total of 122 blacknose sharks were collected from 1987-2009, with length frequency data indicating a wide range of sizes captured. Simple abundance indices were reported for two of the time series (summer and fall). The Indices working group suggested that the NMFS SEAMAP Groundfish trawl (Summer) and NMFS SEAMAP Groundfish trawl (Fall) be used as a base run for blacknose sharks.

5.4. FISHERY DEPENDENT INDICES

5.4.1. SEFSC Shark Bottom Longline Observer Program (SEDAR21-DW-02)

Catch rate series were developed from the data collected by on-boards observers in the shark bottom longline fishery for the period 1994-2009 for sandbar, dusky, and blacknose shark. All series were subjected to a Generalized Linear Model (GLM) standardization technique that treats the proportion of sets with positive catches (i.e., where at least one shark was caught) assuming a binomial error distribution with a logit link function, and the catch rates of sets with positive catches assuming a lognormal error distribution with a log link function separately. Because observations of the fishery had been conducted using two different non- overlapping sampling strategies (i.e. voluntary and mandatory), catch rates were modeled independently for two time
series representing periods of 1994-2001 (voluntary) and 2002-2009 (mandatory). In addition to spatio-temporal factors, a factor reflecting the addition of a special sandbar shark fishery was added to the mandatory series. Year, depth and time were significant as a main effect in most models. The relative abundance index over both time periods showed a flat trend in abundance since 1994 for sandbar shark. For dusky shark, the abundance trend declined over the length of the series but an increase in abundance was observed in latter years. The time series for blacknose shark indicated an increase in abundance since 1994. Based on discussion at the 2010 SEDAR 21, the stock of blacknose shark was split to a NW Atlantic Ocean and Gulf of Mexico population. A new catch rate series for blacknose shark for the NW Atlantic Ocean and Gulf of Mexico was provided in an addendum to SEDAR21-DW-02.

5.4.2. Drift Gillnet Observer Program (SEDAR21-DW-03)

A standardization of catch rate series data from the directed shark drift gillnet fishery was developed based on observer programs from 1993-1995 and 1998-2009. Depending on season and area, small coastal species, including blacknose shark, were targeted and harvested. The final model assumed a binomial distribution for the proportion of positive trips and a lognormal distribution for positive catch rates. Year and area were significant as a main effect in the binomial model and lognormal model. The relative abundance index showed a slight increase in abundance since 1993. Based on discussion at the 2010 SEDAR 21, the stock of blacknose shark was split between a NW Atlantic Ocean and Gulf of Mexico population. A revised standardized catch rate series was produced for blacknose shark for the NW Atlantic Ocean stock only. Samples in the Gulf of Mexico were insufficient to provide a useful series. However, with the reduction in samples per cell the convergence of the binomial model was questionable. The final model was run but the validity of the model fit was questionable.

5.4.3. Sink Gillnet Observer Program (SEDAR21-DW-04)

A standardization of catch rate series data for blacknose shark from the directed shark sink gillnet fishery was developed based on observer program data collected from 2005-2009. Data were subjected to a Generalized Linear Model (GLM) standardization technique that treats the proportion of sets with positive catches (i.e., where at least one shark was caught) assuming a binomial error distribution with a logit link function, and the catch rates of sets with positive
catches assuming a lognormal error distribution with a log link function separately. Year, target and season and meshsize were significant as main effects in the binomial model and lognormal model. The relative abundance index series was stable. Based on discussion at the 2010 SEDAR 21, the stock of blacknose shark was been split to a NW Atlantic Ocean and Gulf of Mexico population. A revised standardized catch rate series was produced for blacknose shark for the NW Atlantic Ocean stock only. Samples in the Gulf of Mexico were insufficient to provide a useful series.

5.4.4. Southeast Pelagic Longline Observer Program / Southeast Pelagic Longline Logbook

 (SEDAR21-DW-08)Updated indices of abundance were developed for dusky shark (Carcharhinus obscurus) and sandbar sharks (Carcharhinus plumbeus) from two commercial sources, the US pelagic longline logbook program (1992-2009) and the US pelagic longline observer program (1992-2009). Indices were calculated using a two-step delta-lognormal approach that treats the proportion of positive sets and the CPUE of positive catches separately, Standardized indices with 95% confidence intervals are reported. For dusky sharks, the logbook and observer time series showed a similar trend, marked by an initial decrease in the 1990s followed by a more stable trend in the 2000s. The trends form the two sources differed for sandbar sharks, with the logbook index showing a very sharp initial increase from 1994 to 1995 and a decreasing trend thereafter, whereas the obseryer index decreased from 1992 to 2003, after which it showed an upward trend.

5.4.5. MRFSS (SEDAR21-DW-11)

The Marine Recreational Fisheries Statistics Survey (MRFSS) dockside intercept survey data set was used to derive standardized indices of abundance for sandbar and dusky sharks. Catch per unit of effort, defined as the total catch including live releases (catch types $\mathrm{A}+\mathrm{B} 1+\mathrm{B} 2$) per angler hour, was standardized using a delta lognormal generalized linear model, treating second order interactions as random effects. For sandbar sharks, only the data from May through October, for the Mid-Atlantic, South Atlantic, and Gulf of Mexico, and trips using hook and line gear, for private boats only. The explanatory variables were year, area (offshore, coastal and inland waters), target species guild (carcharhinid, other and unknown), and region (Mid Atlantic vs. Gulf of Mexico and South Atlantic combined). For dusky sharks, only the data from May
through October, for the Mid-Atlantic, South Atlantic, and Gulf of Mexico, and trips using hook and line gear. The explanatory variables were year, mode (private boat or charter/party boat) area (offshore, coastal and inland waters), target species guild (carcharhinid, other and unknown), and region (Mid Atlantic, South Atlantic and Gulf of Mexico). There was a trend over the last twenty years of increasing reported catches of carcharhinids that are only identified to genus or family, mainly because the majority of carcharhinid sharks were released alive. Thus, the standardized CPUE was likely to be biased as an index of abundance, and the author did not recommend that either index be used. Finally, it was not possible to extract an index from the MRFSS data for blacknose sharks because only 322 blacknose sharks have been recorded in the intercept surveys, and 4 of the 29 years reported no catches of blacknose sharks.

5.4.6. Northeast Gillnet Observer Program (SEDAR21-DW-32)

Data from this report were not received in time to be reviewed by the Indices Working Group during the SEDAR 21 Data Workshop.

5.4.7. Coastal Fishery Logbook Gillnet (SEDAR21-DW-40)

The Coastal Fisheries Logbook Program available catch per unit effort data from 1998-2009 were used to construct a standardized abundance index for the blacknose shark gillnet fishery in the U.S. south Atlantic (south of Virginia) (SEDAR21 DW40). A modified Stephens and MacCall (2004) method was used to estimate the likelihood that blacknose shark could have been encountered given the presence or absence of other species reported from the trip. A score was assigned to each trip, and trips with scores above a critical value were included in the catch per unit effort analysis. The delta-lognormal model approach of Lo et al. (1992) was then used to construct a standardized index of abundance. Diagnostic plots indicated that the fit of the data to the lognormal and binomial models was acceptable. Blacknose shark standardized catch rates and nominal catch rates for gillnet vessels were similar throughout the time series. Annual mean CPUE had no clear trend over the initial seven years of the time series, but were higher during most of the final five years of the series. The working group has recommended the blacknose gillnet index from the U.S. south Atlantic be used in the base run of the assessment model.

5.4.8. Coastal Fishery Logbook Bottom Longline (Sandbar) (SEDAR21-DW-41)

This document presented an index of abundance from the Coastal Fisheries Logbook (CFL) database. The index was calculated for sandbar shark from commercial longline trips in the southeast region (Texas to North Carolina). Sandbar shark data were sufficient to construct an index of abundance including the years 1992-2007 throughout the eastern Gulf of Mexico to North Carolina. Ten factors were tested: year, season, subregion, longline length, days at sea, crew size, permit type, vessel length, distance between hooks, and numbers of hooks fished. CPUE was defined as pounds landed per hook. The final model for the binomial on proportion positive trips was: Year + Subregion + Hookdist + Tothooks + Subregion*Hookdist + Year*Hookdist. The final model for the lognormal on CPUE of successful trips was: Year + DaysatSea + TotHooks + Subregion + VesselLength + Subregion*Year + Year*VesselLength + HookDist*Subregion. The delta lognormal model approach (Lo et al. 1992) was used to develop the standardized index of abundance. A drop exists in annual CPUE during 1993-1995 which may be the direct result of a change in reporting. During those years the number of sharks reported as "unclassified shark" increased substantially, while species-specific reports had a concomitant decline. Standardized annual CPUE may change markedly during 1993-1995 if a portion of the unclassified sharks could be categorized as sandbar shark. This may be accomplished by applying the ratio of sandbar sharks to all sharks recorded in the bottom longline observer data from the appropriate year-area combination. CPUE was essentially flat during the remainder of the time series.

5.4.9. Coastal Fishery Logbook Bottom Longline (Dusky) (SEDAR21-DW-42)

Commercial logbook data were examined for their utility in constructing an index of abundance of dusky shark. Landings, not total catch, were available in the data set. A small number of commercial trips did report landings of dusky shark, however after 2000 landings of dusky shark were prohibited and no trips with dusky shark landings were identified in the coastal logbook data after that year. Only seven years during the time series (1990-2009) had dusky shark landings. Of those, four years had 10 or fewer positive trips. With such limited data, neither a useful nor reliable index of dusky shark abundance could be produced using the commercial coastal logbook data.

5.4.10. Large Pelagic Survey (SEDAR21-DW-44)

This paper presented an update to two abundance indices for sandbar (Carcharhinus plumbeus) sharks off the coast of the United States from Virginia through Massachusetts were developed using data obtained during interviews of rod and reel anglers in 1986-2009.

Subsets of the data were analyzed to assess effects of factors such as month, area fished, boat type (private or charter), interview type (dockside or phone) and fishing method on catch per unit effort. Standardized catch rates were estimated through generalized linear models by applying delta-Poisson error distribution assumptions. A stepwise approach was used to quantify the relative importance of the main factors explaining the variance in catch rates.

The same models used in the indices constructed in 2004 were used in this paper for the binomial and Poisson submodels for both shark species. The indices both showed a pattern of declines from the 1980s into the 1990s and a recent pattern of slight increases.

5.5. CONSENSUS RECOMMENDATIONS AND SURVEY EVALUATIONS

Indices were initially reviewed based upon the criteria established at the SEDAR Abundance Indices Workshop held in 2008. The data source, index construction methodology, adherence to statistical assumptions, and model diagnostics were examined for each index. All indices reviewed were judged to be appropriately constructed, although in some cases revisions were recommended. Each index was then recommended for either a base run of the assessment model or for use in a model sensitivity run. The criteria for recommendation included sample size, proportion of positive trips, length of the time series, spatial extent of the index, and region sampled (e.g. was the index restricted to marginal habitat or at the limit of a species range). Four indices were not recommended for use: SCDNR red drum longline survey (sandbar shark index), GADNR red drum longline survey (sandbar shark index), UNC longline study (sandbar shark index), and the SCDNR red drum longline survey (blacknose shark index). Those indices were not recommended due to short time series, very low sample size, or were not sampling the habitat of the species of interest.

After the data workshop, following recommended index revision and once additional indices were constructed using late arriving data sets, a webinar was held to rank the indices. Index ranking was completed at the request of the assessment biologists for the purpose of weighting
the indices in the model runs. Indices could, and frequently did, have the same ranking. When determining rankings of the indices ($1=$ best $)$, the primary consideration was that an index reflects the population trend of the species (or a portion of the population, e.g. juveniles). That judgment was made by considering characteristics of the data used in the construction of each index. In general, the working group ranked fishery independent indices higher than fishery dependent indices. Indices constructed from observer reported fishery dependent data were more highly ranked than self-reported fishery dependent data. Fishery independent indices were not always ranked more highly than fishery dependent indices, however. The extent of temporal and spatial coverage encompassed by an index was also very important for the ranking process. Short time series or limited spatial coverage frequently reduced the ranking of an index. For specific reasoning behind the individual index rankings, see 'Justification of Working Group Recommendation' located in the index scorecards in Appendix 5.9.

For the GOM stock of blacknose sharks, the DW recommended the following indices for use in the stock assessment model for the base run: NMFS Southeast Bottom Longline, NMFS SEAMAP Groundfish Trawl (Summer and Fall), Panama City Gillnet (Adult and Juvenile), Mote Marine Lab Longline, SEFSC Shark Bottom Longline Observer Program and Dauphin Island Sea Lab Bottom Longline. For the ATL stock of blacknose sharks, the DW recommended the following indices for use in the stock assessment model for the base run: NMFS Southeast Bottom Longline, SCDNR Red Drum Longline (Historical), SEFSC Shark Bottom Longline Observer Program, Drift Gillnet Observer Program, UNC Longline, GADNR Red Drum Longline, and Coastal Fishery Logbook Gillnet. The Sink Gillnet Observer Program index was recommended for a sensitivity run for blacknose sharks. The spatial coverage of each index is presented in Figure 5.8.1. The rankings for the recommended indices for the GOM stock of blacknose sharks can be seen in Table 5.7.1. Fishery independent index values and coefficients of variation (CV) are presented in Table 5.7.2 and the fishery dependent index vales are presented in Table 5.7.3. A plot of all the indices recommended for analysis is in Figure 5.8.2. The ranking of the indices for the ATL stock of blacknose are seen in Table 5.7.4. (base run) and Table 5.7.5 (sensitivity run). The index values and coefficients of variation for the ATL stock are presented in Table 5.7.6. (fishery independent) and Table 5.7.7. (fishery dependent). A plot of all the indices recommended for analysis is in Figure 5.8.3. At the request of the analysts, the
combined rankings for blacknose sharks (single stock between the Atlantic Ocean and Gulf of Mexico), are presented in Table 5.7.8, along with the index values and CVs in Table 5.7.9 (fishery independent) and Table 5.7.10 (fishery dependent). A plot of all the indices is in Figure 5.8.4.

For sandbar sharks, the DW recommended the following indices for use in the stock assessment model for the base run: NMFS Southeast Bottom Longline, NMFS COASTSPAN Longline (Total juveniles, YOY and Age 1+), VIMS Longline, NMFS Northeast Longline, SEFSC Shark Bottom Longline Observer Program, Southeast Pelagic Longline Observer Program, SC COASTSPAN Longline, SCDNR Red Drum Longline (Historical), Panama City Gillnet (Juvenile), GA COASTSPAN Longline (Juvenile) and Large Pelagic Suryey. The NMFS Historical Longline, Coastal Fishery Logbook Bottom Longline and Southeast Pelagic Longline Logbook indices were recommended for a sensitivity run for sandbar sharks. The spatial coverage of each index is presented in Figure 5.8.5. The ranking of the indices are provided in Table 5.7.115 (base run) and Table 5.7.12 (sensitivity run). Fishery independent index values and coefficients of variation are presented in Table 5.7.13 and the fishery dependent index values are presented in Table 5.7.14. A plot of all the indices is in Figure 5.8.6.

For dusky sharks, the DW recommended the following indices for use in the stock assessment model for the base run: NMFS Northeast Longline, SEFSC Shark Bottom Longline Observer Program, Southeast Pelagic Longline Observer Program, VIMS Longline and Large Pelagic Survey. The NMFS Historical Longline and UNC Longline indices were recommended for a sensitivity run for dusky sharks. The spatial coverage of each index is presented in Figure 5.8.7. The ranking of the indices are seen in Table 5.7.15 (base run) and Table 5.7.16 (sensitivity run). Fishery independent index values and coefficients of variation are presented in Table 5.7.17 and the fishery dependent index vales are presented in Table 5.7.18. A plot of all the indices is in Figure 5.8.8. The scorecards for all the indices (recommended and excluded) are in Appendix 5.9.

5.6. LITERATURE CITED

Lo, N.C.H., L.D. Jacobson, and J.L. Squire. 1992. Indices of relative abundance from fish spotter data based on delta-lognormal models. Canadian Journal of Fisheries and Aquatic Science 49:2515-2526.

Stephens, A. and A. MacCall. 2004. A multispecies approach to subsetting logbook data for purposes of estimating CPUE. Fisheries Research 70:299-310.

5.7. TABLES

Table 5.7.1. Indices recommended by the Indices Working Group for a model base run for the Gulf of Mexico stock of blacknose sharks (Carcharhinus acronotus), including the corresponding SEDAR document number, index type (fishery independent or dependent) and overall ranking. Rankings are the working group's recommendation for index weighting.

Index Name	SEDAR Document Number	Index Type	Rank
NMFS Southeast Bottom Longline (GOM)	SEDAR21-DW-39	Independent	1
NMFS SEAMAP Groundfish Trawl (Summer)	SEDAR21-DW-43	Independent	2
NMFS SEAMAP Groundfish Trawl (Fall)	SEDAR21-DW-43	Independent	2
Panama City Gillnet (Adult)	SEDAR21-DW-01	Independent	3
Panama City Gillnet (Juvenile)	SEDAR21-DW-01	Independent	3
Mote Marine Lab Longline	SEDAR21-DW-34	Independent	3
SEFSC Shark Bottom Longline Observer Program	SEDAR21-DW-02	Dependent	4
Dauphin Island Sea Lab Bottom Longline	SEDAR21-DW-25	Independent	5

Table 5.7.2. Fishery independent indices recommended by the Indices Working Group for the Gulf of Mexico stock of blacknose sharks (Carcharhinus acronotus), including the corresponding SEDAR document number, overall ranking and run type (base or sensitivity). Rankings are the working group's recommendation for index weighting.

	NMFS Southeast SEDAR2 Base	Longline	$\begin{gathered} \text { SEDAR21-DW-43 } \\ \text { Base (Rank=2) } \end{gathered}$		NMFS SEAMAP SEDA Bas	Trawl (Fall) 3	Panama City Gillnet (Adult) SEDAR21-DW-01 Base (Rank=3)	
Year	Index Values	CV						
1987			0.002331	0.784212784	0.003216	.919465174		
1988			0.002418	0.835814723	0.002896	0.887085635		
1989			0.005522	0.611915972	0.002526	0.886777514		
1990			0.002122	0.817624882	0.004368	0.670787546		
1991			0.00359	0.700835655	0.004096	0.692871094		
1992			0.002635	0.840986717	0.004641	0.76405947		
1993			0.004889	0.659439558	0.002307	0.745557		
1994			0.002853	0.688047669	0.003436	0.694412107		
1995	0.13599	0.42835	0.002482	0.914585012	0.007061	0.620450361		
1996	0.31007	0.41434	0.004021	0.666003482	0.003897	0.771105979	0.023	0.31
1997	0.2095	0.32307	0.004177	0.727076849	0.003668	0.789803708	0.013	0.43
1998			0.003396	0.737926973	0.003771	0.726067356	0.033	0.31
1999	0.17092	0.25831	0.002502	0.847322142	0.005087	0.687831728		
2000	0.18041	0.26186	0.004224	0.642282197	0.004348	0.732060718		
2001	0.23484	0.24244	0.008831	0.645906466	0.002811	0.804695838	0.020	0.43
2002	0.18332	0.26621	0.003607	0.725533685	0.003412	0.745896835	0.019	0.36
2003	0.44848	0.21178	0.006501	0.585140748	0.00457	0.575929978	0.016	0.36
2004	0.41957	0.21511	0.004821	0.629744866	0.003577	0.805703103	0.038	0.36
2005	0.13646	0.78751	0.005295	0.743720491	0.004996	0.572658127	0.029	0.36
2006	0.45839	0.27942	0.004284	0.68487395	0.003208	0.771820449		
2007	0.19454	0.31226	0.003567	0.736753574	0.005754	0.740354536	0.010	0.43
2008	0.32122	0.33208	0.005391	0.596920794	0.007182	0.465329992	0.048	0.31
2009	0.41606	0.25081	0.01164	0.293041237	0.004807	0.623465779	0.011	0.58

Table 5.7.2. (continued)

Year	Panama City Gillnet (Juvenile) SEDAR21-DW-01 Base (Rank=3)		Mote Marine Lab Longline SEDAR21-DW-34 Base (Rank=3)		Dauphin Island Sea Lab Bottom Longline SEDAR21-DW-25 Base (Rank=5)	
	Index Values	CV	Index Values	CV	Index Values	CV
1987						
1988						
1989						
1990						
1991						
1992						
1993						
1994						
1995						
1996	0.44	0.32				
1997	0.26	0.42				
1998	0.12	0.62				
1999	0.43	0.50				
2000	0.02	4.14				
2001	0.16	0.68				
2002	0.21	0.52				
2003	0.2	0.47	0.09192	0.64933		
2004	0.15	0.61	0.29474	0.3696		
2005	0.11	1.29	0.24632	0.33322		
2006	0.14	0.93	0.17269	0.61566	1.92036	0.24655
2007	0.19	0.58	0.26844	0.32904	0.98698	0.30785
2008	0.17	0.68	0.4925	0.3722	0.76021	0.36994
2009	0.12	1.07	0.05931	0.8667	0.33245	0.55653

Table 5.7.3. Fishery dependent indices recommended by the Indices Working Group for the Gulf of Mexico stock of blacknose sharks (Carcharhinus acronotus), including the corresponding SEDAR document number, overall ranking and run type (base or sensitivity). Rankings are the working group's recommendation for index weighting.

	SEFSC Shark Bottom Longline Observer Program SEDAR21-DW-02	
	Base (Rank=4)	
Year	Index Values	CV
1993		
1994	4.89	0.77
1995	15.71	0.6
1996	10.24	0.74
1997	12.49	0.78
1998	20.73	0.61
1999	51.85	0.62
2000		0.74
2001	7.97	0.42
2002	101.13	0.4
2003	62.98	0.43
2004	94.07	0.43
2005	193.75	0.41
2006	192.75	0.46
2007	98.19	0.53
2008	82.92	0.56
2009	25.58	

Table 5.7.4. Indices recommended by the Indices Working Group for a model base run for the Atlantic Ocean stock of blacknose sharks (Carcharhinus acronotus), including the corresponding SEDAR document number, index type (fishery independent or dependent) and overall ranking. Rankings are the working group's recommendation for index weighting.

Index Name	SEDAR Document Number	Index Type	Rank
NMFS Southeast Bottom Longline	SEDAR21-DW-39	Independent	1
SCDNR Red Drum Longline (Historical)	SEDAR21-DW-30	Independent	2
SEFSC Shark Bottom Longline Observer Program	SEDAR21-DW-02	Dependent	3
Drift Gillnet Observer Program	SEDAR21-DW-03	Dependent	3
UNC Longline	SEDAR21-DW-33	Independent	4
GADNR Red Drum Longline	SEDAR21-DW-29	Independent	4
Coastal Fishery Logbook Gillnet	SEDAR21-DW-40	Dependent	4

Table 5.7.5. Indices recommended by the Indices Working Group for a model sensitivity run for the Atlantic Ocean stock of blacknose sharks (Carcharhinus acronotus), including the corresponding SEDAR document number, index type (fishery independent or dependent) and overall ranking. Rankings are the working group's recommendation for index weighting.

Index Name	SEDAR Document Number	Index Type	Rank
Sink Gillnet Observer Program	SEDAR21-DW-04	Dependent	1

Table 5.7.6. Fishery independent indices recommended by the Indices Working Group for the Atlantic Ocean stock of blacknose sharks (Carcharhinus acronotus), including the corresponding SEDAR document number, overall ranking and run type (base or sensitivity). Rankings are the working group's recommendation for index weighting.

Year	NMFS Southeast Bottom Longline SEDAR21-DW-39 Base (Rank=1)		SCDNR Red Drum Longline (Historical) SEDAR21-DW-30 Base (Rank=3)	
	Index Values	CV	Index Values	CV
1972				
1973				
1974				
1975				
1976				
1977				
1978				
1979				
1980				
1981				
1982				
1983				
1984				
1985				
1986				
1987				
1988				
1989				
1990				
1991				
1992				
1993				
1994				
19950				
19960				
1997 0.01606 0.74952				
1998 (0.203788734162092				
1999	0.24712	0.6003	0.27815916	0.405424048
2000 - 0.05795 0.42504 0.242336909				
2001 - 0.168005468 0.347193623				
2002 0.14587 0.3121 llll				
2003 (0.3574093650 .20868598				
2004	0.03574	0.84049	0.130662017	0.383893531
2005	0		0.145767541	0.530906086
2006	0.1532	0.5494	0.160742768	0.290953067
2007				
2008	0.27004	0.56699		
2009	0.0543	1.15715		

Table 5.7.6. (continued)

	UNC Longline
SEDAR21-DW-33	GADNR Red Drum Longline
Year	Base (Rank=5)

	Index Values	CV	Index Values	CV
1972	0.057079647	0.879797		
1973	0.088494355	0.585293		
1974	0.032027555	0.900346		
1975	0.039308515	0.458022		
1976	0.035680408	0.530198		
1977	0.056460396	0.29584		
1978	0.056812849	0.343711		
1979	0.031989155	0.340532		
1980	0.018205313	0.332184		
1981	0.009121157	0.522268		
1982	0.013861563	0.291329		
1983	0.011455218	0.309014		
1984	0.014930413	0.329129		
1985	0.008526004	0.461483		
1986	0.005211507	0.69739		
1987	0.010132829	0.55377		
1988	0.020980523	0.60706		
1989	0.00751782	0.651812		
1990	0.004069541	0.7845		
1991	0.009567187	0.537649		
1992	0.018396819	0.644476	-	
1993	0.017079747	0.601881		
1994	0.008628579	0.71548		
1995	0.004251396	0.784229		
1996	0.006948694	0.690177		
1997	0.003426	0.769764		
1998	0.001900595	0.850587		
1999	0.002283724	1.012023		
2000	0.002496924	0.795336		
2001	0.004031893	0.838254		
2002	0.001982096	0.854264		
2003	0.001278037	1.151028		
2004	0.003478401	0.796945		
2005	0.003738323	0.860331		
2006	0.006521078	0.571284		
2007	0.01517777	0.465167	0.064351199	0.540976092
2008	0.004092476	0.795925	0.161105846	0.445554107
2009	0.008101659	0.716968	0.144848049	0.475400056

Table 5.7.7. Fishery dependent indices recommended by the Indices Working Group for the Atlantic Ocean stock of blacknose sharks (Carcharhinus acronotus), including the corresponding SEDAR document number, overall ranking and run type (base or sensitivity).
Rankings are the working group's recommendation for index weighting.

	SEFSC Shark Bottom Longline Observer Program SEDAR21-DW-02 Base (Rank=4)		Drift Gillnet Observer Program SEDAR21-DW-03 Base (Rank=4)		$\begin{gathered} \hline \text { Coastal Fisheries Logbook Gillnet } \\ \text { SEDAR21-DW-40 } \\ \text { Base (Rank=5) } \end{gathered}$		$\begin{gathered} \hline \text { Sink Gillnet Observer Program } \\ \text { SEDAR21-DW-04 } \\ \text { Sensitivity (Rank=1) } \end{gathered}$	
Year	Index Values	cV	Index Values	cV	Index Values		Index Values	cV
1993			102.32	0.74				
1994	79.03	1.15	242.69	0.31				
1995	45.34	0.42	101.61	0.67				
1996	69	0.4						
1997	9.22	0.64						
1998	25.96	0.55	59.98	0.59	0.001103754	0.6963795		
1999	148.6	0.57	78.31	0.27	0.001144843	0.7030089		
2000	275.58	0.48	355.07	0.31	0.001926084	0.6684202		
2001	172.08	0.81	151.28	0.28	0.000973698	0.6804639		
2002	80.04	0.51	115.41	0.28	0.001183764	0.6926486		
2003	5.99	1.02	117.9	0.36	0.002007794	0.6896288		
2004	6.32	0.8	68.61	0.33	0.000744868	0.7144613		
2005	41.21	0.56	317.74	0.35	0.002375108	0.7085882	216.32	0.72
2006	21.68	0.67	29.11	0.75	0.002753644	0.6715055	60.53	0.78
2007	82.83	1.01	88.94	0.75	0.001467736	0.720916	1262.5	0.58
2008	22.26	0.99			0.012040469	0.6396446	98.26	0.91
2009	9.98	0.99	0		0.003850332	0.6729216	20.23	0.88

Table 5.7.8. Indices recommended by the Indices Working Group for a model base run for the combined stock (Atlantic Ocean and Gulf of Mexico) of blacknose sharks (Carcharhinus acronotus), including the corresponding SEDAR document number, index type (fishery independent or dependent) and overall ranking. Rankings are the working group's recommendation for index weighting.

Index Name	SEDAR Document Number	Index Type	Rank
NMFS Southeast Bottom Longline	SEDAR21-DW-39	Independent	1
NMFS SEAMAP Groundfish Trawl (Summer)	SEDAR21-DW-43	Independent	2
NMFS SEAMAP Groundfish Trawl (Fall)	SEDAR21-DW-43	Independent	2
Panama City Gillnet (Adult)	SEDAR21-DW-01	Independent	3
Panama City Gillnet (Juvenile)	SEDAR21-DW-01	Independent	3
SCDNR Red Drum Longline (Historical)	SEDAR21-DW-30	Independent	3
Mote Marine Lab Longline	SEDAR21-DW-34	Independent	3
SEFSC Shark Bottom Longline Observer Program	SEDAR21-DW-02	Dependent	4
Drift Gillnet Observer Program	SEDAR21-DW-03	Dependent	4
UNC Longline	SEDAR21-DW-33	Independent	5
Dauphin Island Sea Lab Bottom Longline	SEDAR21-DW-25	Independent	5
GADNR Red Drum Longline	SEDAR21-DW-29	Independent	5
Coastal Fishery Logbook Gillnet	SEDAR21-DW-40	Dependent	5

Table 5.7.9. Fishery independent indices recommended by the Indices Working Group for the combined stock (Atlantic Ocean and Gulf of Mexico) of blacknose sharks (Carcharhinus acronotus), including the corresponding SEDAR document number, overall ranking and run type (base or sensitivity). Rankings are the working group's recommendation for index weighting.

Year	NMFS Southeast Bottom Longline SEDAR21-DW-39 Base (Rank=1)		NMFS SEAMAP Groundfish Trawl (Summer) SEDAR21-DW-43 Base (Rank=2)		NMFS SEAMAP Groundfish Trawl (Fall) SEDAR21-DW-43 Base (Rank=2)	
	Index Values	CV	Index Values	CV	Index Values	CV
1972						
1973						
1974						
1975						
1976						
1977						
1978						
1979						
1980						
1981						
1982						
1983						
1984						
1985						
1986						
1987			0.002331	0.784212784	0.003216	0.919465174
1988			0.002418	0.835814723	0.002896	0.887085635
1989			0.005522	0.611915972	0.002526	0.886777514
1990			0.002122	0.817624882	0.004368	0.670787546
1991			0.00359	0.700835655	0.004096	0.692871094
1992			0.002635	0.840986717	0.004641	0.76405947
1993			0.004889	0.659439558	0.002307	0.745557
1994			0.002853	0.688047669	0.003436	0.694412107
1995	0.07097	0.41558	0.002482	0.914585012	0.007061	0.620450361
1996	0.16847	0.40148	0.004021	0.666003482	0.003897	0.771105979
1997	0.12021	0.27351	0.004177	0.727076849	0.003668	0.789803708
1998			0.003396	0.737926973	0.003771	0.726067356
1999	0.14079	0.24833	0.002502	0.847322142	0.005087	0.687831728
2000	0.14297	0.22875	0.004224	0.642282197	0.004348	0.732060718
2001	0.20988	0.24483	0.008831	0.645906466	0.002811	0.804695838
2002	0.2028	0.23353	0.003607	0.725533685	0.003412	0.745896835
2003	0.4046	0.21592	0.006501	0.585140748	0.00457	0.575929978
2004	0.33747	0.21426	0.004821	0.629744866	0.003577	0.805703103
2005	0.09764	0.82136	0.005295	0.743720491	0.004996	0.572658127
2006	0.37326	0.27076	0.004284	0.68487395	0.003208	0.771820449
2007	0.17308	0.32259	0.003567	0.736753574	0.005754	0.740354536
2008	0.30221	0.31518	0.005391	0.596920794	0.007182	0.465329992
2009	0.34907	0.25325	0.01164	0.293041237	0.004807	0.623465779

Table 5.7.9. (continued)

	SEDAR21-DW-01 Base (Rank=3)		SEDAR21-DW-01 Base (Rank=3)		SEDAR21-DW-30 Base (Rank=3)	
Year	Index Values	CV	Index Values	CV	Index Values	CV
1972						
1973						
1974						
1975						
1976						
1977						
1978						
1979						
1980						
1981						
1982						
1983						
1984						
1985						
1986						
1987						
1988						
1989						
1990						
1991						
1992						
1993						
1994						
1995						
1996	0.023	0.31	0.44	0.32		
1997	0.013	0.43	0.26	0.42		
1998	0.033	0.31	0.12	0.62	0.203788734	0.281162092
1999			0.43	0.50	0.27815916	0.405424048
2000			0.02	4.14	0.177385407	0.242336909
2001	0.020	0.43	0.16	0.68	0.168005468	0.347193623
2002	0.019	0.36	0.21	0.52	0.341851293	0.250009688
2003	0.016	0.36	0.2	0.47	0.357409365	0.20868598
2004	0.038	0.36	0.15	0.61	0.130662017	0.383893531
2005	0.029	0.36	0.11	1.29	0.145767541	0.530906086
2006			0.14	0.93	0.160742768	0.290953067
2007	0.010	0.43	0.19	0.58		
2008	0.048	0.31	0.17	0.68		
2009	0.011	0.58	0.12	1.07		

Table 5.7.9. (continued)

	Mote Marine Lab Longline SEDAR21-DW-34 Base (Rank=3)		UNC Longline SEDAR21-DW-33 Base (Rank=5)		Dauphin Island Sea Lab Bottom Longline$\begin{gathered} \text { SEDAR21-DW-25 } \\ \text { Base (Rank=5) } \end{gathered}$	
Year	Index Values	CV	Index Values	CV	Index Values	CV
1972			0.057079647	0.879797		
1973			0.088494355	0.585293		
1974			0.032027555	0.900346		
1975			0.039308515	0.458022		
1976			0.035680408	0.530198		
1977			0.056460396	0.29584		
1978			0.056812849	0.343711		
1979			0.031989155	0.340532		
1980			0.018205313	0.332184		
1981			0.009121157	0.522268		
1982			0.013861563	0.291329	\square	
1983			0.011455218	0.309014		
1984			0.014930413	0.329129	-	
1985			0.008526004	0.461483		
1986			0.005211507	0.69739		
1987			0.010132829	0.55377		
1988			0.020980523	0.60706		
1989			0.00751782	0.651812		
1990			0.004069541	0.7845		
1991			0.009567187	0.537649		
1992			0.018396819	0.644476		
1993			0.017079747	0.601881		
1994			0.008628579	0.71548		
1995			0.004251396	0.784229		
1996			0.006948694	0.690177		
1997			0.003426	0.769764		
1998			0.001900595	0.850587		
1999			0.002283724	1.012023		
2000			0.002496924	0.795336		
2001			0.004031893	0.838254		
2002			0.001982096	0.854264		
2003	0.09192	. 64933	0.001278037	1.151028		
2004	0.29474	0.3696	0.003478401	0.796945		
2005	0.24632	0.33322	0.003738323	0.860331		
2006	0.17269	0.61566	0.006521078	0.571284	1.92036	0.24655
2007	0.26844	0.32904	0.01517777	0.465167	0.98698	0.30785
2008	0.4925	0.3722	0.004092476	0.795925	0.76021	0.36994
2009	0.05931	0.8667	0.008101659	0.716968	0.33245	0.55653

Table 5.7.9. (continued)

Year	GADNR Red Drum Longline SEDAR21-DW-29 Base (Rank=5)	
	Index Values	CV
1972		
1973		
1974		
1975		
1976		
1977		
1978		
1979		
1980		
1981		
1982		
1983		
1984		
1985		
1986		
1987		
1988		
1989		
1990		
1991		
1992		
1993		
1994		
1995		
1996		
1997		
1998		
1999		
2001		
2002		
2003		
2004		
2005		
2006		
2007	0.064351199	0.540976092
2008	0.161105846	0.445554107
2009	0.144848049	0.475400056

Table 5.7.10. Fishery dependent indices recommended by the Indices Working Group for the combined stock (Atlantic Ocean and Gulf of Mexico) of blacknose sharks (Carcharhinus acronotus), including the corresponding SEDAR document number, overall ranking and run type (base or sensitivity). Rankings are the working group's recommendation for index weighting.

	SEFSC Shark Bottom Longline Observer Program$\begin{gathered} \text { SEDAR21-DW-02 } \\ \text { Base (Rank=4) } \end{gathered}$		Drift Gillnet Observer Program SEDAR21-DW-03 Base (Rank=4)		$\begin{gathered} \hline \text { Coastal Fisheries Logbook Gillnet } \\ \text { SEDAR21-DW-40 } \\ \text { Base (Rank=5) } \end{gathered}$		$\begin{gathered} \hline \text { Sink Gillnet Observer Program } \\ \text { SEDAR21-DW-04 } \\ \text { Sensitivity (Rank=1) } \end{gathered}$	
Year	Index Values	cV	Index Values	CV	Index Values		Index Values	cV
1993			16.2	1.46				
1994	18.03	0.42	114.67	0.78				
1995	39.39	0.22	48.91	1.16				
1996	41.6	0.23						
1997	12.23	0.43						
1998	35.59	0.31	28.51	0.99	0.001103754	0.6963795		
1999	67.02	0.34	54.21	0.65	0.001144843	0.7030089		
2000	129.07	0.37	108.34	0.67	0.001926084	0.6684202		
2001	24.65	0.56	56.39	0.61	0.000973698	0.6804639		
2002	81.41	0.38	166.1	0.58	0.001183764	0.6926486		
2003	65.83	0.4	59.95	0.69	0.002007794	0.6896288		
2004	56.4	0.39	43.81	0.67	0.000744868	0.7144613		
2005	137.15	0.37	239.03	0.75	0.002375108	0.7085882	241.644	0.43
2006	148.4	0.39	14.49	1.04	0.002753644	0.6715055	86.111	0.46
2007	85.38	0.48	43.78	1.04	0.001467736	0.720916	1665.538	0.3
2008	98.31	0.45			0.012040469	0.6396446	196.587	0.61
2009	23.63	0.49	83.61	1.05	0.003850332	0.6729216	28.285	0.52

Table 5.7.11. Indices recommended by the Indices Working Group for a model base run for sandbar sharks (Carcharhinus plumbeus), including the corresponding SEDAR document number, index type (fishery independent or dependent) and overall ranking. Rankings are the working group's recommendation for index weighting.

Index Name	SEDAR Document Number	Index Type	Rank
NMFS Southeast Bottom Longline	SEDAR21-DW-39	Independent	1
NMFS COASTSPAN Longline (Total juveniles)	SEDAR21-DW-27	Independent	2
NMFS COASTSPAN Longline (YOY)	SEDAR21-DW-27	Independent	2
NMFS COASTSPAN Longline (Age 1+)	SEDAR21-DW-27	Independent	2
VIMS Longline	SEDAR21-DW-18	Independent	2
NMFS Northeast Longline	SEDAR21-DW-28	Independent	2
SEFSC Shark Bottom Longline Observer Program	SEDAR21-DW-02	Dependent	2
Southeast Pelagic Longline Observer Program	SEDAR21-DW-08	Dependent	2
SC COASTSPAN Longline	SEDAR21-DW-30	Independent	3
SCDNR Red Drum Longline (Historical)	SEDAR21-DW-30	Independent	3
Panama City Gillnet (Juvenile)	SEDAR21-DW-01	Independent	4
GA COASTSPAN Longline (Juvenile)	SEDAR21-DW-29	Independent	4
Large Pelagic Survey	SEDAR21-DW-44	Dependent	5

Table 5.7.12. Indices recommended by the Indices Working Group for a model sensitivity run for sandbar sharks (Carcharhinus plumbeus), including the corresponding SEDAR document number, index type (fishery independent or dependent) and overall ranking. Rankings are the working group's recommendation for index weighting.

Index Name	SEDAR Document	Index Type	Rank
	Number		
NMFS Historical Longline	SEDAR21-DW-31	Independent	1
Coastal Fishery Logbook Bottom Longline	SEDAR21-DW-41	Dependent	1
Southeast Pelagic Longline Logbook	SEDAR21-DW-08	Dependent	2

Table 5.7.13. Fishery independent indices recommended by the Indices Working Group for sandbar sharks (Carcharhinus plumbeus), including the corresponding SEDAR document number, overall ranking and run type (base or sensitivity). Rankings are the working group's recommendation for index weighting.

Year	NMFS Southeast Bottom Longline SEDAR21-DW-39 Base (Rank=1)		NMFS COASTSPAN Longline (Total juveniles) SEDAR21-DW-27 Base (Rank=2)		NMFS COASTSPAN Longline (YOY) SEDAR21-DW-27 Base (Rank=2)	
	Index Values	CV	Index Values	CV	Index Values	CV
1961						
1962						
1963						
1964						
1965						
1966						
1967						
1968						
1969						
1970						
1971						
1972						
1973						
1974						
1975						
1976						
1977						
1978						
1979 (
1980						
1981						
1982						
1983						
1984						
1985						
1986						
1987						
1988 -						
1989						
1990						
1991						
1992						
1993						
1994						
1995	0.25813	0.25711				
1996	0.13525	0.33861				
1997	0.20402	0.26883				
$1998 \sim$						
1999 0.06429 0.27042						
2000	0.15083	0.18204				
2001	0.14182	0.24836	5.727756877	0.234450223	3.240047811	0.30335089
2002	0.11112	0.22223	2.45723195	0.357113747	0.927128104	0.356121453
2003	0.13632	0.24629	6.190712501	0.234450223	2.919619495	0.25847576
2004	0.10677	0.25598	5.164320235	0.261739708	2.820840454	0.370029678
2005	0.04851	0.593	5.999475654	0.269013467	3.02841037	0.281635046
2006	0.0621	0.36378	2.923472109	0.304998778	0.955579665	0.335941642
2007	0.13501	0.38803	2.879033515	0.268961459	0.596391106	0.386943254
2008	0.11682	0.31767	0.900887554	0.515733745	0.561841123	0.765763625
2009	0.27767	0.21121	8.268378406	0.188810872	4.524184907	0.331418963

Table 5.7.13. (continued)

	NMFS COASTSPAN Longline (Age 1+)		
	SEDAR21-DW-27	VIMS Longline	NMFS Northeast Longline
	Base (Rank=2)	SEDAR21-DW-18	SEDAR21-DW-28
Year	Index Values	Base (Rank=2)	Base (Rank=2)
1961		Index Values	CV

Table 5.7.13. (continued)

| | SC COASTSPAN Longline
 SEDAR21-DW-30
 Base (Rank=3) | SCDNR Red Drum Longline (Historical) | Panama City Gillnet (Juvenile)
 SEDAR21-DW-01 |
| :--- | :---: | :---: | :---: | :---: |
| SedAR21-DW-30 | Base (Rank=4) | | |

1969						
1970						
1971						
1972						
1973						
1974						
1975						
1976						
1977						
1978						
1979						
1980						
1981						
1982						
1983						
1984						
1985						
1986						
1987						
1988						
1989						
1990						
1991						
1992						
1993						
1994						
1995						
1996					0.023	0.22
1997					0.013	0.31
1998	0.633603818	0.699043	0.140006517	0.464096004	0.033	0.35
1999	0.553232708	0.639898	0.594843139	0.353115019		0.57
2000	0.094719442	0.923998	0.057636573	0.549310345		0.57
2001	0.049259203	0.853746	0.349656526	0.467578459	0.020	0.35
2002	0.200698092	0.864094	0.230689744	0.401777962	0.019	0.35
2003	0.279554105	0.733766	0.15419554	0.364550582	0.016	0.25
2004	1.578117399	0.364751	0.337614502	0.292640367	0.038	0.42
2005	0.960821692	0.256205	0.15485314	0.422599789	0.029	0.42
2006	1.605292136	0.234392	0.279326352	0.260725904		0.00
2007	1.826859614	0.317614			0.010	0.35
2008	1.811278298	0.37738			0.048	0.42
2009	1.238999216	0.374072			0.011	0.28

Table 5.7.13. (continued)

Year	```GA COASTSPAN Longline (Juvenile) SEDAR21-DW-29 Base (Rank=4)```		NMFS Historical Longline SEDAR21-DW-31 Sensitivity (Rank=1)	
	Index Values	CV	Index Values	CV
1961			0.081714524	0.996300874
1962			0.045755169	1.149192395
1963			0.028279273	1.095417941
1964			0.146209941	1.059074134
1965			0.117610722	0.988735019
1966				
1967			0.000831895	1.024803485
1968			0.000298887	1.581988714
1969			0.00463847	1.261426971
1970			0.00344356	1.326875579
1971				
1972				
1973				
1974				
1975			0.001637877	1.367481706

Table 5.7.14. Fishery dependent indices recommended by the Indices Working Group for sandbar sharks (Carcharhinus plumbeus), including the corresponding SEDAR document number, overall ranking and run type (base or sensitivity). Rankings are the working group's recommendation for index weighting.

Year	SEFSC Shark Bottom Longline Observer Program$\begin{gathered} \text { SEDAR21-DW-02 } \\ \text { Base (Rank=2) } \end{gathered}$		Southeast Pelagic Longline Observer Program$\begin{gathered} \text { SEDAR21-DW-08 } \\ \text { Base (Rank=2) } \end{gathered}$		Large Pelagic Survey SEDAR21-DW-44 Base (Rank=5)	
	Index Values	CV	Index Values	CV	Index Values	CV
1986					1.067	0.149
1987					0.314	0.215
1988					0.979	0.203
1989					1.159	0.125
1990					0.381	0.18
1991					0.637	0.174
1992			0.816	. 3	0.498	0.185
1993			0.646	0.209	0.254	0.551
1994	142.35	0.17	0.457	0.231	0.156	0.47
1995	151.62	0.14	0.368	0.289	0.135	0.575
1996	131.02	0.15	0.3	0.382	0.166	0.586
1997	210.17	0.18	0.304	0.336	0.191	0.471
1998	231.34	0.19	0.215	0.516	0.052	0.978
1999	170.87	0.21	0.27	0.407	0.075	0.837
2000	101.08	0.31	0.1	0.455	0.09	0.861
2001	290.99	0.2	0.118	0.482	0.374	0.651
2002	120.76	0.4	0.008	1.969	0.128	0.762
2003	172.03	0.37	0.007	1.97	0.059	0.586
2004	134.29	0.38	0.136	0.355	0.034	0.664
2005	175.96	0.42	0.048	0.477	0.145	0.464
2006	247.3	0.4	0.216	0.43	0.046	0.788
2007	327.74	0.41	0.136	0.368	0.102	0.441
2008	245.22	0.43	0.132	0.281	0.121	0.437
2009	836.28	0.37	0.135	0.279	0.195	0.389

Table 5.7.14. (continued)

Year	Coastal Fishery Logbook Bottom Longline SEDAR21-DW-41 Sensitivity (Rank=1)		Southeast Pelagic Longline Logbook SEDAR21-DW-08 Sensitivity (Rank=2)	
	Index Values	CV	Index Values	CV
1986				
1987				
1988				
1989				
1990				
1991				
1992	1.600533007	0.25382		
1993	0.671012969	0.55134		
1994	0.093402117	0.57802	0.106	0.379
1995	0.229030818	0.46301	2.276	0.294
1996	0.793330522	0.20805	2.23	0.293
1997	0.999969577	0.20944	1.467	0.302
1998	1.210310564	0.20334	1.58	0.307
1999	1.44285449	0.20872	1.884	0.306
2000	1.370908513	0.21004	1.931	0.305
2001	1.234203727	0.20555	1.694	0.312
2002	1.291165135	0.20314	1.714	0.316
2003	1.157322571	0.2053	1.5	0.315
2004	0.968341774	0.20576	1.731	0.306
2005	1.009314056	0.20944	1.338	0.318
2006	0.974719023	0.20386	1.231	0.323
2007	0.953581134	0.24345	0.747	0.334
2008			0.675	0.368
2009			0.817	0.361

Table 5.7.15. Indices recommended by the Indices Working Group for a model base run for dusky sharks (Carcharhinus obscurus), including the corresponding SEDAR document number, index type (fishery independent or dependent) and overall ranking. Rankings are the working group's recommendation for index weighting.

Index Name	SEDAR Document Number	Index Type	Rank
NMFS Northeast Longline	SEDAR21-DW-28	Independent	1
SEFSC Shark Bottom Longline Observer Program	SEDAR21-DW-02	Dependent	1
Southeast Pelagic Longline Observer Program	SEDAR21-DW-08	Dependent	2
VIMS Longline	SEDAR21-DW-18	Independent	3
Large Pelagic Survey	SEDAR21-DW-44	Dependent	4

Table 5.7.16. Indices recommended by the Indices Working Group for a model sensitivity run for dusky sharks (Carcharhinus obscurus), including the corresponding SEDAR document number, index type (fishery independent or dependent) and overall ranking. Rankings are the working group's recommendation for index weighting.

Index Name	SEDAR Document	Index Type	Rank
	Number		
NMFS Historical Longline	SEDAR21-DW-31	Independent	1
UNC Longline	SEDAR21-DW-33	Independent	1

Table 5.7.17. Fishery independent indices recommended by the Indices Working Group for dusky sharks (Carcharhinus obscurus), including the corresponding SEDAR document number, overall ranking and run type (base or sensitivity). Rankings are the working group's recommendation for index weighting.
$\left.\begin{array}{lcccc}\hline & \begin{array}{c}\text { NMFS Northeast Longline } \\ \text { SEDAR21-DW-28 } \\ \text { Base (Rank=1) }\end{array} & \begin{array}{c}\text { VIMS Longline } \\ \text { SEDAR21-DW-18 }\end{array} \\ \text { Base (Rank=3) }\end{array}\right]$

Table 5.7.17. (continued)

	NMFS Historical Longline	UNC Longline
	SEDAR21-DW-31	
	Sensitivity (Rank=1)	CEDAR21-DW-33
	Index Values	Sensitivity (Rank=1)
Year	0.017665043	0.416860684

Table 5.7.18. Fishery dependent indices recommended by the Indices Working Group for dusky sharks (Carcharhinus obscurus), including the corresponding SEDAR document number, overall ranking and run type (base or sensitivity). Rankings are the working group's recommendation for index weighting.

	SEFSC Shark Bottom Longline Observer Program$\begin{aligned} & \text { SEDAR21-DW-02 } \\ & \text { Base (Rank=1) } \end{aligned}$		Southeast Pelagic Longline Observer Program$\begin{gathered} \text { SEDAR21-DW-08 } \\ \text { Base (Rank=2) } \end{gathered}$		Large Pelagic Survey SEDAR21-DW-44 Base (Rank=4)	
Year	Index Values	CV	Index Values	CV	ndex Values	CV
1986					1.353	0.123
1987					1.355	0.121
1988					1.148	0.298
1989					1.179	0.168
1990					0.89	0.154
1991					0.889	0.16
1992			2.279	274	0.284	0.292
1993			1.06	18	0.785	0.242
1994	6.64	0.39	1.724	0.217	0.338	0.377
1995	14.05	0.34	0.689	0.258	0.376	0.322
1996	12.01	0.34	0.676	0.29	0.616	0.412
1997	21.86	0.36	0.309	0.353	0.589	0.378
1998	13.11	0.38	0.805	0.296	0.321	0.491
1999	21.46	0.39	0.217	0.392	0.337	0.677
2000	7.16	0.66	0.454	0.307	0.316	0.526
2001	9.02	0.44	0.196	0.373	0.192	0.658
2002	2.73	0.51	0.096	0.889	0.403	0.611
2003	3.62	0.37	0.058	0.632	0.261	0.38
2004	3.98	0.38	0.314	0.311	0.384	0.337
2005	4.42	0.5	0.254	0.297	0.459	0.335
2006	5.54	0.55	0.454	0.284	0.212	0.458
2007	6.62	0.66	0.182	0.32	0.763	0.242
2008	9.29	0.62	0.126	0.425	0.925	0.208
2009	14.26	0.32	0.114	0.294	0.614	0.257

5.8. FIGURES

Guide to Indices
SEBLL - NMFS Southeast Bottom Longline SEAMAP - NMFS SEAMAP Groundfish Trawl PCGN - Panama City Gillnet
SCDNR - SCDNR Red Drum Longline
MML - Mote Marine Lab Longine
SBLOP - SEFSC Shark Botton Longline Observer Program DGNOP - Drift Gillnet Observer Program
UNC - UNC Longline
DISL - Dauphin Island Sea Lab Bottom Longline GADNR - GADNR Red Drum Longline

Figure 5.8.1. Approximate linear coverage of specific abundance indices for blacknose sharks (Carcharhinus acronotus) along the coast of the Gulf of Mexico and Atlantic Ocean.

Figure 5.8.2. Plots of mean yearly CPUE for each index recommended for the Gulf of Mexico stock of blacknose sharks (Carcharhinus acronotus) by the working group. Values were normalized to a common scale by dividing yearly CPUE of each index by the mean CPUE (across all indices) for those years common to all indices.

Figure 5.8.3. Plots of mean yearly CPUE for each index recommended for the Atlantic Ocean (ATL) stock of blacknose sharks (Carcharhinus acronotus) by the working group. Values were normalized to a common scale by dividing yearly CPUE of each index by the mean CPUE (across all indices) for those years common to all indices. The GADNR Red Drum Longline index was plotted separately (top graph) because several of the other blacknose shark ATL indices had few or no years in common with that index, thereby preventing normalization to a common scale. The GADNR Red Drum Longline index was normalized by dividing the yearly CPUEs by the mean of the series.

Figure 5.8.4. Plots of mean yearly CPUE (middle and bottom graphs) for each index recommended for the combined stock of blacknose sharks (Carcharhinus acronotus) by the working group. Values were normalized to a common scale by dividing yearly CPUE of each index by the mean CPUE (across all indices) for those years common to all indices. The Dauphin Island Sea Lab Bottom Longline, GADNR Red Drum Longline and Sink Gillnet Observer Program indices were plotted separately (top graph) because several of the other blacknose shark indices had few or no years in common with those two indices, thereby preventing normalization to a common scale. The Dauphin Island Sea Lab Bottom Longline, GADNR Red Drum Longline and Sink Gillnet Observer Program indices were normalized by dividing the yearly CPUE of each index by the mean CPUE of the three indices for those years common to both indices.

Guide :o Indices

SEBLL - NMFS Southeast Bottom Longline NMFS COAST - NMFS COASTSPAN Longline VIMS - VIMS Longline
NELL - NMFS Northeast Longline
SBLOP - SEFSC Shark Bottom Longline Observer Program PLOP - Southeast Pelagic Longline Observer Pıogram SC COAST - SC COASTSPAN Longline SCDNR - SCDNR Red Drum Longline PCGN - Panama City Gillnet GA COAST - GA COASTSPAN Longline LPS - Large Pelagic Survey HLL - NMFS Historical Longline CFLBL - Coastal Fishery Logbook Bottom Longline SEPLL - Southeast Pelagic Longline Logbook

Figure 5.8.5. Approximate linear coverage of specific abundance indices for sandbar sharks (Carcharhinus plumbeus) along the coast of the Gulf of Mexico and Atlantic Ocean.

Figure 5.8.6. Plots of mean yearly CPUE (middle and bottom graphs) for each index recommended for sandbar sharks (Carcharhinus plumbeus) by the working group. Values were normalized to a common scale by dividing yearly CPUE of each index by the mean CPUE (across all indices) for those years common to all indices. The NMFS Historical Longline index was plotted separately (top graph) because several of the other sandbar shark indices had few or no years in common with the index, thereby preventing normalization to a common scale. The NMFS Historical Longline index was normalized by dividing the yearly CPUEs by the mean of the series.

Figure 5.8.7. Approximate linear coverage of specific abundance indices for dusky sharks (Carcharhinus obscurus) along the coast of the Gulf of Mexico and Atlantic Ocean.

Figure 5.8.8. Plots of mean yearly CPUE for each index recommended for dusky sharks (Carcharhinus obscurus) by the working group. Values were normalized to a common scale by dividing yearly CPUE of each index by the mean CPUE (across all indices) for those years common to all indices. The NMFS Historical Longline index was plotted separately (top graph) because several of the other Dusky shark indices had few or no years in common with that index, thereby preventing normalization to a common scale. The NMFS Historical Longline index was normalized by dividing the yearly CPUEs by the mean of the series.
5.9. Appendix: Evaluation of Abundance Indices for SEDAR 21.

Evaluation of Abundance Indices for SEDAR 21: Panama City Gillnet (SEDAR21-DW-01)

DESCRIPTION OF THE DATA SOURCE

1. Fishery Independent Indices
A. Describe the survey design (e.g. fixed sampling sites, random stratified sampling), location, seasons/months and years of sampling.
B. Describe sampling methodology (e.g. gear, vessel, soak time etc.)
C. Describe any changes in sampling methodology (e.g. gear, vessel, sample design etc.)
D. Describe the variables reported in the data set (e.g. location, time, temperature, catch, effort etc.).
E. What species or species assemblages are targeted by this survey (e.g. red snapper, reef fish, pelagic).
F. Describe the size/age range that the index applies to. Include supporting figures (e.g. size comp) if available.
2. Fishery Dependent Indices
A. Describe the data source and type of fishery (e.g. commercial handline, commercial longline, recreational hook and line etc.).
B. Describe any changes to reporting requirements, variables reported, etc.
C. Describe the variables reported in the data set (e.g. location, time, temperature, catch, effort etc.).

D Describe the size/age range that the index applies to. Include supporting figures (e.g. size comp) if available.

METHODS

1. Data Reduction and Exclusions
A. Describe any data exclusions (e.g. gears, fishing modes, sampling areas etc.). Report the number of records removed and justify removal.
B. Describe data reduction techniques (if any) used to address targeting (e.g. Stephens and MacCall, 2004; gear configuration, species assemblage etc).
C. Discuss procedures used to identify outliers. How many were identified? Were they excluded?

Working Group Comments:

2. Management Regulations (for FD Indices)

A. Provide (or cite) history of management regulations (e.g. bag limits, size limits, trip limits, closures etc.).
B. Describe the effects (if any) of management regulations on CPUE
C. Discuss methods used (if any) to minimize the effects of management measures on the CPUE series.

3. Describe Analysis Dataset (after exclusions and other treatments)
A. Provide tables and/or figures of number of observations by factors (including year, area, etc.) and interaction terms.
B. Include tables and/or figures of number of positive observations by factors and interaction terms.
C. Include tables and/or figures of the proportion positive observations by factors and interaction terms.
D. Include tables and/or figures of average (unstandardized) CPUE by factors and interaction terms.
E. Include annual maps of locations of survey sites (or fishing trips) and associated catch rates $\boldsymbol{O R}$ supply the raw data needed to construct these maps (Observation, Year, Latitude, Longitude (or statistical grid, area), Catch, Effort).
F. Describe the effort variable and the units. If more than one effort variable is present in the dataset, justify selection.
G. What are the units of catch (e.g. numbers or biomass, whole weight, gutted weight, kilograms, pounds).

4. Model Standardization

A. Describe model structure (e.g. delta-lognormal)
B. Describe construction of GLM components (e.g. forward selection from null etc.)
C. Describe inclusion criteria for factors and interactions terms.
D. Were YEAR*FACTOR interactions included in the model? If so, how (e.g. fixed effect, random effect)? Were random effects tested for significance using a likelihood ratio test?
E. Provide a table summarizing the construction of the GLM components.
F. Summarize model statistics of the mixed model formulation(s) (e.g. log likelihood, AIC, BIC etc.)
G. Report convergence statistics.

Working Group
Comments:

3E. AOD

MODEL DIAGNOSTICS

Comment: Other model structures are possible and acceptable. Please provide appropriate diagnostics to the CPUE indices working group.

1. Binomial Component
A. Include plots of the chi-square residuals by factor.
B. Include plots of predicted and observed proportion of positive trips by year and factor (e.g. year*area)
C. Report overdispersion parameter and other fit statistics (e.g. chi-square / degrees of freedom).

2. Lognormal/Gamma Component

A. Include histogram of \log (CPUE) or a histogram of the residuals of the model on CPUE. Overlay the expected distribution.
B. Include plots describing error distribution (e.g. Studentized residuals vs. linear predictor.
C. Include QQ-plot - (e.g. Student deviance residuals vs. theoretical quantiles), Overlay expected distribution.
D. Include diagnostic plot for variance function (e.g. square root of std residuals vs. fitted values). Overlay expected distribution.
E. Include diagnostic plot for link function (e.g. linear response variable vs. linear predictor). Overlay expected distribution.
F. Include plots of the residuals by factor

3. Poisson Component
A. Report overdispersion parameter and other fit statistics (e.g. chi-square / degrees of freedom).
B. Include plots describing error distribution (e.g. Studentized residuals vs. linear predictor.
C. Include QQ-plot - (e.g. Student deviance residuals vs. theoretical quantiles), Overlay expected distribution.
D. Include diagnostic plot for variance function (e.g. square root of std residuals vs. fitted values). Overlay expected distribution.
E. Include diagnostic plot for link function (e.g. linear response variable vs. linear predictor). Overlay expected distribution.

4. Zero-inflated model
A. Include ROC curve to quantify goodness of fit.
B. Include plots describing error distribution (e.g. Studentized residuals vs. linear predictor).
C. Include QQ-plot (e.g. Student dev. residuals vs. theoretical quantiles), Overlay expected distribution.

The feasibility of this diagnostic is still under review.

Working Group
 Comments:

D. Include diagnostic plot for variance function (e.g. square root of std residuals vs. fitted values). Overlay expected distribution.
E. Include diagnostic plot for link function (e.g. linear response variable vs. linear predictor). Overlay expected distribution.

MODEL RESULTS

A. Tables of Nominal CPUE, Standardized CPUE, Observations, Positive Observations, Proportion Positive Observations and Coefficients of Variation (CVs). Other statistics may also be appropriate to report
B. Figure of Nominal and Standardized Indices with measure of variance (i.e. CVs).

IF MULTIPLE MODEL STRUCTURES WERE CONSIDERED:

(Note: this is always recommended but required when model diagnostics are poor.)

1. Plot of resulting indices and estimates of variance
2. Table of model statistics (e.g. AIC criteria)

	Date Received	Workshop Recommendation	Revision Deadline $* * *$	Author and Rapporteur Signatures
First Submission	$6 / 21 / 10$	accept as is		
Revision				

The revision deadline is negotiated by the author, the SEDAR coordinator and the CPUE rapporteur. The author DOES NOT commit to any LEGAL OBLIGATION by agreeing to submit a manuscript before this deadline. The maximum penalty for failure to submit a revised document prior to the submission deadline is rejection of the CPUE series.

Justification of Working Group Recommendation

Blacknose Gulf of Mexico adult index - recommended for model base run (ranking=3)
Blacknose Gulf of Mexico juvenile index - recommended for model base run (ranking=3)

Sandbar Gulf of Mexico juvenile index - recommended for model base run (ranking=4)
Data used to construct these indices were collected in a fishery independent sampling program. The index covered a relatively small geographic area, however, because it was a fishery independent program the limitations of fishery dependent data were not present. The time series was fairly lengthy, 1996-2009, with three years of missing data in the blacknose adult index. Only a single year of data was missing from the sandbar index. The blacknose juvenile index had no missing years of data.

The working group recommended these indices for use in base runs of the models. The indices' rankings were relatively low due to the limited spatial coverage of the indices and the lesser importance of the northern Gulf of Mexico as juvenile habitat compared to some Atlantic estuaries.

Evaluation of Abundance Indices for SEDAR 21:
 SEFSC Shark Bottom Longline Observer Program (SEDAR21-

DW-02)

DESCRIPTION OF THE DATA SOURCE

1. Fishery Independent Indices
A. Describe the survey design (e.g. fixed sampling sites, random stratified sampling), location, seasons/months and years of sampling.
B. Describe sampling methodology (e.g. gear, vessel, soak time etc.)
C. Describe any changes in sampling methodology (e.g. gear, vessel, sample design etc.)
D. Describe the variables reported in the data set (e.g. location, time, temperature, catch, effort etc.).
E. What species or species assemblages are targeted by this survey (e.g. red snapper, reef fish, pelagic).
F. Describe the size/age range that the index applies to. Include supporting figures (e.g. size comp) if available.

2. Fishery Dependent Indices
A. Describe the data source and type of fishery (e.g. commercial handline, commercial longline, recreational hook and line etc.).
B. Describe any changes to reporting requirements, variables reported, etc.
C. Describe the variables reported in the data set (e.g. location, time, temperature, catch, effort etc.).

D Describe the size/age range that the index applies to. Include supporting figures (e.g. size comp) if available.

METHODS

1. Data Reduction and Exclusions
A. Describe any data exclusions (e.g. gears, fishing modes, sampling areas etc.). Report the number of records removed and justify removal.
B. Describe data reduction techniques (if any) used to address targeting (e.g. Stephens and MacCall, 2004; gear configuration, species assemblage etc).
C. Discuss procedures used to identify outliers. How many were identified? Were they excluded?

2. Management Regulations (for FD Indices)

A. Provide (or cite) history of management regulations (e.g. bag limits, size limits, trip limits, closures etc.).
B. Describe the effects (if any) of management regulations on CPUE
C. Discuss methods used (if any) to minimize the effects of management measures on the CPUE series.

3. Describe Analysis Dataset (after exclusions and other treatments)
A. Provide tables and/or figures of number of observations by factors (including year, area, etc.) and interaction terms.
B. Include tables and/or figures of number of positive observations by factors and interaction terms.
C. Include tables and/or figures of the proportion positive observations by factors and interaction terms.
D. Include tables and/or figures of average (unstandardized) CPUE by factors and interaction terms.
E. Include annual maps of locations of survey sites (or fishing trips) and associated catch rates $\boldsymbol{O R}$ supply the raw data needed to construct these maps (Observation, Year, Latitude, Longitude (or statistical grid, area), Catch, Effort).
F. Describe the effort variable and the units. If more than one effort variable is present in the dataset, justify selection.
G. What are the units of catch (e.g. numbers or biomass, whole weight, gutted weight, kilograms, pounds).

4. Model Standardization

A. Describe model structure (e.g. delta-lognormal)
B. Describe construction of GLM components (e.g. forward selection from null etc.)
C. Describe inclusion criteria for factors and interactions terms.
D. Were YEAR*FACTOR interactions included in the model? If so, how (e.g. fixed effect, random effect)? Were random effects tested for significance using a likelihood ratio test?
E. Provide a table summarizing the construction of the GLM components.
F. Summarize model statistics of the mixed model formulation(s) (e.g. log likelihood, AIC, BIC etc.)
G. Report convergence statistics.

Working Group
Comments:

3E confidential data

MODEL DIAGNOSTICS

Comment: Other model structures are possible and acceptable. Please provide appropriate diagnostics to the CPUE indices working group.

1. Binomial Component
A. Include plots of the chi-square residuals by factor.
B. Include plots of predicted and observed proportion of positive trips by year and factor (e.g. year*area)
C. Report overdispersion parameter and other fit statistics (e.g. chi-square / degrees of freedom).

2. Lognormal/Gamma Component

A. Include histogram of \log (CPUE) or a histogram of the residuals of the model on CPUE. Overlay the expected distribution.
B. Include plots describing error distribution (e.g. Studentized residuals vs. linear predictor.
C. Include QQ-plot - (e.g. Student deviance residuals vs. theoretical quantiles), Overlay expected distribution.
D. Include diagnostic plot for variance function (e.g. square root of std residuals vs. fitted values). Overlay expected distribution.
E. Include diagnostic plot for link function (e.g. linear response variable vs. linear predictor). Overlay expected distribution.
F. Include plots of the residuals by factor

3. Poisson Component
A. Report overdispersion parameter and other fit statistics (e.g. chi-square / degrees of freedom).
B. Include plots describing error distribution (e.g. Studentized residuals vs. linear predictor.
C. Include QQ-plot - (e.g. Student deviance residuals vs. theoretical quantiles), Overlay expected distribution.
D. Include diagnostic plot for variance function (e.g. square root of std residuals vs. fitted values). Overlay expected distribution.
E. Include diagnostic plot for link function (e.g. linear response variable vs. linear predictor). Overlay expected distribution.

4. Zero-inflated model
A. Include ROC curve to quantify goodness of fit.
B. Include plots describing error distribution (e.g. Studentized residuals vs. linear predictor)
C. Include QQ-plot (e.g. Student dev. residuals vs. theoretical quantiles), Overlay expected distribution.

The feasibility of this diagnostic is still under review.

Working Group
 Comments:

D. Include diagnostic plot for variance function (e.g. square root of std residuals vs. fitted values). Overlay expected distribution.
E. Include diagnostic plot for link function (e.g. linear response variable vs. linear predictor). Overlay expected distribution.

MODEL RESULTS

A. Tables of Nominal CPUE, Standardized CPUE, Observations, Positive Observations, Proportion Positive Observations and Coefficients of Variation (CVs). Other statistics may also be appropriate to report
B. Figure of Nominal and Standardized Indices with measure of variance (i.e. CVs).

IF MULTIPLE MODEL STRUCTURES WERE CONSIDERED:

(Note: this is always recommended but required when model diagnostics are poor.)

1. Plot of resulting indices and estimates of variance
2. Table of model statistics (e.g. AIC criteria)

	Date Received	Workshop Recommendation	Revision Deadline 	Author and Rapporteur Signatures
First	$5 / 21 / 10$	split SA/GOM sandb	$6 / 23 / 10$	
Submission				
Revision	$6 / 23 / 10$			

The revision deadline is negotiated by the author, the SEDAR coordinator and the CPUE rapporteur. The author DOES NOT commit to any LEGAL OBLIGATION by agreeing to submit a manuscript before this deadline. The maximum penalty for failure to submit a revised document prior to the submission deadline is rejection of the CPUE series.

Justification of Working Group Recommendation

Sandbar - recommend for use in base run of model (ranking=2)
Dusky - recommend for use in base run of model (ranking=1)
Blacknose - recommend for use in base run of model (ranking=4)
Data used to construct these indices was fishery dependent, observer reported data. Observed vessels were in the directed shark fishery. For sandbar sharks, those vessels included in the experimental fishery (begun in 2008) had 100\% observer coverage. The data time series is long (1994-2009) compared to many of the other data sets. In addition, the index covers the area from Louisiana to North Carolina and is among the more geographically extensive indices.

The working group did have some concern with the large increase in CPUE during 2009 in the sandbar index. There was some discussion that the increase may not be real, but was an artifact of management decisions (i.e. change in catchability with implementation of the experimental fishery). Other indices also had increases in cpue during 2009, however. The working group did not recommend a reanalysis of those data other than splitting the index into Gulf of Mexico and south Atlantic indices.

The working group recommended that the indices constructed for each species be included in base runs of the models. That decision was based upon the long time series, large geographic coverage, and that the data were observer reported from the directed fishery. The blacknose shark index was ranked lower because that species was not targeted by the shark bottom longline fishery.

Evaluation of Abundance Indices for SEDAR 21: Drift Gillnet Observer Program (SEDAR21-DW-03)

DESCRIPTION OF THE DATA SOURCE

1. Fishery Independent Indices
A. Describe the survey design (e.g. fixed sampling sites, random stratified sampling), location, seasons/months and years of sampling.
B. Describe sampling methodology (e.g. gear, vessel, soak time etc.)
C. Describe any changes in sampling methodology (e.g. gear, vessel, sample design etc.)
D. Describe the variables reported in the data set (e.g. location, time, temperature, catch, effort etc.).
E. What species or species assemblages are targeted by this survey (e.g. red snapper, reef fish, pelagic).
F. Describe the size/age range that the index applies to. Include supporting figures (e.g. size comp) if available.

2. Fishery Dependent Indices

A. Describe the data source and type of fishery (e.g. commercial handline, commercial longline, recreational hook and line etc.).
B. Describe any changes to reporting requirements, variables reported, etc.
C. Describe the variables reported in the data set (e.g. location, time, temperature, catch, effort etc.).

D Describe the size/age range that the index applies to. Include supporting figures (e.g. size comp) if available.

METHODS

1. Data Reduction and Exclusions
A. Describe any data exclusions (e.g. gears, fishing modes, sampling areas etc.). Report the number of records removed and justify removal.
B. Describe data reduction techniques (if any) used to address targeting (e.g. Stephens and MacCall, 2004; gear configuration, species assemblage etc).
C. Discuss procedures used to identify outliers. How many were identified? Were they excluded?

Working Group Comments:

2. Management Regulations (for FD Indices)

A. Provide (or cite) history of management regulations (e.g. bag limits, size limits, trip limits, closures etc.).
B. Describe the effects (if any) of management regulations on CPUE
C. Discuss methods used (if any) to minimize the effects of management measures on the CPUE series.

3. Describe Analysis Dataset (after exclusions and other treatments)
A. Provide tables and/or figures of number of observations by factors (including year, area, etc.) and interaction terms.
B. Include tables and/or figures of number of positive observations by factors and interaction terms.
C. Include tables and/or figures of the proportion positive observations by factors and interaction terms.
D. Include tables and/or figures of average (unstandardized) CPUE by factors and interaction terms.
E. Include annual maps of locations of survey sites (or fishing trips) and associated catch rates $\boldsymbol{O R}$ supply the raw data needed to construct these maps (Observation, Year, Latitude, Longitude (or statistical grid, area), Catch, Effort).
F. Describe the effort variable and the units. If more than one effort variable is present in the dataset, justify selection.
G. What are the units of catch (e.g. numbers or biomass, whole weight, gutted weight, kilograms, pounds).

4. Model Standardization

A. Describe model structure (e.g. delta-lognormal)
B. Describe construction of GLM components (e.g. forward selection from null etc.)
C. Describe inclusion criteria for factors and interactions terms.
D. Were YEAR*FACTOR interactions included in the model? If so, how (e.g. fixed effect, random effect)? Were random effects tested for significance using a likelihood ratio test?
E. Provide a table summarizing the construction of the GLM components.
F. Summarize model statistics of the mixed model formulation(s) (e.g. log likelihood, AIC, BIC etc.)
G. Report convergence statistics.

Working Group
Comments:

3C,D. AOD

3E. confidential data

MODEL DIAGNOSTICS

Comment: Other model structures are possible and acceptable. Please provide appropriate diagnostics to the CPUE indices working group.

1. Binomial Component
A. Include plots of the chi-square residuals by factor.
B. Include plots of predicted and observed proportion of positive trips by year and factor (e.g. year*area)
C. Report overdispersion parameter and other fit statistics (e.g. chi-square / degrees of freedom).

2. Lognormal/Gamma Component

A. Include histogram of \log (CPUE) or a histogram of the residuals of the model on CPUE. Overlay the expected distribution.
B. Include plots describing error distribution (e.g. Studentized residuals vs. linear predictor.
C. Include QQ-plot - (e.g. Student deviance residuals vs. theoretical quantiles), Overlay expected distribution.
D. Include diagnostic plot for variance function (e.g. square root of std residuals vs. fitted values). Overlay expected distribution.
E. Include diagnostic plot for link function (e.g. linear response variable vs. linear predictor). Overlay expected distribution.
F. Include plots of the residuals by factor

3. Poisson Component
A. Report overdispersion parameter and other fit statistics (e.g. chi-square / degrees of freedom).
B. Include plots describing error distribution (e.g. Studentized residuals vs. linear predictor.
C. Include QQ-plot - (e.g. Student deviance residuals vs. theoretical quantiles), Overlay expected distribution.
D. Include diagnostic plot for variance function (e.g. square root of std residuals vs. fitted values). Overlay expected distribution.
E. Include diagnostic plot for link function (e.g. linear response variable vs. linear predictor). Overlay expected distribution.

4. Zero-inflated model
A. Include ROC curve to quantify goodness of fit.
B. Include plots describing error distribution (e.g. Studentized residuals vs. linear predictor).
C. Include QQ-plot (e.g. Student dev. residuals vs. theoretical quantiles), Overlay expected distribution.

The feasibility of this diagnostic is still under review.

Working Group
 Comments:

D. Include diagnostic plot for variance function (e.g. square root of std residuals vs. fitted values). Overlay expected distribution.
E. Include diagnostic plot for link function (e.g. linear response variable vs. linear predictor). Overlay expected distribution.

MODEL RESULTS

A. Tables of Nominal CPUE, Standardized CPUE, Observations, Positive Observations, Proportion Positive Observations and Coefficients of Variation (CVs). Other statistics may also be appropriate to report
B. Figure of Nominal and Standardized Indices with measure of variance (i.e. CVs).

IF MULTIPLE MODEL STRUCTURES WERE CONSIDERED:

(Note: this is always recommended but required when model diagnostics are poor.)

1. Plot of resulting indices and estimates of variance
2. Table of model statistics (e.g. AIC criteria)

	Date Received	Workshop Recommendation	Revision Deadline $* * *$	Author and Rapporteur Signatures
First Submission	$6 / 21 / 10$	accept as is		
Revision				

The revision deadline is negotiated by the author, the SEDAR coordinator and the CPUE rapporteur. The author DOES NOT commit to any LEGAL OBLIGATION by agreeing to submit a manuscript before this deadline. The maximum penalty for failure to submit a revised document prior to the submission deadline is rejection of the CPUE series.

Justification of Working Group Recommendation

Blacknose - recommend for use in base model run (ranking=4)
This index was constructed using fishery dependent observer data, was a relatively long time series (1993-2007), and is limited to the south Atlantic. The working group recommended this index for a base model run because of the length of the time series and the spatial scale of the index. Although the data were fishery dependent, they were reported from observers and were believed to be more accurate than self-reported data. The low ranking of the index was due to the data being fishery dependent.

Evaluation of Abundance Indices for SEDAR 21: Sink Gillnet Observer Program (SEDAR21-DW-04)

DESCRIPTION OF THE DATA SOURCE

1. Fishery Independent Indices
A. Describe the survey design (e.g. fixed sampling sites, random stratified sampling), location, seasons/months and years of sampling.
B. Describe sampling methodology (e.g. gear, vessel, soak time etc.)
C. Describe any changes in sampling methodology (e.g. gear, vessel, sample design etc.)
D. Describe the variables reported in the data set (e.g. location, time, temperature, catch, effort etc.).
E. What species or species assemblages are targeted by this survey (e.g. red snapper, reef fish, pelagic).
F. Describe the size/age range that the index applies to. Include supporting figures (e.g. size comp) if available.

2. Fishery Dependent Indices

A. Describe the data source and type of fishery (e.g. commercial handline, commercial longline, recreational hook and line etc.).
B. Describe any changes to reporting requirements, variables reported, etc.
C. Describe the variables reported in the data set (e.g. location, time, temperature, catch, effort etc.).

D Describe the size/age range that the index applies to. Include supporting figures (e.g. size comp) if available.

METHODS

1. Data Reduction and Exclusions
A. Describe any data exclusions (e.g. gears, fishing modes, sampling areas etc.). Report the number of records removed and justify removal.
B. Describe data reduction techniques (if any) used to address targeting (e.g. Stephens and MacCall, 2004; gear configuration, species assemblage etc).
C. Discuss procedures used to identify outliers. How many were identified? Were they excluded?

Working Group Comments:

2. Management Regulations (for FD Indices)

A. Provide (or cite) history of management regulations (e.g. bag limits, size limits, trip limits, closures etc.).
B. Describe the effects (if any) of management regulations on CPUE
C. Discuss methods used (if any) to minimize the effects of management measures on the CPUE series.

3. Describe Analysis Dataset (after exclusions and other treatments)
A. Provide tables and/or figures of number of observations by factors (including year, area, etc.) and interaction terms.
B. Include tables and/or figures of number of positive observations by factors and interaction terms.
C. Include tables and/or figures of the proportion positive observations by factors and interaction terms.
D. Include tables and/or figures of average (unstandardized) CPUE by factors and interaction terms.
E. Include annual maps of locations of survey sites (or fishing trips) and associated catch rates $\boldsymbol{O R}$ supply the raw data needed to construct these maps (Observation, Year, Latitude, Longitude (or statistical grid, area), Catch, Effort).
F. Describe the effort variable and the units. If more than one effort variable is present in the dataset, justify selection.
G. What are the units of catch (e.g. numbers or biomass, whole weight, gutted weight, kilograms, pounds).

4. Model Standardization

A. Describe model structure (e.g. delta-lognormal)
B. Describe construction of GLM components (e.g. forward selection from null etc.)
C. Describe inclusion criteria for factors and interactions terms.
D. Were YEAR*FACTOR interactions included in the model? If so, how (e.g. fixed effect, random effect)? Were random effects tested for significance using a likelihood ratio test?
E. Provide a table summarizing the construction of the GLM components.
F. Summarize model statistics of the mixed model formulation(s) (e.g. log likelihood, AIC, BIC etc.)
G. Report convergence statistics.

Working Group
Comments:
3D. AOD

MODEL DIAGNOSTICS

Comment: Other model structures are possible and acceptable. Please provide appropriate diagnostics to the CPUE indices working group.

1. Binomial Component

A. Include plots of the chi-square residuals by factor.
B. Include plots of predicted and observed proportion of positive trips by year and factor (e.g. year*area)
C. Report overdispersion parameter and other fit statistics (e.g. chi-square / degrees of freedom).

2. Lognormal/Gamma Component

A. Include histogram of \log (CPUE) or a histogram of the residuals of the model on CPUE. Overlay the expected distribution.
B. Include plots describing error distribution (e.g. Studentized residuals vs. linear predictor.
C. Include QQ-plot - (e.g. Student deviance residuals vs. theoretical quantiles), Overlay expected distribution.
D. Include diagnostic plot for variance function (e.g. square root of std residuals vs. fitted values). Overlay expected distribution.
E. Include diagnostic plot for link function (e.g. linear response variable vs. linear predictor). Overlay expected distribution.
F. Include plots of the residuals by factor

3. Poisson Component
A. Report overdispersion parameter and other fit statistics (e.g. chi-square / degrees of freedom).
B. Include plots describing error distribution (e.g. Studentized residuals vs. linear predictor.
C. Include QQ-plot - (e.g. Student deviance residuals vs. theoretical quantiles), Overlay expected distribution.
D. Include diagnostic plot for variance function (e.g. square root of std residuals vs. fitted values). Overlay expected distribution.
E. Include diagnostic plot for link function (e.g. linear response variable vs. linear predictor). Overlay expected distribution.

4. Zero-inflated model
A. Include ROC curve to quantify goodness of fit.
B. Include plots describing error distribution (e.g. Studentized residuals vs. linear predictor).
C. Include QQ-plot (e.g. Student dev. residuals vs. theoretical quantiles), Overlay expected distribution.

The feasibility of this diagnostic is still under review.

Working Group
 Comments:

D. Include diagnostic plot for variance function (e.g. square root of std residuals vs. fitted values). Overlay expected distribution.
E. Include diagnostic plot for link function (e.g. linear response variable vs. linear predictor). Overlay expected distribution.

MODEL RESULTS

A. Tables of Nominal CPUE, Standardized CPUE, Observations, Positive Observations, Proportion Positive Observations and Coefficients of Variation (CVs). Other statistics may also be appropriate to report
B. Figure of Nominal and Standardized Indices with measure of variance (i.e. CVs).

IF MULTIPLE MODEL STRUCTURES WERE CONSIDERED:

(Note: this is always recommended but required when model diagnostics are poor.)

1. Plot of resulting indices and estimates of variance
2. Table of model statistics (e.g. AIC criteria)

	Date Received	Workshop Recommendation	Revision Deadline $* * *$	Author and Rapporteur Signatures
First Submission	$6 / 04 / 10$	limit to SA	$6 / 23 / 10$	
Revision	$6 / 23 / 10$			

The revision deadline is negotiated by the author, the SEDAR coordinator and the CPUE rapporteur. The author DOES NOT commit to any LEGAL OBLIGATION by agreeing to submit a manuscript before this deadline. The maximum penalty for failure to submit a revised document prior to the submission deadline is rejection of the CPUE series.

Justification of Working Group Recommendation

Blacknose - recommended for model sensitivity run (ranking=1)
The time series of this index is short, therefore the working group recommended that the index be used in a model sensitivity run. The index constructed using coastal logbook data was recommended for the base model run. Those two indices track the same portion of the blacknose population, those animal caught in the south Atlantic fishery. Although the working group recognized that observer data is preferred to self-reported data, the available time series of observer data was considered too short for construction of an informative index of abundance. With additional years of data, however, the sink gill net observer data will useful for index construction.

Evaluation of Abundance Indices for SEDAR 21: Southeast Pelagic Longline Observer Program (SEDAR21-DW-08)

DESCRIPTION OF THE DATA SOURCE

1. Fishery Independent Indices
A. Describe the survey design (e.g. fixed sampling sites, random stratified sampling), location, seasons/months and years of sampling.
B. Describe sampling methodology (e.g. gear, vessel, soak time etc.)
C. Describe any changes in sampling methodology (e.g. gear, vessel, sample design etc.)
D. Describe the variables reported in the data set (e.g. location, time, temperature, catch, effort etc.).
E. What species or species assemblages are targeted by this survey (e.g. red snapper, reef fish, pelagic).
F. Describe the size/age range that the index applies to. Include supporting figures (e.g. size comp) if available.

2. Fishery Dependent Indices

A. Describe the data source and type of fishery (e.g. commercial handline, commercial longline, recreational hook and line etc.).
B. Describe any changes to reporting requirements, variables reported, etc.
C. Describe the variables reported in the data set (e.g. location, time, temperature, catch, effort etc.).

D Describe the size/age range that the index applies to. Include supporting figures (e.g. size comp) if available.

METHODS

1. Data Reduction and Exclusions
A. Describe any data exclusions (e.g. gears, fishing modes, sampling areas etc.). Report the number of records removed and justify removal.
B. Describe data reduction techniques (if any) used to address targeting (e.g. Stephens and MacCall, 2004; gear configuration, species assemblage etc).
C. Discuss procedures used to identify outliers. How many were identified? Were they excluded?

Working Group Comments:

2. Management Regulations (for FD Indices)

A. Provide (or cite) history of management regulations (e.g. bag limits, size limits, trip limits, closures etc.).
B. Describe the effects (if any) of management regulations on CPUE
C. Discuss methods used (if any) to minimize the effects of management measures on the CPUE series.

3. Describe Analysis Dataset (after exclusions and other treatments)
A. Provide tables and/or figures of number of observations by factors (including year, area, etc.) and interaction terms.
B. Include tables and/or figures of number of positive observations by factors and interaction terms.
C. Include tables and/or figures of the proportion positive observations by factors and interaction terms.
D. Include tables and/or figures of average (unstandardized) CPUE by factors and interaction terms.
E. Include annual maps of locations of survey sites (or fishing trips) and associated catch rates $\boldsymbol{O R}$ supply the raw data needed to construct these maps (Observation, Year, Latitude, Longitude (or statistical grid, area), Catch, Effort).
F. Describe the effort variable and the units. If more than one effort variable is present in the dataset, justify selection.
G. What are the units of catch (e.g. numbers or biomass, whole weight, gutted weight, kilograms, pounds).

4. Model Standardization

A. Describe model structure (e.g. delta-lognormal)
B. Describe construction of GLM components (e.g. forward selection from null etc.)
C. Describe inclusion criteria for factors and interactions terms.
D. Were YEAR*FACTOR interactions included in the model? If so, how (e.g. fixed effect, random effect)? Were random effects tested for significance using a likelihood ratio test?
E. Provide a table summarizing the construction of the GLM components.
F. Summarize model statistics of the mixed model formulation(s) (e.g. log likelihood, AIC, BIC etc.)
G. Report convergence statistics.

Working Group Comments:

3A-D. AOD

MODEL DIAGNOSTICS

Comment: Other model structures are possible and acceptable. Please provide appropriate diagnostics to the CPUE indices working group.

1. Binomial Component
A. Include plots of the chi-square residuals by factor.
B. Include plots of predicted and observed proportion of positive trips by year and factor (e.g. year*area)
C. Report overdispersion parameter and other fit statistics (e.g. chi-square / degrees of freedom).

2. Lognormal/Gamma Component

A. Include histogram of \log (CPUE) or a histogram of the residuals of the model on CPUE. Overlay the expected distribution.
B. Include plots describing error distribution (e.g. Studentized residuals vs. linear predictor.
C. Include QQ-plot - (e.g. Student deviance residuals vs. theoretical quantiles), Overlay expected distribution.
D. Include diagnostic plot for variance function (e.g. square root of std residuals vs. fitted values). Overlay expected distribution.
E. Include diagnostic plot for link function (e.g. linear response variable vs. linear predictor). Overlay expected distribution.
F. Include plots of the residuals by factor

3. Poisson Component
A. Report overdispersion parameter and other fit statistics (e.g. chi-square / degrees of freedom).
B. Include plots describing error distribution (e.g. Studentized residuals vs. linear predictor.
C. Include QQ-plot - (e.g. Student deviance residuals vs. theoretical quantiles), Overlay expected distribution.
D. Include diagnostic plot for variance function (e.g. square root of std residuals vs. fitted values). Overlay expected distribution.
E. Include diagnostic plot for link function (e.g. linear response variable vs. linear predictor). Overlay expected distribution.

4. Zero-inflated model
A. Include ROC curve to quantify goodness of fit.
B. Include plots describing error distribution (e.g. Studentized residuals vs. linear predictor).
C. Include QQ-plot (e.g. Student dev. residuals vs. theoretical quantiles), Overlay expected distribution.

The feasibility of this diagnostic is still under review.

Working Group
 Comments:

D. Include diagnostic plot for variance function (e.g. square root of std residuals vs. fitted values). Overlay expected distribution.
E. Include diagnostic plot for link function (e.g. linear response variable vs. linear predictor). Overlay expected distribution.

MODEL RESULTS

A. Tables of Nominal CPUE, Standardized CPUE, Observations, Positive Observations, Proportion Positive Observations and Coefficients of Variation (CVs). Other statistics may also be appropriate to report
B. Figure of Nominal and Standardized Indices with measure of variance (i.e. CVs).

IF MULTIPLE MODEL STRUCTURES WERE CONSIDERED:

(Note: this is always recommended but required when model diagnostics are poor.)

1. Plot of resulting indices and estimates of variance
2. Table of model statistics (e.g. AIC criteria)

	Date Received	Workshop Recommendation	Revision Deadline $* * *$	Author and Rapporteur Signatures
First Submission	$5 / 27 / 10$	use observer series	N / A	
Revision				

The revision deadline is negotiated by the author, the SEDAR coordinator and the CPUE rapporteur. The author DOES NOT commit to any LEGAL OBLIGATION by agreeing to submit a manuscript before this deadline. The maximum penalty for failure to submit a revised document prior to the submission deadline is rejection of the CPUE series.

Justification of Working Group Recommendation

Sandbar - recommended for use in base model run (ranking=2)
Dusky - recommended for use in base model run (ranking=2)
The data set used to construct these indices contains fishery dependent (commercial longline) data reported by observers. Species misidentification is therefore minimized, while effort and location are accurately reported. Spatial coverage of this index included the entire Gulf of Mexico and US Atlantic coast (matching the largest geographic range among the indices presented). The observer coverage of the pelagic longline fishery was $4-8 \%$. Given the long time series, large spatial coverage, and accuracy of the data the working group recommended these indices for use in a base run of the models.

Evaluation of Abundance Indices for SEDAR 21:
 Southeast Pelagic Longline Logbook (SEDAR21-DW-08)

DESCRIPTION OF THE DATA SOURCE

1. Fishery Independent Indices
A. Describe the survey design (e.g. fixed sampling sites, random stratified sampling), location, seasons/months and years of sampling.
B. Describe sampling methodology (e.g. gear, vessel, soak time etc.)
C. Describe any changes in sampling methodology (e.g. gear, vessel, sample design etc.)
D. Describe the variables reported in the data set (e.g. location, time, temperature, catch, effort etc.).
E. What species or species assemblages are targeted by this survey (e.g. red snapper, reef fish, pelagic).
F. Describe the size/age range that the index applies to. Include supporting figures (e.g. size comp) if available

2. Fishery Dependent Indices

A. Describe the data source and type of fishery (e.g. commercial handline, commercial longline, recreational hook and line etc.).
B. Describe any changes to reporting requirements, variables reported, etc.
C. Describe the variables reported in the data set (e.g. location, time, temperature, catch, effort etc.).

D Describe the size/age range that the index applies to. Include supporting figures (e.g. size comp) if available.

METHODS

1. Data Reduction and Exclusions
A. Describe any data exclusions (e.g. gears, fishing modes, sampling areas etc.). Report the number of records removed and justify removal.
B. Describe data reduction techniques (if any) used to address targeting (e.g. Stephens and MacCall, 2004; gear configuration, species assemblage etc).
C. Discuss procedures used to identify outliers. How many were identified? Were they excluded?

Working Group Comments:

2. Management Regulations (for FD Indices)

A. Provide (or cite) history of management regulations (e.g. bag limits, size limits, trip limits, closures etc.).
B. Describe the effects (if any) of management regulations on CPUE
C. Discuss methods used (if any) to minimize the effects of management measures on the CPUE series.

3. Describe Analysis Dataset (after exclusions and other treatments)
A. Provide tables and/or figures of number of observations by factors (including year, area, etc.) and interaction terms.
B. Include tables and/or figures of number of positive observations by factors and interaction terms.
C. Include tables and/or figures of the proportion positive observations by factors and interaction terms.
D. Include tables and/or figures of average (unstandardized) CPUE by factors and interaction terms.
E. Include annual maps of locations of survey sites (or fishing trips) and associated catch rates $\boldsymbol{O R}$ supply the raw data needed to construct these maps (Observation, Year, Latitude, Longitude (or statistical grid, area), Catch, Effort).
F. Describe the effort variable and the units. If more than one effort variable is present in the dataset, justify selection.
G. What are the units of catch (e.g. numbers or biomass, whole weight, gutted weight, kilograms, pounds).

4. Model Standardization

A. Describe model structure (e.g. delta-lognormal)
B. Describe construction of GLM components (e.g. forward selection from null etc.)
C. Describe inclusion criteria for factors and interactions terms.
D. Were YEAR*FACTOR interactions included in the model? If so, how (e.g. fixed effect, random effect)? Were random effects tested for significance using a likelihood ratio test?
E. Provide a table summarizing the construction of the GLM components.
F. Summarize model statistics of the mixed model formulation(s) (e.g. log likelihood, AIC, BIC etc.)
G. Report convergence statistics.

Working Group Comments:

3A-D. AOD

MODEL DIAGNOSTICS

Comment: Other model structures are possible and acceptable. Please provide appropriate diagnostics to the CPUE indices working group.

1. Binomial Component
A. Include plots of the chi-square residuals by factor.
B. Include plots of predicted and observed proportion of positive trips by year and factor (e.g. year*area)
C. Report overdispersion parameter and other fit statistics (e.g. chi-square / degrees of freedom).

2. Lognormal/Gamma Component

A. Include histogram of \log (CPUE) or a histogram of the residuals of the model on CPUE. Overlay the expected distribution.
B. Include plots describing error distribution (e.g. Studentized residuals vs. linear predictor.
C. Include QQ-plot - (e.g. Student deviance residuals vs. theoretical quantiles), Overlay expected distribution.
D. Include diagnostic plot for variance function (e.g. square root of std residuals vs. fitted values). Overlay expected distribution.
E. Include diagnostic plot for link function (e.g. linear response variable vs. linear predictor). Overlay expected distribution.
F. Include plots of the residuals by factor

3. Poisson Component
A. Report overdispersion parameter and other fit statistics (e.g. chi-square / degrees of freedom).
B. Include plots describing error distribution (e.g. Studentized residuals vs. linear predictor.
C. Include QQ-plot - (e.g. Student deviance residuals vs. theoretical quantiles), Overlay expected distribution.
D. Include diagnostic plot for variance function (e.g. square root of std residuals vs. fitted values). Overlay expected distribution.
E. Include diagnostic plot for link function (e.g. linear response variable vs. linear predictor). Overlay expected distribution.

4. Zero-inflated model
A. Include ROC curve to quantify goodness of fit.
B. Include plots describing error distribution (e.g. Studentized residuals vs. linear predictor).
C. Include QQ-plot (e.g. Student dev. residuals vs. theoretical quantiles), Overlay expected distribution.

The feasibility of this diagnostic is still under review.

Working Group
 Comments:

D. Include diagnostic plot for variance function (e.g. square root of std residuals vs. fitted values). Overlay expected distribution.
E. Include diagnostic plot for link function (e.g. linear response variable vs. linear predictor). Overlay expected distribution.

MODEL RESULTS

A. Tables of Nominal CPUE, Standardized CPUE, Observations, Positive Observations, Proportion Positive Observations and Coefficients of Variation (CVs). Other statistics may also be appropriate to report
B. Figure of Nominal and Standardized Indices with measure of variance (i.e. CVs).

IF MULTIPLE MODEL STRUCTURES WERE CONSIDERED:

(Note: this is always recommended but required when model diagnostics are poor.)

1. Plot of resulting indices and estimates of variance
2. Table of model statistics (e.g. AIC criteria)

	Date Received	Workshop Recommendation	Revision Deadline $* * *$	Author and Rapporteur Signatures
First Submission	$5 / 27 / 10$	use observer series		
Revision				

The revision deadline is negotiated by the author, the SEDAR coordinator and the CPUE rapporteur. The author DOES NOT commit to any LEGAL OBLIGATION by agreeing to submit a manuscript before this deadline. The maximum penalty for failure to submit a revised document prior to the submission deadline is rejection of the CPUE series.

Justification of Working Group Recommendation

Sandbar - recommended for model sensitivity run (ranking=2)
The data set consists of fishery dependent (commercial longline) self-reported data. All self-reported data issues (e.g. species misidentification) are present, Data are set based with set location reported to the minute of latitude and longitude, however, suggesting that effort and fishing location were more accurately reported than in some other self-reported data sets. Spatial coverage of this index included the entire Gulf of Mexico and US Atlantic coast (matching the largest geographic range among the indices presented). The working group recommended this index for a sensitivity run of the model due to the many limitations of self-reported data and because an index constructed using observer data from this fishery was available.

Evaluation of Abundance Indices for SEDAR 21:
 MRFSS (SEDAR21-DW-11)

DESCRIPTION OF THE DATA SOURCE

1. Fishery Independent Indices

A. Describe the survey design (e.g. fixed sampling sites, random stratified sampling), location, seasons/months and years of sampling
B. Describe sampling methodology (e.g. gear, vessel, soak time etc.)
C. Describe any changes in sampling methodology (e.g gear, vessel, sample design etc.)
D. Describe the variables reported in the data set (e.g. location, time, temperature, catch, effort etc.)
E. What species or species assemblages are targeted by this survey (e.g. red snapper, reef fish, pelagic).
F. Describe the size/age range that the index applies to. Include supporting figures (e.g. size comp) if available

		-

Working Group Comments:

2. Fishery Dependent Indices

A. Describe the data source and type of fishery (e.g. commercial handline, commercial longline, recreational hook and line etc.).
B. Describe any changes to reporting requirements, variables reported, etc.
C. Describe the variables reported in the data set (e.g. location, time, temperature, catch, effort etc.).

D Describe the size/age range that the index applies to. Include supporting figures (e.g. size comp) if available.

METHODS

1. Data Reduction and Exclusions
A. Describe any data exclusions (e.g. gears, fishing modes, sampling areas etc.). Report the number of records removed and justify removal.
B. Describe data reduction techniques (if any) used to address targeting (e.g. Stephens and MacCall, 2004; gear configuration, species assemblage etc).
C. Discuss procedures used to identify outliers. How many were identified? Were they excluded?

2. Management Regulations (for FD Indices)

A. Provide (or cite) history of management regulations (e.g. bag limits, size limits, trip limits, closures etc.).
B. Describe the effects (if any) of management regulations on CPUE
C. Discuss methods used (if any) to minimize the effects of management measures on the CPUE series.

3. Describe Analysis Dataset (after exclusions and other treatments)
A. Provide tables and/or figures of number of observations by factors (including year, area, etc.) and interaction terms.
B. Include tables and/or figures of number of positive observations by factors and interaction terms.
C. Include tables and/or figures of the proportion positive observations by factors and interaction terms.
D. Include tables and/or figures of average (unstandardized) CPUE by factors and interaction terms.
E. Include annual maps of locations of survey sites (or fishing trips) and associated catch rates $\boldsymbol{O R}$ supply the raw data needed to construct these maps (Observation, Year, Latitude, Longitude (or statistical grid, area), Catch, Effort).
F. Describe the effort variable and the units. If more than one effort variable is present in the dataset, justify selection.
G. What are the units of catch (e.g. numbers or biomass, whole weight, gutted weight, kilograms, pounds).

4. Model Standardization

A. Describe model structure (e.g. delta-lognormal)
B. Describe construction of GLM components (e.g. forward selection from null etc.)
C. Describe inclusion criteria for factors and interactions terms.
D. Were YEAR*FACTOR interactions included in the model? If so, how (e.g. fixed effect, random effect)? Were random effects tested for significance using a likelihood ratio test?
E. Provide a table summarizing the construction of the GLM components.
F. Summarize model statistics of the mixed model formulation(s) (e.g. log likelihood, AIC, BIC etc.)
G. Report convergence statistics.

Working Group Comments:

2B. AOD

MODEL DIAGNOSTICS

Comment: Other model structures are possible and acceptable. Please provide appropriate diagnostics to the CPUE indices working group.

1. Binomial Component

A. Include plots of the chi-square residuals by factor.
B. Include plots of predicted and observed proportion of positive trips by year and factor (e.g. year*area)
C. Report overdispersion parameter and other fit statistics (e.g. chi-square / degrees of freedom).

2. Lognormal/Gamma Component

A. Include histogram of \log (CPUE) or a histogram of the residuals of the model on CPUE. Overlay the expected distribution.
B. Include plots describing error distribution (e.g. Studentized residuals vs. linear predictor.
C. Include QQ-plot - (e.g. Student deviance residuals vs. theoretical quantiles), Overlay expected distribution.
D. Include diagnostic plot for variance function (e.g. square root of std residuals vs. fitted values). Overlay expected distribution.
E. Include diagnostic plot for link function (e.g. linear response variable vs. linear predictor). Overlay expected distribution.
F. Include plots of the residuals by factor

3. Poisson Component
A. Report overdispersion parameter and other fit statistics (e.g. chi-square / degrees of freedom).
B. Include plots describing error distribution (e.g. Studentized residuals vs. linear predictor.
C. Include QQ-plot - (e.g. Student deviance residuals vs. theoretical quantiles), Overlay expected distribution.
D. Include diagnostic plot for variance function (e.g. square root of std residuals vs. fitted values). Overlay expected distribution.
E. Include diagnostic plot for link function (e.g. linear response variable vs. linear predictor). Overlay expected distribution.

4. Zero-inflated model
A. Include ROC curve to quantify goodness of fit.
B. Include plots describing error distribution (e.g. Studentized residuals vs. linear predictor).
C. Include QQ-plot (e.g. Student dev. residuals vs. theoretical quantiles), Overlay expected distribution.

The feasibility of this diagnostic is still under review.

Working Group
 Comments:

D. Include diagnostic plot for variance function (e.g. square root of std residuals vs. fitted values). Overlay expected distribution.
E. Include diagnostic plot for link function (e.g. linear response variable vs. linear predictor). Overlay expected distribution.

MODEL RESULTS

A. Tables of Nominal CPUE, Standardized CPUE, Observations, Positive Observations, Proportion Positive Observations and Coefficients of Variation (CVs). Other statistics may also be appropriate to report
B. Figure of Nominal and Standardized Indices with measure of variance (i.e. CVs).

IF MULTIPLE MODEL STRUCTURES WERE CONSIDERED:

(Note: this is always recommended but required when model diagnostics are poor.)

1. Plot of resulting indices and estimates of variance
2. Table of model statistics (e.g. AIC criteria)

	Date Received	Workshop Recommendation	Revision Deadline 	Author and Rapporteur Signatures
First	$6 / 21 / 10$	not recommended		
Submission				
Revision				

The revision deadline is negotiated by the author, the SEDAR coordinator and the CPUE rapporteur. The author DOES NOT commit to any LEGAL OBLIGATION by agreeing to submit a manuscript before this deadline. The maximum penalty for failure to submit a revised document prior to the submission deadline is rejection of the CPUE series.

Justification of Working Group Recommendation

The working group did not recommend the use of indices constructed using MRFSS data. The working group did recognized that the indices were produced properly using the available data. The limitations of those self-reported data, acquired during dockside interviews, were believed to be too significant for the indices to be recommended for use, however.

Evaluation of Abundance Indices for SEDAR 21: VIMS Longline (SEDAR21-DW-18)

DESCRIPTION OF THE DATA SOURCE

1. Fishery Independent Indices
A. Describe the survey design (e.g. fixed sampling sites, random stratified sampling), location, seasons/months and years of sampling.
B. Describe sampling methodology (e.g. gear, vessel, soak time etc.)
C. Describe any changes in sampling methodology (e.g. gear, vessel, sample design etc.)
D. Describe the variables reported in the data set (e.g. location, time, temperature, catch, effort etc.).
E. What species or species assemblages are targeted by this survey (e.g. red snapper, reef fish, pelagic).
F. Describe the size/age range that the index applies to. Include supporting figures (e.g. size comp) if available.

2. Fishery Dependent Indices

A. Describe the data source and type of fishery (e.g. commercial handline, commercial longline, recreational hook and line etc.).
B. Describe any changes to reporting requirements, variables reported, etc.
C. Describe the variables reported in the data set (e.g. location, time, temperature, catch, effort etc.).

D Describe the size/age range that the index applies to. Include supporting figures (e.g. size comp) if available.

METHODS

1. Data Reduction and Exclusions
A. Describe any data exclusions (e.g. gears, fishing modes, sampling areas etc.). Report the number of records removed and justify removal.
B. Describe data reduction techniques (if any) used to address targeting (e.g. Stephens and MacCall, 2004; gear configuration, species assemblage etc).
C. Discuss procedures used to identify outliers. How many were identified? Were they excluded?

Working Group Comments:

2. Management Regulations (for FD Indices)

A. Provide (or cite) history of management regulations (e.g. bag limits, size limits, trip limits, closures etc.).
B. Describe the effects (if any) of management regulations on CPUE
C. Discuss methods used (if any) to minimize the effects of management measures on the CPUE series.

3. Describe Analysis Dataset (after exclusions and other treatments)
A. Provide tables and/or figures of number of observations by factors (including year, area, etc.) and interaction terms.
B. Include tables and/or figures of number of positive observations by factors and interaction terms.
C. Include tables and/or figures of the proportion positive observations by factors and interaction terms.
D. Include tables and/or figures of average (unstandardized) CPUE by factors and interaction terms.
E. Include annual maps of locations of survey sites (or fishing trips) and associated catch rates $\boldsymbol{O R}$ supply the raw data needed to construct these maps (Observation, Year, Latitude, Longitude (or statistical grid, area), Catch, Effort).
F. Describe the effort variable and the units. If more than one effort variable is present in the dataset, justify selection.
G. What are the units of catch (e.g. numbers or biomass, whole weight, gutted weight, kilograms, pounds).

4. Model Standardization

A. Describe model structure (e.g. delta-lognormal)
B. Describe construction of GLM components (e.g. forward selection from null etc.)
C. Describe inclusion criteria for factors and interactions terms.
D. Were YEAR*FACTOR interactions included in the model? If so, how (e.g. fixed effect, random effect)? Were random effects tested for significance using a likelihood ratio test?
E. Provide a table summarizing the construction of the GLM components.
F. Summarize model statistics of the mixed model formulation(s) (e.g. log likelihood, AIC, BIC etc.)
G. Report convergence statistics.

Working Group Comments:

\square

MODEL DIAGNOSTICS

Comment: Other model structures are possible and acceptable. Please provide appropriate diagnostics to the CPUE indices working group.

1. Binomial Component
A. Include plots of the chi-square residuals by factor.
B. Include plots of predicted and observed proportion of positive trips by year and factor (e.g. year*area)
C. Report overdispersion parameter and other fit statistics (e.g. chi-square / degrees of freedom).

2. Lognormal/Gamma Component

A. Include histogram of \log (CPUE) or a histogram of the residuals of the model on CPUE. Overlay the expected distribution.
B. Include plots describing error distribution (e.g. Studentized residuals vs. linear predictor.
C. Include QQ-plot - (e.g. Student deviance residuals vs. theoretical quantiles), Overlay expected distribution.
D. Include diagnostic plot for variance function (e.g. square root of std residuals vs. fitted values). Overlay expected distribution.
E. Include diagnostic plot for link function (e.g. linear response variable vs. linear predictor). Overlay expected distribution.
F. Include plots of the residuals by factor

3. Poisson Component
A. Report overdispersion parameter and other fit statistics (e.g. chi-square / degrees of freedom).
B. Include plots describing error distribution (e.g. Studentized residuals vs. linear predictor.
C. Include QQ-plot - (e.g. Student deviance residuals vs. theoretical quantiles), Overlay expected distribution.
D. Include diagnostic plot for variance function (e.g. square root of std residuals vs. fitted values). Overlay expected distribution.
E. Include diagnostic plot for link function (e.g. linear response variable vs. linear predictor). Overlay expected distribution.

4. Zero-inflated model
A. Include ROC curve to quantify goodness of fit.
B. Include plots describing error distribution (e.g. Studentized residuals vs. linear predictor).
C. Include QQ-plot (e.g. Student dev. residuals vs. theoretical quantiles), Overlay expected distribution.

The feasibility of this diagnostic is still under review.

Working Group
 Comments:

D. Include diagnostic plot for variance function (e.g. square root of std residuals vs. fitted values). Overlay expected distribution.
E. Include diagnostic plot for link function (e.g. linear response variable vs. linear predictor). Overlay expected distribution.

MODEL RESULTS

A. Tables of Nominal CPUE, Standardized CPUE, Observations, Positive Observations, Proportion Positive Observations and Coefficients of Variation (CVs). Other statistics may also be appropriate to report
B. Figure of Nominal and Standardized Indices with measure of variance (i.e. CVs).

IF MULTIPLE MODEL STRUCTURES WERE CONSIDERED:

(Note: this is always recommended but required when model diagnostics are poor.)

1. Plot of resulting indices and estimates of variance
2. Table of model statistics (e.g. AIC criteria)

	Date Received	Workshop Recommendation	Revision Deadline $* * *$	Author and Rapporteur Signatures		
First Submission	$6 / 21 / 10$	rerun w/100\% pos	$? ? ? ?$			
Revision	$? ? ?$	accept as revised				

The revision deadline is negotiated by the author, the SEDAR coordinator and the CPUE rapporteur. The author DOES NOT commit to any LEGAL OBLIGATION by agreeing to submit a manuscript before this deadline. The maximum penalty for failure to submit a revised document prior to the submission deadline is rejection of the CPUE series.

Justification of Working Group Recommendation

Sandbar - recommended for model base run (ranking=2)

Dusky - recommended for model base run (ranking=3)
The working group recommended that these data be reanalyzed with 100\% positive years included in the time series. The working group recognized that the Chesapeake Bay includes important juvenile/pupping habitat for sandbar and dusky sharks. These indices were constructed using data collected from fixed stations at the mouth of Chesapeake Bay. Sampling has been ongoing since 1975 using consistent methods. Although the spatial scale of these indices were limited, the working group recommended the indices be used in model base runs because of the length of the time series, the sampling location, and the consistent survey design.

Evaluation of Abundance Indices for SEDAR 21:
 Dauphin Island Sea Lab Bottom Longline (SEDAR21-DW-25)

DESCRIPTION OF THE DATA SOURCE

1. Fishery Independent Indices
A. Describe the survey design (e.g. fixed sampling sites, random stratified sampling), location, seasons/months and years of sampling.
B. Describe sampling methodology (e.g. gear, vessel, soak time etc.)
C. Describe any changes in sampling methodology (e.g. gear, vessel, sample design etc.)
D. Describe the variables reported in the data set (e.g. location, time, temperature, catch, effort etc.).
E. What species or species assemblages are targeted by this survey (e.g. red snapper, reef fish, pelagic).
F. Describe the size/age range that the index applies to. Include supporting figures (e.g. size comp) if available.
2. Fishery Dependent Indices
A. Describe the data source and type of fishery (e.g. commercial handline, commercial longline, recreational hook and line etc.).
B. Describe any changes to reporting requirements, variables reported, etc.
C. Describe the variables reported in the data set (e.g. location, time, temperature, catch, effort etc.).

D Describe the size/age range that the index applies to. Include supporting figures (e.g. size comp) if available.

METHODS

1. Data Reduction and Exclusions
A. Describe any data exclusions (e.g. gears, fishing modes, sampling areas etc.). Report the number of records removed and justify removal.
B. Describe data reduction techniques (if any) used to address targeting (e.g. Stephens and MacCall, 2004; gear configuration, species assemblage etc).
C. Discuss procedures used to identify outliers. How many were identified? Were they excluded?

Working Group Comments:

1C. group recommends excluding stations within Mobile Bay and those beyond 20 meters

2. Management Regulations (for FD Indices)

A. Provide (or cite) history of management regulations (e.g. bag limits, size limits, trip limits, closures etc.).
B. Describe the effects (if any) of management regulations on CPUE
C. Discuss methods used (if any) to minimize the effects of management measures on the CPUE series.

3. Describe Analysis Dataset (after exclusions and other treatments)
A. Provide tables and/or figures of number of observations by factors (including year, area, etc.) and interaction terms.
B. Include tables and/or figures of number of positive observations by factors and interaction terms.
C. Include tables and/or figures of the proportion positive observations by factors and interaction terms.
D. Include tables and/or figures of average (unstandardized) CPUE by factors and interaction terms.
E. Include annual maps of locations of survey sites (or fishing trips) and associated catch rates $\boldsymbol{O R}$ supply the raw data needed to construct these maps (Observation, Year, Latitude, Longitude (or statistical grid, area), Catch, Effort).
F. Describe the effort variable and the units. If more than one effort variable is present in the dataset, justify selection.
G. What are the units of catch (e.g. numbers or biomass, whole weight, gutted weight, kilograms, pounds).

4. Model Standardization

A. Describe model structure (e.g. delta-lognormal)
B. Describe construction of GLM components (e.g. forward selection from null etc.)
C. Describe inclusion criteria for factors and interactions terms.
D. Were YEAR*FACTOR interactions included in the model? If so, how (e.g. fixed effect, random effect)? Were random effects tested for significance using a likelihood ratio test?
E. Provide a table summarizing the construction of the GLM components.
F. Summarize model statistics of the mixed model formulation(s) (e.g. log likelihood, AIC, BIC etc.)
G. Report convergence statistics.

Working Group Comments:

3A-D. AOD

MODEL DIAGNOSTICS

Comment: Other model structures are possible and acceptable. Please provide appropriate diagnostics to the CPUE indices working group.

1. Binomial Component
A. Include plots of the chi-square residuals by factor.
B. Include plots of predicted and observed proportion of positive trips by year and factor (e.g. year*area)
C. Report overdispersion parameter and other fit statistics (e.g. chi-square / degrees of freedom).

2. Lognormal/Gamma Component

A. Include histogram of \log (CPUE) or a histogram of the residuals of the model on CPUE. Overlay the expected distribution.
B. Include plots describing error distribution (e.g. Studentized residuals vs. linear predictor.
C. Include QQ-plot - (e.g. Student deviance residuals vs. theoretical quantiles), Overlay expected distribution.
D. Include diagnostic plot for variance function (e.g. square root of std residuals vs. fitted values). Overlay expected distribution.
E. Include diagnostic plot for link function (e.g. linear response variable vs. linear predictor). Overlay expected distribution.
F. Include plots of the residuals by factor

3. Poisson Component
A. Report overdispersion parameter and other fit statistics (e.g. chi-square / degrees of freedom).
B. Include plots describing error distribution (e.g. Studentized residuals vs. linear predictor.
C. Include QQ-plot - (e.g. Student deviance residuals vs. theoretical quantiles), Overlay expected distribution.
D. Include diagnostic plot for variance function (e.g. square root of std residuals vs. fitted values). Overlay expected distribution.
E. Include diagnostic plot for link function (e.g. linear response variable vs. linear predictor). Overlay expected distribution.

4. Zero-inflated model
A. Include ROC curve to quantify goodness of fit.
B. Include plots describing error distribution (e.g. Studentized residuals vs. linear predictor).
C. Include QQ-plot (e.g. Student dev. residuals vs. theoretical quantiles), Overlay expected distribution.

The feasibility of this diagnostic is still under review.

Working Group
 Comments:

D. Include diagnostic plot for variance function (e.g. square root of std residuals vs. fitted values). Overlay expected distribution.
E. Include diagnostic plot for link function (e.g. linear response variable vs. linear predictor). Overlay expected distribution.

MODEL RESULTS

A. Tables of Nominal CPUE, Standardized CPUE, Observations, Positive Observations, Proportion Positive Observations and Coefficients of Variation (CVs). Other statistics may also be appropriate to report
B. Figure of Nominal and Standardized Indices with measure of variance (i.e. CVs).

IF MULTIPLE MODEL STRUCTURES WERE CONSIDERED:

(Note: this is always recommended but required when model diagnostics are poor.)

1. Plot of resulting indices and estimates of variance
2. Table of model statistics (e.g. AIC criteria)

	Date Received	Workshop Recommendation	Revision Deadline 	Author and Rapporteur Signatures
First Submission	$6 / 4 / 10$	revise (see below)	$6 / 23 / 10$	
Revision	$6 / 23 / 10$	base run		

The revision deadline is negotiated by the author, the SEDAR coordinator and the CPUE rapporteur. The author DOES NOT commit to any LEGAL OBLIGATION by agreeing to submit a manuscript before this deadline. The maximum penalty for failure to submit a revised document prior to the submission deadline is rejection of the CPUE series.

Justification of Working Group Recommendation
Blacknose - Gulf of Mexico - recommend for base model run (ranking=5)
Spatially limited, temporally limited, but is a fishery independent survey. GOM blacknose indices are few and no reason to exclude this index. Revise by excluding stations within Mobile Bay and those beyond 20 meters depth.

Evaluation of Abundance Indices for SEDAR 21: NMFS COASTSPAN Longline (SEDAR21-DW-27)

DESCRIPTION OF THE DATA SOURCE

1. Fishery Independent Indices
A. Describe the survey design (e.g. fixed sampling sites, random stratified sampling), location, seasons/months and years of sampling.
B. Describe sampling methodology (e.g. gear, vessel, soak time etc.)
C. Describe any changes in sampling methodology (e.g. gear, vessel, sample design etc.)
D. Describe the variables reported in the data set (e.g location, time, temperature, catch, effort etc.).
E. What species or species assemblages are targeted by this survey (e.g. red snapper, reef fish, pelagic).
F. Describe the size/age range that the index applies to. Include supporting figures (e.g. size comp) if available

Working Group Comments:

2. Fishery Dependent Indices

A. Describe the data source and type of fishery (e.g. commercial handline, commercial longline, recreational hook and line etc.).
B. Describe any changes to reporting requirements, variables reported, etc.
C. Describe the variables reported in the data set (e.g. location, time, temperature, catch, effort etc.).

D Describe the size/age range that the index applies to. Include supporting figures (e.g. size comp) if available.

METHODS

1. Data Reduction and Exclusions
A. Describe any data exclusions (e.g. gears, fishing modes, sampling areas etc.). Report the number of records removed and justify removal.
B. Describe data reduction techniques (if any) used to address targeting (e.g. Stephens and MacCall, 2004; gear configuration, species assemblage etc).
C. Discuss procedures used to identify outliers. How many were identified? Were they excluded?

2. Management Regulations (for FD Indices)

A. Provide (or cite) history of management regulations (e.g. bag limits, size limits, trip limits, closures etc.).
B. Describe the effects (if any) of management regulations on CPUE
C. Discuss methods used (if any) to minimize the effects of management measures on the CPUE series.

3. Describe Analysis Dataset (after exclusions and other treatments)
A. Provide tables and/or figures of number of observations by factors (including year, area, etc.) and interaction terms.
B. Include tables and/or figures of number of positive observations by factors and interaction terms.
C. Include tables and/or figures of the proportion positive observations by factors and interaction terms.
D. Include tables and/or figures of average (unstandardized) CPUE by factors and interaction terms.
E. Include annual maps of locations of survey sites (or fishing trips) and associated catch rates $\boldsymbol{O R}$ supply the raw data needed to construct these maps (Observation, Year, Latitude, Longitude (or statistical grid, area), Catch, Effort).
F. Describe the effort variable and the units. If more than one effort variable is present in the dataset, justify selection.
G. What are the units of catch (e.g. numbers or biomass, whole weight, gutted weight, kilograms, pounds).

4. Model Standardization

A. Describe model structure (e.g. delta-lognormal)
B. Describe construction of GLM components (e.g. forward selection from null etc.)
C. Describe inclusion criteria for factors and interactions terms.
D. Were YEAR*FACTOR interactions included in the model? If so, how (e.g. fixed effect, random effect)? Were random effects tested for significance using a likelihood ratio test?
E. Provide a table summarizing the construction of the GLM components.
F. Summarize model statistics of the mixed model formulation(s) (e.g. log likelihood, AIC, BIC etc.)
G. Report convergence statistics.

Working Group
Comments:
3B,C,D. AOD

MODEL DIAGNOSTICS

Comment: Other model structures are possible and acceptable. Please provide appropriate diagnostics to the CPUE indices working group.

1. Binomial Component

A. Include plots of the chi-square residuals by factor.
B. Include plots of predicted and observed proportion of positive trips by year and factor (e.g. year*area)
C. Report overdispersion parameter and other fit statistics (e.g. chi-square / degrees of freedom).

2. Lognormal/Gamma Component

A. Include histogram of \log (CPUE) or a histogram of the residuals of the model on CPUE. Overlay the expected distribution.
B. Include plots describing error distribution (e.g. Studentized residuals vs. linear predictor.
C. Include QQ-plot - (e.g. Student deviance residuals vs. theoretical quantiles), Overlay expected distribution.
D. Include diagnostic plot for variance function (e.g. square root of std residuals vs. fitted values). Overlay expected distribution.
E. Include diagnostic plot for link function (e.g. linear response variable vs. linear predictor). Overlay expected distribution.
F. Include plots of the residuals by factor

3. Poisson Component
A. Report overdispersion parameter and other fit statistics (e.g. chi-square / degrees of freedom).
B. Include plots describing error distribution (e.g. Studentized residuals vs. linear predictor.
C. Include QQ-plot - (e.g. Student deviance residuals vs. theoretical quantiles), Overlay expected distribution.
D. Include diagnostic plot for variance function (e.g. square root of std residuals vs. fitted values). Overlay expected distribution.
E. Include diagnostic plot for link function (e.g. linear response variable vs. linear predictor). Overlay expected distribution.

4. Zero-inflated model
A. Include ROC curve to quantify goodness of fit.
B. Include plots describing error distribution (e.g. Studentized residuals vs. linear predictor)
C. Include QQ-plot (e.g. Student dev. residuals vs. theoretical quantiles), Overlay expected distribution.

The feasibility of this diagnostic is still under review.

Working Group
 Comments:

D. Include diagnostic plot for variance function (e.g. square root of std residuals vs. fitted values). Overlay expected distribution.
E. Include diagnostic plot for link function (e.g. linear response variable vs. linear predictor). Overlay expected distribution.

MODEL RESULTS

A. Tables of Nominal CPUE, Standardized CPUE, Observations, Positive Observations, Proportion Positive Observations and Coefficients of Variation (CVs). Other statistics may also be appropriate to report
B. Figure of Nominal and Standardized Indices with measure of variance (i.e. CVs).

IF MULTIPLE MODEL STRUCTURES WERE CONSIDERED:

(Note: this is always recommended but required when model diagnostics are poor.)

1. Plot of resulting indices and estimates of variance
2. Table of model statistics (e.g. AIC criteria)

	Date Received	Workshop Recommendation	Revision Deadline $* * *$	Author and Rapporteur Signatures
First Submission	$6 / 22 / 2010$	see below		
Revision	base			

The revision deadline is negotiated by the author, the SEDAR coordinator and the CPUE rapporteur. The author DOES NOT commit to any LEGAL OBLIGATION by agreeing to submit a manuscript before this deadline. The maximum penalty for failure to submit a revised document prior to the submission deadline is rejection of the CPUE series.

Justification of Working Group Recommendation

DW-27 - Delaware Bay juvenile sandbars
workshop recommendations: run with new code and also split out yoy and age 1+ as done in last assessment.

Time series recommended for base run. This series (all three - yoy, age 1+ and total juvenile sandbar sharks) was used as base in the last stock assessment. Since that time this time series has been updated through 2009 giving it a nine year time span. This is a standardized survey which uses random stratified sampling based on depth within geographic regions and covers the entire Delaware Bay. This bay is one of two principle nursery areas for the sandbar shark in east coast waters of the U.S. The CVs look great and this time series provides a great juvenile sandbar shark index.

Since all three Delaware Bay indices were used in the last stock assessment and the total juvenile index is a combination of the yoy and age 1+ indices, it may be beneficial to use the total juvenile sandbar shark index for continuity and the yoy and age 1+ indices in the base run.

Evaluation of Abundance Indices for SEDAR 21: NMFS Northeast Longline (SEDAR21-DW-28)

DESCRIPTION OF THE DATA SOURCE

1. Fishery Independent Indices
A. Describe the survey design (e.g. fixed sampling sites, random stratified sampling), location, seasons/months and years of sampling
B. Describe sampling methodology (e.g. gear, vessel, soak time etc.)
C. Describe any changes in sampling methodology (e.g. gear, vessel, sample design etc.)
D. Describe the variables reported in the data set (e.g. location, time, temperature, catch, effort etc.)
E. What species or species assemblages are targeted by this survey (e.g. red snapper, reef fish, pelagic).
F. Describe the size/age range that the index applies to. Include supporting figures (e.g. size comp) if available

2. Fishery Dependent Indices

A. Describe the data source and type of fishery (e.g. commercial handline, commercial longline, recreational hook and line etc.).
B. Describe any changes to reporting requirements, variables reported, etc.
C. Describe the variables reported in the data set (e.g. location, time, temperature, catch, effort etc.).

D Describe the size/age range that the index applies to. Include supporting figures (e.g. size comp) if available.

METHODS

1. Data Reduction and Exclusions
A. Describe any data exclusions (e.g. gears, fishing modes, sampling areas etc.). Report the number of records removed and justify removal.
B. Describe data reduction techniques (if any) used to address targeting (e.g. Stephens and MacCall, 2004; gear configuration, species assemblage etc).
C. Discuss procedures used to identify outliers. How many were identified? Were they excluded?

Working Group Comments:

2. Management Regulations (for FD Indices)

A. Provide (or cite) history of management regulations (e.g. bag limits, size limits, trip limits, closures etc.).
B. Describe the effects (if any) of management regulations on CPUE
C. Discuss methods used (if any) to minimize the effects of management measures on the CPUE series.

3. Describe Analysis Dataset (after exclusions and other treatments)
A. Provide tables and/or figures of number of observations by factors (including year, area, etc.) and interaction terms.
B. Include tables and/or figures of number of positive observations by factors and interaction terms.
C. Include tables and/or figures of the proportion positive observations by factors and interaction terms.
D. Include tables and/or figures of average (unstandardized) CPUE by factors and interaction terms.
E. Include annual maps of locations of survey sites (or fishing trips) and associated catch rates $\boldsymbol{O R}$ supply the raw data needed to construct these maps (Observation, Year, Latitude, Longitude (or statistical grid, area), Catch, Effort).
F. Describe the effort variable and the units. If more than one effort variable is present in the dataset, justify selection.
G. What are the units of catch (e.g. numbers or biomass, whole weight, gutted weight, kilograms, pounds).

4. Model Standardization

A. Describe model structure (e.g. delta-lognormal)
B. Describe construction of GLM components (e.g. forward selection from null etc.)
C. Describe inclusion criteria for factors and interactions terms.
D. Were YEAR*FACTOR interactions included in the model? If so, how (e.g. fixed effect, random effect)? Were random effects tested for significance using a likelihood ratio test?
E. Provide a table summarizing the construction of the GLM components.
F. Summarize model statistics of the mixed model formulation(s) (e.g. log likelihood, AIC, BIC etc.)
G. Report convergence statistics.

Working Group
Comments:

3A,B,C,D. AOD

MODEL DIAGNOSTICS

Comment: Other model structures are possible and acceptable. Please provide appropriate diagnostics to the CPUE indices working group.

1. Binomial Component

A. Include plots of the chi-square residuals by factor.
B. Include plots of predicted and observed proportion of positive trips by year and factor (e.g. year*area)
C. Report overdispersion parameter and other fit statistics (e.g. chi-square / degrees of freedom).

2. Lognormal/Gamma Component

A. Include histogram of \log (CPUE) or a histogram of the residuals of the model on CPUE. Overlay the expected distribution.
B. Include plots describing error distribution (e.g. Studentized residuals vs. linear predictor.
C. Include QQ-plot - (e.g. Student deviance residuals vs. theoretical quantiles), Overlay expected distribution.
D. Include diagnostic plot for variance function (e.g. square root of std residuals vs. fitted values). Overlay expected distribution.
E. Include diagnostic plot for link function (e.g. linear response variable vs. linear predictor). Overlay expected distribution.
F. Include plots of the residuals by factor

3. Poisson Component
A. Report overdispersion parameter and other fit statistics (e.g. chi-square / degrees of freedom).
B. Include plots describing error distribution (e.g. Studentized residuals vs. linear predictor.
C. Include QQ-plot - (e.g. Student deviance residuals vs. theoretical quantiles), Overlay expected distribution.
D. Include diagnostic plot for variance function (e.g. square root of std residuals vs. fitted values). Overlay expected distribution.
E. Include diagnostic plot for link function (e.g. linear response variable vs. linear predictor). Overlay expected distribution.

4. Zero-inflated model
A. Include ROC curve to quantify goodness of fit.
B. Include plots describing error distribution (e.g. Studentized residuals vs. linear predictor)
C. Include QQ-plot (e.g. Student dev. residuals vs. theoretical quantiles), Overlay expected distribution.

The feasibility of this diagnostic is still under review.

Working Group
 Comments:

D. Include diagnostic plot for variance function (e.g. square root of std residuals vs. fitted values). Overlay expected distribution.
E. Include diagnostic plot for link function (e.g. linear response variable vs. linear predictor). Overlay expected distribution.

MODEL RESULTS

A. Tables of Nominal CPUE, Standardized CPUE, Observations, Positive Observations, Proportion Positive Observations and Coefficients of Variation (CVs). Other statistics may also be appropriate to report
B. Figure of Nominal and Standardized Indices with measure of variance (i.e. CVs).

IF MULTIPLE MODEL STRUCTURES WERE CONSIDERED:

(Note: this is always recommended but required when model diagnostics are poor.)

1. Plot of resulting indices and estimates of variance
2. Table of model statistics (e.g. AIC criteria)

	Date Received	Workshop Recommendation	Revision Deadline $* * *$	Author and Rapporteur Signatures
First Submission	$6 / 22 / 10$	rerun with new code	$6 / 23 / 10$	
Revision	$6 / 23 / 10$	base		

The revision deadline is negotiated by the author, the SEDAR coordinator and the CPUE rapporteur. The author DOES NOT commit to any LEGAL OBLIGATION by agreeing to submit a manuscript before this deadline. The maximum penalty for failure to submit a revised document prior to the submission deadline is rejection of the CPUE series.

Justification of Working Group Recommendation

DW28 - NE LL

Sandbar - include in base run (ranking=2)
Dusky - include in base run (ranking=1)
This time series was recommended for use in base analyses for both sandbar and dusky sharks. Even though this survey is conducted at fixed stations, it is a highly standardized survey and covers a large portion of both the dusky and sandbar shark's geographic range (off the Florida Keys to New Jersey coastal waters). Sandbar and dusky sharks are the primary shark species caught during this coastal shark longline survey due to the timing of the survey with their migration up the coast. During the last stock assessment for these species, this time series was used for sensitivity analyses. Since then, this time series has been updated with data through 2009, and included recovered surface water temperature and depth data.

Evaluation of Abundance Indices for SEDAR 21: GA COASTSPAN Longline / GADNR Red Drum Longline (SEDAR21-DW-29)

DESCRIPTION OF THE DATA SOURCE

1. Fishery Independent Indices
A. Describe the survey design (e.g. fixed sampling sites, random stratified sampling), location, seasons/months and years of sampling.
B. Describe sampling methodology (e.g. gear, vessel, soak time etc.)
C. Describe any changes in sampling methodology (e.g. gear, vessel, sample design etc.)
D. Describe the variables reported in the data set (e.g. location, time, temperature, catch, effort etc.).
E. What species or species assemblages are targeted by this survey (e.g. red snapper, reef fish, pelagic).
F. Describe the size/age range that the index applies to. Include supporting figures (e.g. size comp) if available.

2. Fishery Dependent Indices
A. Describe the data source and type of fishery (e.g. commercial handline, commercial longline, recreational hook and line etc.).
B. Describe any changes to reporting requirements, variables reported, etc.
C. Describe the variables reported in the data set (e.g. location, time, temperature, catch, effort etc.).

D Describe the size/age range that the index applies to. Include supporting figures (e.g. size comp) if available.

METHODS

1. Data Reduction and Exclusions
A. Describe any data exclusions (e.g. gears, fishing modes, sampling areas etc.). Report the number of records removed and justify removal.
B. Describe data reduction techniques (if any) used to address targeting (e.g. Stephens and MacCall, 2004; gear configuration, species assemblage etc).
C. Discuss procedures used to identify outliers. How many were identified? Were they excluded?

2. Management Regulations (for FD Indices)

A. Provide (or cite) history of management regulations (e.g. bag limits, size limits, trip limits, closures etc.).
B. Describe the effects (if any) of management regulations on CPUE
C. Discuss methods used (if any) to minimize the effects of management measures on the CPUE series.

3. Describe Analysis Dataset (after exclusions and other treatments)
A. Provide tables and/or figures of number of observations by factors (including year, area, etc.) and interaction terms.
B. Include tables and/or figures of number of positive observations by factors and interaction terms.
C. Include tables and/or figures of the proportion positive observations by factors and interaction terms.
D. Include tables and/or figures of average (unstandardized) CPUE by factors and interaction terms.
E. Include annual maps of locations of survey sites (or fishing trips) and associated catch rates $\boldsymbol{O R}$ supply the raw data needed to construct these maps (Observation, Year, Latitude, Longitude (or statistical grid, area), Catch, Effort).
F. Describe the effort variable and the units. If more than one effort variable is present in the dataset, justify selection.
G. What are the units of catch (e.g. numbers or biomass, whole weight, gutted weight, kilograms, pounds).

4. Model Standardization

A. Describe model structure (e.g. delta-lognormal)
B. Describe construction of GLM components (e.g. forward selection from null etc.)
C. Describe inclusion criteria for factors and interactions terms.
D. Were YEAR*FACTOR interactions included in the model? If so, how (e.g. fixed effect, random effect)? Were random effects tested for significance using a likelihood ratio test?
E. Provide a table summarizing the construction of the GLM components.
F. Summarize model statistics of the mixed model formulation(s) (e.g. log likelihood, AIC, BIC etc.)
G. Report convergence statistics.

Working Group
Comments:
3B,C,D. AOD

MODEL DIAGNOSTICS

Comment: Other model structures are possible and acceptable. Please provide appropriate diagnostics to the CPUE indices working group.

1. Binomial Component

A. Include plots of the chi-square residuals by factor.
B. Include plots of predicted and observed proportion of positive trips by year and factor (e.g. year*area)
C. Report overdispersion parameter and other fit statistics (e.g. chi-square / degrees of freedom).

2. Lognormal/Gamma Component

A. Include histogram of \log (CPUE) or a histogram of the residuals of the model on CPUE. Overlay the expected distribution.
B. Include plots describing error distribution (e.g. Studentized residuals vs. linear predictor.
C. Include QQ-plot - (e.g. Student deviance residuals vs. theoretical quantiles), Overlay expected distribution.
D. Include diagnostic plot for variance function (e.g. square root of std residuals vs. fitted values). Overlay expected distribution.
E. Include diagnostic plot for link function (e.g. linear response variable vs. linear predictor). Overlay expected distribution.
F. Include plots of the residuals by factor

3. Poisson Component
A. Report overdispersion parameter and other fit statistics (e.g. chi-square / degrees of freedom).
B. Include plots describing error distribution (e.g. Studentized residuals vs. linear predictor.
C. Include QQ-plot - (e.g. Student deviance residuals vs. theoretical quantiles), Overlay expected distribution.
D. Include diagnostic plot for variance function (e.g. square root of std residuals vs. fitted values). Overlay expected distribution.
E. Include diagnostic plot for link function (e.g. linear response variable vs. linear predictor). Overlay expected distribution.

4. Zero-inflated model
A. Include ROC curve to quantify goodness of fit.
B. Include plots describing error distribution (e.g. Studentized residuals vs. linear predictor)
C. Include QQ-plot (e.g. Student dev. residuals vs. theoretical quantiles), Overlay expected distribution.

The feasibility of this diagnostic is still under review.

Working Group
 Comments:

D. Include diagnostic plot for variance function (e.g. square root of std residuals vs. fitted values). Overlay expected distribution.
E. Include diagnostic plot for link function (e.g. linear response variable vs. linear predictor). Overlay expected distribution.

MODEL RESULTS

A. Tables of Nominal CPUE, Standardized CPUE, Observations, Positive Observations, Proportion Positive Observations and Coefficients of Variation (CVs). Other statistics may also be appropriate to report
B. Figure of Nominal and Standardized Indices with measure of variance (i.e. CVs).

IF MULTIPLE MODEL STRUCTURES WERE CONSIDERED:

(Note: this is always recommended but required when model diagnostics are poor.)

1. Plot of resulting indices and estimates of variance
2. Table of model statistics (e.g. AIC criteria)

	Date Received	Workshop Recommendation	Revision Deadline $* * *$	Author and Rapporteur Signatures
First Submission	$6 / 21 / 2010$	run using new code		
Revision	See below			

The revision deadline is negotiated by the author, the SEDAR coordinator and the CPUE rapporteur. The author DOES NOT commit to any LEGAL OBLIGATION by agreeing to submit a manuscript before this deadline. The maximum penalty for failure to submit a revised document prior to the submission deadline is rejection of the CPUE series.

Justification of Working Group Recommendation

DW-29 GADNR red drum and GA COASTSPAN surveys
Sandbar (red drum survey) - Not recommended.
The model diagnostic plots reveal that the residual positive catch distribution is not normally distributed. This is a relatively new survey (3 year time series) and as the time series develops it may provide a useful index in future assessments. At this time it is recommended that GADNR continues to collect sandbar shark catch information from their red drum survey and submit it to future SEDAR data workshops for further evaluation.

Blacknose (red drum survey) - Recommended for base.
Even though this is a short time series (3 years), model diagnostics are acceptable, the CVs look good and it covers the majority of the blacknose shark size range from yoy to adult. This time series also samples an area of the blacknose shark distribution not covered by other time series

Sandbar (GA COASTSPAN) - Recommended for base.
This time series was not available during the last sandbar shark assessment. This time series spans nine years and provides a juvenile sandbar shark index for Georgia's coastal waters. This index provides information on a portion of the US Atlantic sandbar population not sampled by other surveys because it is conducted in GA waters during the summer months when many of the sandbar juveniles have migrated north to cooler waters

Evaluation of Abundance Indices for SEDAR 21: SC COASTSPAN Longline / SCDNR Red Drum Longline (SEDAR21-DW-30)

DESCRIPTION OF THE DATA SOURCE

1. Fishery Independent Indices
A. Describe the survey design (e.g. fixed sampling sites, random stratified sampling), location, seasons/months and years of sampling.
B. Describe sampling methodology (e.g. gear, vessel, soak time etc.)
C. Describe any changes in sampling methodology (e.g. gear, vessel, sample design etc.)
D. Describe the variables reported in the data set (e.g location, time, temperature, catch, effort etc.).
E. What species or species assemblages are targeted by this survey (e.g. red snapper, reef fish, pelagic).
F. Describe the size/age range that the index applies to. Include supporting figures (e.g. size comp) if available.

Working Group Comments:

2. Fishery Dependent Indices
A. Describe the data source and type of fishery (e.g. commercial handline, commercial longline, recreational hook and line etc.).
B. Describe any changes to reporting requirements, variables reported, etc.
C. Describe the variables reported in the data set (e.g. location, time, temperature, catch, effort etc.).
D Describe the size/age range that the index applies to. Include supporting figures (e.g. size comp) if available.

METHODS

1. Data Reduction and Exclusions
A. Describe any data exclusions (e.g. gears, fishing modes, sampling areas etc.). Report the number of records removed and justify removal.
B. Describe data reduction techniques (if any) used to address targeting (e.g. Stephens and MacCall, 2004; gear configuration, species assemblage etc).
C. Discuss procedures used to identify outliers. How many were identified? Were they excluded?

2. Management Regulations (for FD Indices)

A. Provide (or cite) history of management regulations (e.g. bag limits, size limits, trip limits, closures etc.).
B. Describe the effects (if any) of management regulations on CPUE
C. Discuss methods used (if any) to minimize the effects of management measures on the CPUE series.

Working Group Comments:

3B,C,D. AOD
3. Describe Analysis Dataset (after exclusions and other treatments)
A. Provide tables and/or figures of number of observations by factors (including year, area, etc.) and interaction terms.
B. Include tables and/or figures of number of positive observations by factors and interaction terms.
C. Include tables and/or figures of the proportion positive observations by factors and interaction terms.
D. Include tables and/or figures of average (unstandardized) CPUE by factors and interaction terms.
E. Include annual maps of locations of survey sites (or fishing trips) and associated catch rates OR supply the raw data needed to construct these maps (Observation, Year, Latitude, Longitude (or statistical grid, area), Catch, Effort).
F. Describe the effort variable and the units. If more than one effort variable is present in the dataset, justify selection.
G. What are the units of catch (e.g. numbers or biomass, whole weight, gutted weight, kilograms, pounds).

4. Model Standardization
A. Describe model structure (e.g. delta-lognormal)
B. Describe construction of GLM components (e.g. forward selection from null etc.)
C. Describe inclusion criteria for factors and interactions terms.
D. Were YEAR*FACTOR interactions included in the model? If so, how (e.g. fixed effect, random effect)? Were random effects tested for significance using a likelihood ratio test?
E. Provide a table summarizing the construction of the GLM components.
F. Summarize model statistics of the mixed model formulation(s) (e.g. log likelihood, AIC, BIC etc.)
G. Report convergence statistics.

MODEL DIAGNOSTICS

Comment: Other model structures are possible and acceptable. Please provide appropriate diagnostics to the CPUE indices working group.

1. Binomial Component

A. Include plots of the chi-square residuals by factor.
B. Include plots of predicted and observed proportion of positive trips by year and factor (e.g. year*area)
C. Report overdispersion parameter and other fit statistics (e.g. chi-square / degrees of freedom).

2. Lognormal/Gamma Component

A. Include histogram of \log (CPUE) or a histogram of the residuals of the model on CPUE. Overlay the expected distribution.
B. Include plots describing error distribution (e.g. Studentized residuals vs. linear predictor.
C. Include QQ-plot - (e.g. Student deviance residuals vs. theoretical quantiles), Overlay expected distribution.
D. Include diagnostic plot for variance function (e.g. square root of std residuals vs. fitted values). Overlay expected distribution.
E. Include diagnostic plot for link function (e.g. linear response variable vs. linear predictor). Overlay expected distribution.
F. Include plots of the residuals by factor

3. Poisson Component
A. Report overdispersion parameter and other fit statistics (e.g. chi-square / degrees of freedom).
B. Include plots describing error distribution (e.g. Studentized residuals vs. linear predictor.
C. Include QQ-plot - (e.g. Student deviance residuals vs. theoretical quantiles), Overlay expected distribution.
D. Include diagnostic plot for variance function (e.g. square root of std residuals vs. fitted values). Overlay expected distribution.
E. Include diagnostic plot for link function (e.g. linear response variable vs. linear predictor). Overlay expected distribution.
4. Zero-inflated model
A. Include ROC curve to quantify goodness of fit.
B. Include plots describing error distribution (e.g. Studentized residuals vs. linear predictor).
C. Include QQ-plot (e.g. Student dev. residuals vs. theoretical quantiles), Overlay expected distribution.

Working Group Comments:

The feasibility of this diagnostic is still under review.

Working Group Comments:

D. Include diagnostic plot for variance function (e.g. square root of std residuals vs. fitted values). Overlay expected distribution.
E. Include diagnostic plot for link function (e.g. linear response variable vs. linear predictor). Overlay expected distribution.

MODEL RESULTS

A. Tables of Nominal CPUE, Standardized CPUE,

Observations, Positive Observations, Proportion Positive Observations and Coefficients of Variation (CVs). Other statistics may also be appropriate to report
B. Figure of Nominal and Standardized Indices with measure of variance (i.e. CVs).

IF MULTIPLE MODEL STRUCTURES WERE CONSIDERED:
(Note: this is always recommended but required when model diagnostics are poor.)

1. Plot of resulting indices and estimates of variance
2. Table of model statistics (e.g. AIC criteria)

	Date Received	Workshop Recommendation	Revision Deadline $* * *$	Author and Rapporteur Signatures
First Submission	$6 / 21 / 2010$	run with new code		
Revision		see below		

The revision deadline is negotiated by the author, the SEDAR coordinator and the CPUE rapporteur. The author DOES NOT commit to any LEGAL OBLIGATION by agreeing to submit a manuscript before this deadline. The maximum penalty for failure to submit a revised document prior to the submission deadline is rejection of the CPUE series.

Justification of Working Group Recommendation

DW-30 - Sandbar (SC COASTSPAN) - Recommended for base. This time series was not available during the last sandbar shark assessment. The model diagnostics and the CVs look good. This index provides information on a portion of the US Atlantic sandbar population not sampled by other surveys. It is conducted in SC waters during summer months when many sandbar juveniles have migrated north to cooler waters. DW-30 - Sandbar (SCDNR red drum - hist (98-06)- Recommended for base. This time series was not available during the last sandbar shark assessment. The time series spans nine years and covers the majority of the sandbar shark's size range. The model diagnostics and CVs look good. In addition it also provides information on a portion of the US Atlantic sandbar population not sampled by other surveys because it is conducted in SC waters during the summer months when many of the sandbar juveniles have migrated north to cooler waters.
DW-30 - Blacknose (SCDNR red drum - hist (98-06) - Recommended for base. This time series was used as base in the last blacknose assessment. Since last used it has been updated through 2006 (the final year of this time series before gear and sampling design changes) and includes recovered depth data. The model diagnostics and CVs look good. This time series also samples an area of the blacknose shark distribution not covered by other time series.
DW-30 - Sandbar and Blacknose (SCDNR red drum - new (07-09) - Not recommended. The model diagnostic plots reveal the residual positive catch distribution is not normally distributed. This is a relatively new survey (3 year time series) and as it develops it should provide a useful index for future assessments. It is recommended that SCDNR continues to collect sandbar shark catch information from their red drum survey and submit it to future SEDAR data workshops for further evaluation.

Evaluation of Abundance Indices for SEDAR 21: NMFS Historical Longline (SEDAR21-DW-31)

DESCRIPTION OF THE DATA SOURCE

1. Fishery Independent Indices

A. Describe the survey design (e.g. fixed sampling sites, random stratified sampling), location, seasons/months and years of sampling.
B. Describe sampling methodology (e.g. gear, vessel, soak time etc.)
C. Describe any changes in sampling methodology (e.g. gear, vessel, sample design etc.)
D. Describe the variables reported in the data set (e.g. location, time, temperature, catch, effort etc.).
E. What species or species assemblages are targeted by this survey (e.g. red snapper, reef fish, pelagic).
F. Describe the size/age range that the index applies to. Include supporting figures (e.g. size comp) if available

2. Fishery Dependent Indices
A. Describe the data source and type of fishery (e.g. commercial handline, commercial longline, recreational hook and line etc.).
B. Describe any changes to reporting requirements, variables reported, etc.
C. Describe the variables reported in the data set (e.g. location, time, temperature, catch, effort etc.).

D Describe the size/age range that the index applies to. Include supporting figures (e.g. size comp) if available.

METHODS

1. Data Reduction and Exclusions
A. Describe any data exclusions (e.g. gears, fishing modes, sampling areas etc.). Report the number of records removed and justify removal.
B. Describe data reduction techniques (if any) used to address targeting (e.g. Stephens and MacCall, 2004; gear configuration, species assemblage etc).
C. Discuss procedures used to identify outliers. How many were identified? Were they excluded?

Working Group Comments:

2. Management Regulations (for FD Indices)

A. Provide (or cite) history of management regulations (e.g. bag limits, size limits, trip limits, closures etc.).
B. Describe the effects (if any) of management regulations on CPUE
C. Discuss methods used (if any) to minimize the effects of management measures on the CPUE series.

3. Describe Analysis Dataset (after exclusions and other treatments)
A. Provide tables and/or figures of number of observations by factors (including year, area, etc.) and interaction terms.
B. Include tables and/or figures of number of positive observations by factors and interaction terms.
C. Include tables and/or figures of the proportion positive observations by factors and interaction terms.
D. Include tables and/or figures of average (unstandardized) CPUE by factors and interaction terms.
E. Include annual maps of locations of survey sites (or fishing trips) and associated catch rates $\boldsymbol{O R}$ supply the raw data needed to construct these maps (Observation, Year, Latitude, Longitude (or statistical grid, area), Catch, Effort).
F. Describe the effort variable and the units. If more than one effort variable is present in the dataset, justify selection.
G. What are the units of catch (e.g. numbers or biomass, whole weight, gutted weight, kilograms, pounds).

4. Model Standardization

A. Describe model structure (e.g. delta-lognormal)
B. Describe construction of GLM components (e.g. forward selection from null etc.)
C. Describe inclusion criteria for factors and interactions terms.
D. Were YEAR*FACTOR interactions included in the model? If so, how (e.g. fixed effect, random effect)? Were random effects tested for significance using a likelihood ratio test?
E. Provide a table summarizing the construction of the GLM components.
F. Summarize model statistics of the mixed model formulation(s) (e.g. log likelihood, AIC, BIC etc.)
G. Report convergence statistics.

Working Group
Comments:

3A,B,C,D. AOD

MODEL DIAGNOSTICS

Comment: Other model structures are possible and acceptable. Please provide appropriate diagnostics to the CPUE indices working group.

1. Binomial Component

A. Include plots of the chi-square residuals by factor.
B. Include plots of predicted and observed proportion of positive trips by year and factor (e.g. year*area)
C. Report overdispersion parameter and other fit statistics (e.g. chi-square / degrees of freedom).

2. Lognormal/Gamma Component

A. Include histogram of \log (CPUE) or a histogram of the residuals of the model on CPUE. Overlay the expected distribution.
B. Include plots describing error distribution (e.g. Studentized residuals vs. linear predictor.
C. Include QQ-plot - (e.g. Student deviance residuals vs. theoretical quantiles), Overlay expected distribution.
D. Include diagnostic plot for variance function (e.g. square root of std residuals vs. fitted values). Overlay expected distribution.
E. Include diagnostic plot for link function (e.g. linear response variable vs. linear predictor). Overlay expected distribution.
F. Include plots of the residuals by factor

3. Poisson Component
A. Report overdispersion parameter and other fit statistics (e.g. chi-square / degrees of freedom).
B. Include plots describing error distribution (e.g. Studentized residuals vs. linear predictor.
C. Include QQ-plot - (e.g. Student deviance residuals vs. theoretical quantiles), Overlay expected distribution.
D. Include diagnostic plot for variance function (e.g. square root of std residuals vs. fitted values). Overlay expected distribution.
E. Include diagnostic plot for link function (e.g. linear response variable vs. linear predictor). Overlay expected distribution.

4. Zero-inflated model
A. Include ROC curve to quantify goodness of fit.
B. Include plots describing error distribution (e.g. Studentized residuals vs. linear predictor)
C. Include QQ-plot (e.g. Student dev. residuals vs. theoretical quantiles), Overlay expected distribution.

The feasibility of this diagnostic is still under review.

Working Group
 Comments:

D. Include diagnostic plot for variance function (e.g. square root of std residuals vs. fitted values). Overlay expected distribution.
E. Include diagnostic plot for link function (e.g. linear response variable vs. linear predictor). Overlay expected distribution.

MODEL RESULTS

A. Tables of Nominal CPUE, Standardized CPUE, Observations, Positive Observations, Proportion Positive Observations and Coefficients of Variation (CVs). Other statistics may also be appropriate to report
B. Figure of Nominal and Standardized Indices with measure of variance (i.e. CVs).

IF MULTIPLE MODEL STRUCTURES WERE CONSIDERED:

(Note: this is always recommended but required when model diagnostics are poor.)

1. Plot of resulting indices and estimates of variance
2. Table of model statistics (e.g. AIC criteria)

	Date Received	Workshop Recommendation	Revision Deadline $* * *$	Author and Rapporteur Signatures
First Submission	$6 / 22 / 10$	rerun with new code	$6 / 23 / 10$	
Revision	$6 / 23 / 10$	sensitivity		

The revision deadline is negotiated by the author, the SEDAR coordinator and the CPUE rapporteur. The author DOES NOT commit to any LEGAL OBLIGATION by agreeing to submit a manuscript before this deadline. The maximum penalty for failure to submit a revised document prior to the submission deadline is rejection of the CPUE series.

Justification of Working Group Recommendation

Sandbar - recommended for sensitivity model run (ranking=1).
Dusky - recommended for sensitivity model run (ranking=1).
These indices were not recommended for base runs of the models due to small sample size and inconsistent sampling effort over the entire US south Atlantic. The proportion of positive dusky shark sets was low, approximately 9\% over all years. Although the time series was long (1961-1996), total sets in many years was low. The highest number of sets in any year was 74, however, in most years fewer than 30 sets were completed. The working group was concerned that so few sets per year may not be sufficient to adequately follow the trends in the sandbar and dusky shark populations over the broad geographic range of the survey. In future data workshops for these species, it may be beneficial to restrict the survey data to the waters off the northeast US.

Evaluation of Abundance Indices for SEDAR 21:
 UNC Longline (SEDAR21-DW-33)

DESCRIPTION OF THE DATA SOURCE

1. Fishery Independent Indices
A. Describe the survey design (e.g. fixed sampling sites, random stratified sampling), location, seasons/months and years of sampling.
B. Describe sampling methodology (e.g. gear, vessel, soak time etc.)
C. Describe any changes in sampling methodology (e.g. gear, vessel, sample design etc.)
D. Describe the variables reported in the data set (e.g. location, time, temperature, catch, effort etc.).
E. What species or species assemblages are targeted by this survey (e.g. red snapper, reef fish, pelagic).
F. Describe the size/age range that the index applies to. Include supporting figures (e.g. size comp) if available.

2. Fishery Dependent Indices

A. Describe the data source and type of fishery (e.g. commercial handline, commercial longline, recreational hook and line etc.).
B. Describe any changes to reporting requirements, variables reported, etc.
C. Describe the variables reported in the data set (e.g. location, time, temperature, catch, effort etc.).

D Describe the size/age range that the index applies to. Include supporting figures (e.g. size comp) if available.

METHODS

1. Data Reduction and Exclusions
A. Describe any data exclusions (e.g. gears, fishing modes, sampling areas etc.). Report the number of records removed and justify removal.
B. Describe data reduction techniques (if any) used to address targeting (e.g. Stephens and MacCall, 2004; gear configuration, species assemblage etc).
C. Discuss procedures used to identify outliers. How many were identified? Were they excluded?

Working Group Comments:

2. Management Regulations (for FD Indices)

A. Provide (or cite) history of management regulations (e.g. bag limits, size limits, trip limits, closures etc.).
B. Describe the effects (if any) of management regulations on CPUE
C. Discuss methods used (if any) to minimize the effects of management measures on the CPUE series.

3. Describe Analysis Dataset (after exclusions and other treatments)
A. Provide tables and/or figures of number of observations by factors (including year, area, etc.) and interaction terms.
B. Include tables and/or figures of number of positive observations by factors and interaction terms.
C. Include tables and/or figures of the proportion positive observations by factors and interaction terms.
D. Include tables and/or figures of average (unstandardized) CPUE by factors and interaction terms.
E. Include annual maps of locations of survey sites (or fishing trips) and associated catch rates $\boldsymbol{O R}$ supply the raw data needed to construct these maps (Observation, Year, Latitude, Longitude (or statistical grid, area), Catch, Effort).
F. Describe the effort variable and the units. If more than one effort variable is present in the dataset, justify selection.
G. What are the units of catch (e.g. numbers or biomass, whole weight, gutted weight, kilograms, pounds).

4. Model Standardization

A. Describe model structure (e.g. delta-lognormal)
B. Describe construction of GLM components (e.g. forward selection from null etc.)
C. Describe inclusion criteria for factors and interactions terms.
D. Were YEAR*FACTOR interactions included in the model? If so, how (e.g. fixed effect, random effect)? Were random effects tested for significance using a likelihood ratio test?
E. Provide a table summarizing the construction of the GLM components.
F. Summarize model statistics of the mixed model formulation(s) (e.g. log likelihood, AIC, BIC etc.)
G. Report convergence statistics.

Working Group
Comments:
3B,C,D. AOD

MODEL DIAGNOSTICS

Comment: Other model structures are possible and acceptable. Please provide appropriate diagnostics to the CPUE indices working group.

1. Binomial Component

A. Include plots of the chi-square residuals by factor.
B. Include plots of predicted and observed proportion of positive trips by year and factor (e.g. year*area)
C. Report overdispersion parameter and other fit statistics (e.g. chi-square / degrees of freedom).

2. Lognormal/Gamma Component

A. Include histogram of \log (CPUE) or a histogram of the residuals of the model on CPUE. Overlay the expected distribution.
B. Include plots describing error distribution (e.g. Studentized residuals vs. linear predictor.
C. Include QQ-plot - (e.g. Student deviance residuals vs. theoretical quantiles), Overlay expected distribution.
D. Include diagnostic plot for variance function (e.g. square root of std residuals vs. fitted values). Overlay expected distribution.
E. Include diagnostic plot for link function (e.g. linear response variable vs. linear predictor). Overlay expected distribution.
F. Include plots of the residuals by factor

3. Poisson Component
A. Report overdispersion parameter and other fit statistics (e.g. chi-square / degrees of freedom).
B. Include plots describing error distribution (e.g. Studentized residuals vs. linear predictor.
C. Include QQ-plot - (e.g. Student deviance residuals vs. theoretical quantiles), Overlay expected distribution.
D. Include diagnostic plot for variance function (e.g. square root of std residuals vs. fitted values). Overlay expected distribution.
E. Include diagnostic plot for link function (e.g. linear response variable vs. linear predictor). Overlay expected distribution.

4. Zero-inflated model
A. Include ROC curve to quantify goodness of fit.
B. Include plots describing error distribution (e.g. Studentized residuals vs. linear predictor)
C. Include QQ-plot (e.g. Student dev. residuals vs. theoretical quantiles), Overlay expected distribution.

The feasibility of this diagnostic is still under review.

Working Group
 Comments:

D. Include diagnostic plot for variance function (e.g. square root of std residuals vs. fitted values). Overlay expected distribution.
E. Include diagnostic plot for link function (e.g. linear response variable vs. linear predictor). Overlay expected distribution.

MODEL RESULTS

A. Tables of Nominal CPUE, Standardized CPUE, Observations, Positive Observations, Proportion Positive Observations and Coefficients of Variation (CVs). Other statistics may also be appropriate to report
B. Figure of Nominal and Standardized Indices with measure of variance (i.e. CVs).

IF MULTIPLE MODEL STRUCTURES WERE CONSIDERED:

(Note: this is always recommended but required when model diagnostics are poor.)

1. Plot of resulting indices and estimates of variance
2. Table of model statistics (e.g. AIC criteria)

	Date Received	Workshop Recommendation	Revision Deadline 	Author and Rapporteur Signatures
First Submission	$6 / 22 / 2010$	rerun with new code		
Revision	$6 / 24 / 2010$			

The revision deadline is negotiated by the author, the SEDAR coordinator and the CPUE rapporteur. The author DOES NOT commit to any LEGAL OBLIGATION by agreeing to submit a manuscript before this deadline. The maximum penalty for failure to submit a revised document prior to the submission deadline is rejection of the CPUE series.

Justification of Working Group Recommendation

DW-33 -UNC LL - Blacknose - base
Even though the UNC LL survey is only two fixed stations at the northern end of the blacknose range, this species was regularly encountered during the survey years. This time series is recommended for base because of the long time series and lack of blacknose data available in the Atlantic. This time series was used as base in the 2007 stock assessment for blacknose sharks. The current time series has been updated with data through 2009, including recovered temperature data and data corrections detailing missing water hauls and missing or incorrect information pertaining to individual animal records, since it was used in the last stock assessment.

DW-33 -UNC LL - Dusky - sensitivity
Dusky sharks are a good portion of the overall UNC catch but they are transient in the area sampled and could easily be missed by the two fixed stations. There are a few years during the time series when there were no dusky catch throughout the entire year Because this is such a long time series, dusky time series are scarce, and dusky sharks are only second to the blacknose in numbers caught throughout the lifetime of the survey, it is recommended that this time series be used in sensitivity analyses.

DW-33 - UNC LL - Sandbar - not recommended
As with dusky sharks, sandbar sharks are transient in this area and many are likely to bypass the sampling area during their migrations. The overall and yearly proportions of positive sets is low and there are numerous years without any sandbar shark catch. Due to the limited sampling area and the abundance of other time series available for this species, it is not recommended to use this time series for sandbar sharks.

Evaluation of Abundance Indices for SEDAR 21: Mote Marine Lab Longline (SEDAR21-DW-34)

DESCRIPTION OF THE DATA SOURCE

1. Fishery Independent Indices
A. Describe the survey design (e.g. fixed sampling sites, random stratified sampling), location, seasons/months and years of sampling.
B. Describe sampling methodology (e.g. gear, vessel, soak time etc.)
C. Describe any changes in sampling methodology (e.g. gear, vessel, sample design etc.)
D. Describe the variables reported in the data set (e.g. location, time, temperature, catch, effort etc.).
E. What species or species assemblages are targeted by this survey (e.g. red snapper, reef fish, pelagic).
F. Describe the size/age range that the index applies to. Include supporting figures (e.g. size comp) if available.

2. Fishery Dependent Indices

A. Describe the data source and type of fishery (e.g. commercial handline, commercial longline, recreational hook and line etc.).
B. Describe any changes to reporting requirements, variables reported, etc.
C. Describe the variables reported in the data set (e.g. location, time, temperature, catch, effort etc.).

D Describe the size/age range that the index applies to. Include supporting figures (e.g. size comp) if available.

METHODS

1. Data Reduction and Exclusions
A. Describe any data exclusions (e.g. gears, fishing modes, sampling areas etc.). Report the number of records removed and justify removal.
B. Describe data reduction techniques (if any) used to address targeting (e.g. Stephens and MacCall, 2004; gear configuration, species assemblage etc).
C. Discuss procedures used to identify outliers. How many were identified? Were they excluded?

Working Group Comments:

Working paper DW34 describes survey design

2. Management Regulations (for FD Indices)

A. Provide (or cite) history of management regulations (e.g. bag limits, size limits, trip limits, closures etc.).
B. Describe the effects (if any) of management regulations on CPUE
C. Discuss methods used (if any) to minimize the effects of management measures on the CPUE series.

3. Describe Analysis Dataset (after exclusions and other treatments)
A. Provide tables and/or figures of number of observations by factors (including year, area, etc.) and interaction terms.
B. Include tables and/or figures of number of positive observations by factors and interaction terms.
C. Include tables and/or figures of the proportion positive observations by factors and interaction terms.
D. Include tables and/or figures of average (unstandardized) CPUE by factors and interaction terms.
E. Include annual maps of locations of survey sites (or fishing trips) and associated catch rates $\boldsymbol{O R}$ supply the raw data needed to construct these maps (Observation, Year, Latitude, Longitude (or statistical grid, area), Catch, Effort).
F. Describe the effort variable and the units. If more than one effort variable is present in the dataset, justify selection.
G. What are the units of catch (e.g. numbers or biomass, whole weight, gutted weight, kilograms, pounds).

4. Model Standardization

A. Describe model structure (e.g. delta-lognormal)
B. Describe construction of GLM components (e.g. forward selection from null etc.)
C. Describe inclusion criteria for factors and interactions terms.
D. Were YEAR*FACTOR interactions included in the model? If so, how (e.g. fixed effect, random effect)? Were random effects tested for significance using a likelihood ratio test?
E. Provide a table summarizing the construction of the GLM components.
F. Summarize model statistics of the mixed model formulation(s) (e.g. log likelihood, AIC, BIC etc.)
G. Report convergence statistics.

Working Group

Comments:
3A-G. AOD, indices from this data set were produced at the data workshop and methodology for constructing those indices was not included in the working paper. Index methods were reported verbally by the analyst.

4E,G. AOD

MODEL DIAGNOSTICS

Comment: Other model structures are possible and acceptable. Please provide appropriate diagnostics to the CPUE indices working group.

1. Binomial Component
A. Include plots of the chi-square residuals by factor.
B. Include plots of predicted and observed proportion of positive trips by year and factor (e.g. year*area)
C. Report overdispersion parameter and other fit statistics (e.g. chi-square / degrees of freedom).

2. Lognormal/Gamma Component

A. Include histogram of \log (CPUE) or a histogram of the residuals of the model on CPUE. Overlay the expected distribution.
B. Include plots describing error distribution (e.g. Studentized residuals vs. linear predictor.
C. Include QQ-plot - (e.g. Student deviance residuals vs. theoretical quantiles), Overlay expected distribution.
D. Include diagnostic plot for variance function (e.g. square root of std residuals vs. fitted values). Overlay expected distribution.
E. Include diagnostic plot for link function (e.g. linear response variable vs. linear predictor). Overlay expected distribution.
F. Include plots of the residuals by factor

3. Poisson Component
A. Report overdispersion parameter and other fit statistics (e.g. chi-square / degrees of freedom).
B. Include plots describing error distribution (e.g. Studentized residuals vs. linear predictor.
C. Include QQ-plot - (e.g. Student deviance residuals vs. theoretical quantiles), Overlay expected distribution.
D. Include diagnostic plot for variance function (e.g. square root of std residuals vs. fitted values). Overlay expected distribution.
E. Include diagnostic plot for link function (e.g. linear response variable vs. linear predictor). Overlay expected distribution.

4. Zero-inflated model
A. Include ROC curve to quantify goodness of fit.
B. Include plots describing error distribution (e.g. Studentized residuals vs. linear predictor).
C. Include QQ-plot (e.g. Student dev. residuals vs. theoretical quantiles), Overlay expected distribution.

The feasibility of this diagnostic is still under review.

Working Group Comments:

D. Include diagnostic plot for variance function (e.g. square root of std residuals vs. fitted values). Overlay expected distribution.
E. Include diagnostic plot for link function (e.g. linear response variable vs. linear predictor). Overlay expected distribution.

MODEL RESULTS

A. Tables of Nominal CPUE, Standardized CPUE, Observations, Positive Observations, Proportion Positive Observations and Coefficients of Variation (CVs). Other statistics may also be appropriate to report
B. Figure of Nominal and Standardized Indices with measure of variance (i.e. CVs).

IF MULTIPLE MODEL STRUCTURES WERE CONSIDERED:

(Note: this is always recommended but required when model diagnostics are poor.)

1. Plot of resulting indices and estimates of variance
2. Table of model statistics (e.g. AIC criteria)

	Date Received	Workshop Recommendation	Revision Deadline $* * *$	Author and Rapporteur Signatures
First Submission	$6 / 25 / 10$	accept as prepared	N/A	
Revision				

The revision deadline is negotiated by the author, the SEDAR coordinator and the CPUE rapporteur. The author DOES NOT commit to any LEGAL OBLIGATION by agreeing to submit a manuscript before this deadline. The maximum penalty for failure to submit a revised document prior to the submission deadline is rejection of the CPUE series.

Justification of Working Group Recommendation

Blacknose GOM (longline index) - recommended for use in a base model run (ranking=3)

The data set included longline, drumline, and gillnet data. Only the longline data were useful for constructing an index of abundance. Analyses were conducted during the data workshop due to late arrival of the data.

These data were fisheries independent, collected during a survey using standardized methods. The ranking was based upon the relatively short time series and limited spatial coverage of the survey.

Evaluation of Abundance Indices for SEDAR 21:
 NMFS Southeast Bottom Longline (SEDAR21-DW-39)

DESCRIPTION OF THE DATA SOURCE

1. Fishery Independent Indices
A. Describe the survey design (e.g. fixed sampling sites, random stratified sampling), location, seasons/months and years of sampling.
B. Describe sampling methodology (e.g. gear, vessel, soak time etc.)
C. Describe any changes in sampling methodology (e.g. gear, vessel, sample design etc.)
D. Describe the variables reported in the data set (e.g. location, time, temperature, catch, effort etc.).
E. What species or species assemblages are targeted by this survey (e.g. red snapper, reef fish, pelagic).
F. Describe the size/age range that the index applies to. Include supporting figures (e.g. size comp) if available

2. Fishery Dependent Indices

A. Describe the data source and type of fishery (e.g. commercial handline, commercial longline, recreational hook and line etc.).
B. Describe any changes to reporting requirements, variables reported, etc.
C. Describe the variables reported in the data set (e.g. location, time, temperature, catch, effort etc.).

D Describe the size/age range that the index applies to. Include supporting figures (e.g. size comp) if available.

METHODS

1. Data Reduction and Exclusions
A. Describe any data exclusions (e.g. gears, fishing modes, sampling areas etc.). Report the number of records removed and justify removal.
B. Describe data reduction techniques (if any) used to address targeting (e.g. Stephens and MacCall, 2004; gear configuration, species assemblage etc).
C. Discuss procedures used to identify outliers. How many were identified? Were they excluded?

Working Group Comments:

2. Management Regulations (for FD Indices)

A. Provide (or cite) history of management regulations (e.g. bag limits, size limits, trip limits, closures etc.).
B. Describe the effects (if any) of management regulations on CPUE
C. Discuss methods used (if any) to minimize the effects of management measures on the CPUE series.

3. Describe Analysis Dataset (after exclusions and other treatments)
A. Provide tables and/or figures of number of observations by factors (including year, area, etc.) and interaction terms.
B. Include tables and/or figures of number of positive observations by factors and interaction terms.
C. Include tables and/or figures of the proportion positive observations by factors and interaction terms.
D. Include tables and/or figures of average (unstandardized) CPUE by factors and interaction terms.
E. Include annual maps of locations of survey sites (or fishing trips) and associated catch rates $\boldsymbol{O R}$ supply the raw data needed to construct these maps (Observation, Year, Latitude, Longitude (or statistical grid, area), Catch, Effort).
F. Describe the effort variable and the units. If more than one effort variable is present in the dataset, justify selection.
G. What are the units of catch (e.g. numbers or biomass, whole weight, gutted weight, kilograms, pounds).

4. Model Standardization

A. Describe model structure (e.g. delta-lognormal)
B. Describe construction of GLM components (e.g. forward selection from null etc.)
C. Describe inclusion criteria for factors and interactions terms.
D. Were YEAR*FACTOR interactions included in the model? If so, how (e.g. fixed effect, random effect)? Were random effects tested for significance using a likelihood ratio test?
E. Provide a table summarizing the construction of the GLM components.
F. Summarize model statistics of the mixed model formulation(s) (e.g. log likelihood, AIC, BIC etc.)
G. Report convergence statistics.

Working Group

Comments:

MODEL DIAGNOSTICS

Comment: Other model structures are possible and acceptable. Please provide appropriate diagnostics to the CPUE indices working group.

1. Binomial Component
A. Include plots of the chi-square residuals by factor.
B. Include plots of predicted and observed proportion of positive trips by year and factor (e.g. year*area)
C. Report overdispersion parameter and other fit statistics (e.g. chi-square / degrees of freedom).

2. Lognormal/Gamma Component

A. Include histogram of \log (CPUE) or a histogram of the residuals of the model on CPUE. Overlay the expected distribution.
B. Include plots describing error distribution (e.g. Studentized residuals vs. linear predictor.
C. Include QQ-plot - (e.g. Student deviance residuals vs. theoretical quantiles), Overlay expected distribution.
D. Include diagnostic plot for variance function (e.g. square root of std residuals vs. fitted values). Overlay expected distribution.
E. Include diagnostic plot for link function (e.g. linear response variable vs. linear predictor). Overlay expected distribution.
F. Include plots of the residuals by factor

3. Poisson Component
A. Report overdispersion parameter and other fit statistics (e.g. chi-square / degrees of freedom).
B. Include plots describing error distribution (e.g. Studentized residuals vs. linear predictor.
C. Include QQ-plot - (e.g. Student deviance residuals vs. theoretical quantiles), Overlay expected distribution.
D. Include diagnostic plot for variance function (e.g. square root of std residuals vs. fitted values). Overlay expected distribution.
E. Include diagnostic plot for link function (e.g. linear response variable vs. linear predictor). Overlay expected distribution.

4. Zero-inflated model
A. Include ROC curve to quantify goodness of fit.
B. Include plots describing error distribution (e.g. Studentized residuals vs. linear predictor).
C. Include QQ-plot (e.g. Student dev. residuals vs. theoretical quantiles), Overlay expected distribution.

The feasibility of this diagnostic is still under review.

Working Group
 Comments:

D. Include diagnostic plot for variance function (e.g. square root of std residuals vs. fitted values). Overlay expected distribution.
E. Include diagnostic plot for link function (e.g. linear response variable vs. linear predictor). Overlay expected distribution.

MODEL RESULTS

A. Tables of Nominal CPUE, Standardized CPUE, Observations, Positive Observations, Proportion Positive Observations and Coefficients of Variation (CVs). Other statistics may also be appropriate to report
B. Figure of Nominal and Standardized Indices with measure of variance (i.e. CVs).

IF MULTIPLE MODEL STRUCTURES WERE CONSIDERED:

(Note: this is always recommended but required when model diagnostics are poor.)

1. Plot of resulting indices and estimates of variance
2. Table of model statistics (e.g. AIC criteria)

	Date Received	Workshop Recommendation	Revision Deadline $* * *$	Author and Rapporteur Signatures
First Submission	$6 / 21 / 10$	accept as submitted		
Revision				

The revision deadline is negotiated by the author, the SEDAR coordinator and the CPUE rapporteur. The author DOES NOT commit to any LEGAL OBLIGATION by agreeing to submit a manuscript before this deadline. The maximum penalty for failure to submit a revised document prior to the submission deadline is rejection of the CPUE series.

Justification of Working Group Recommendation

This is a fisheries independent data set that includes a long time series of data and large spatial coverage (TX-NC).

Blacknose south Atlantic - recommend for use in base model (ranking=1)
Blacknose Gulf of Mexico - recommend for use in base model (ranking=1)

Blacknose SA \& GOM - recommend for use in base model (ranking=1)

Sandbar SA \& GOM - recommend for use in base model (ranking=1)

Dusky south Atlantic - do not use due to very small sample size (11 individuals)

Dusky Gulf of Mexico - do not use due to very small sample size (11 individuals)
Dusky SA \& GOM - do not use due to very small sample size (11 individuals)

Evaluation of Abundance Indices for SEDAR 21:
 Coastal Fishery Logbook Gillnet (SEDAR21-DW-40)

DESCRIPTION OF THE DATA SOURCE

1. Fishery Independent Indices
A. Describe the survey design (e.g. fixed sampling sites, random stratified sampling), location, seasons/months and years of sampling
B. Describe sampling methodology (e.g. gear, vessel, soak time etc.)
C. Describe any changes in sampling methodology (e.g gear, vessel, sample design etc.)
D. Describe the variables reported in the data set (e.g. location, time, temperature, catch, effort etc.)
E. What species or species assemblages are targeted by this survey (e.g. red snapper, reef fish, pelagic).
F. Describe the size/age range that the index applies to. Include supporting figures (e.g. size comp) if available

2. Fishery Dependent Indices

A. Describe the data source and type of fishery (e.g. commercial handline, commercial longline, recreational hook and line etc.).
B. Describe any changes to reporting requirements, variables reported, etc.
C. Describe the variables reported in the data set (e.g. location, time, temperature, catch, effort etc.).

D Describe the size/age range that the index applies to. Include supporting figures (e.g. size comp) if available.

METHODS

1. Data Reduction and Exclusions
A. Describe any data exclusions (e.g. gears, fishing modes, sampling areas etc.). Report the number of records removed and justify removal.
B. Describe data reduction techniques (if any) used to address targeting (e.g. Stephens and MacCall, 2004; gear configuration, species assemblage etc).
C. Discuss procedures used to identify outliers. How many were identified? Were they excluded?

Working Group Comments:

2D unknown, data are pounds landed no size data reported

2. Management Regulations (for FD Indices)

A. Provide (or cite) history of management regulations (e.g. bag limits, size limits, trip limits, closures etc.).
B. Describe the effects (if any) of management regulations on CPUE
C. Discuss methods used (if any) to minimize the effects of management measures on the CPUE series.

3. Describe Analysis Dataset (after exclusions and other treatments)
A. Provide tables and/or figures of number of observations by factors (including year, area, etc.) and interaction terms.
B. Include tables and/or figures of number of positive observations by factors and interaction terms.
C. Include tables and/or figures of the proportion positive observations by factors and interaction terms.
D. Include tables and/or figures of average (unstandardized) CPUE by factors and interaction terms.
E. Include annual maps of locations of survey sites (or fishing trips) and associated catch rates $\boldsymbol{O R}$ supply the raw data needed to construct these maps (Observation, Year, Latitude, Longitude (or statistical grid, area), Catch, Effort).
F. Describe the effort variable and the units. If more than one effort variable is present in the dataset, justify selection.
G. What are the units of catch (e.g. numbers or biomass, whole weight, gutted weight, kilograms, pounds).

4. Model Standardization

A. Describe model structure (e.g. delta-lognormal)
B. Describe construction of GLM components (e.g. forward selection from null etc.)
C. Describe inclusion criteria for factors and interactions terms.
D. Were YEAR*FACTOR interactions included in the model? If so, how (e.g. fixed effect, random effect)? Were random effects tested for significance using a likelihood ratio test?
E. Provide a table summarizing the construction of the GLM components.
F. Summarize model statistics of the mixed model formulation(s) (e.g. log likelihood, AIC, BIC etc.)
G. Report convergence statistics.

Working Group

Comments:
2B,C No size limit, used open
season, No trip limit used as there was no way to account for number of sharks caught (1999-2009 limit of $16 \mathrm{scs} /$ pelagic sharks for combined/trip for incidental permit holders).
3A-E. confidential data
4F,G. AOD

MODEL DIAGNOSTICS

Comment: Other model structures are possible and acceptable. Please provide appropriate diagnostics to the CPUE indices working group.

1. Binomial Component
A. Include plots of the chi-square residuals by factor.
B. Include plots of predicted and observed proportion of positive trips by year and factor (e.g. year*area)
C. Report overdispersion parameter and other fit statistics (e.g. chi-square / degrees of freedom).

2. Lognormal/Gamma Component

A. Include histogram of \log (CPUE) or a histogram of the residuals of the model on CPUE. Overlay the expected distribution.
B. Include plots describing error distribution (e.g. Studentized residuals vs. linear predictor.
C. Include QQ-plot - (e.g. Student deviance residuals vs. theoretical quantiles), Overlay expected distribution.
D. Include diagnostic plot for variance function (e.g. square root of std residuals vs. fitted values). Overlay expected distribution.
E. Include diagnostic plot for link function (e.g. linear response variable vs. linear predictor). Overlay expected distribution.
F. Include plots of the residuals by factor

3. Poisson Component
A. Report overdispersion parameter and other fit statistics (e.g. chi-square / degrees of freedom).
B. Include plots describing error distribution (e.g. Studentized residuals vs. linear predictor.
C. Include QQ-plot - (e.g. Student deviance residuals vs. theoretical quantiles), Overlay expected distribution.
D. Include diagnostic plot for variance function (e.g. square root of std residuals vs. fitted values). Overlay expected distribution.
E. Include diagnostic plot for link function (e.g. linear response variable vs. linear predictor). Overlay expected distribution.

4. Zero-inflated model
A. Include ROC curve to quantify goodness of fit.
B. Include plots describing error distribution (e.g. Studentized residuals vs. linear predictor).
C. Include QQ-plot (e.g. Student dev. residuals vs. theoretical quantiles), Overlay expected distribution.

The feasibility of this diagnostic is still under review.

Working Group
 Comments:

D. Include diagnostic plot for variance function (e.g. square root of std residuals vs. fitted values). Overlay expected distribution.
E. Include diagnostic plot for link function (e.g. linear response variable vs. linear predictor). Overlay expected distribution.

MODEL RESULTS

A. Tables of Nominal CPUE, Standardized CPUE, Observations, Positive Observations, Proportion Positive Observations and Coefficients of Variation (CVs). Other statistics may also be appropriate to report
B. Figure of Nominal and Standardized Indices with measure of variance (i.e. CVs).

IF MULTIPLE MODEL STRUCTURES WERE CONSIDERED:

(Note: this is always recommended but required when model diagnostics are poor.)

1. Plot of resulting indices and estimates of variance
2. Table of model statistics (e.g. AIC criteria)

	Date Received	Workshop Recommendation	Revision Deadline $* * *$	Author and Rapporteur Signatures
First Submission	$06 / 24 / 10$	Accept	NA	
Revision				

The revision deadline is negotiated by the author, the SEDAR coordinator and the CPUE rapporteur. The author DOES NOT commit to any LEGAL OBLIGATION by agreeing to submit a manuscript before this deadline. The maximum penalty for failure to submit a revised document prior to the submission deadline is rejection of the CPUE series.

Justification of Working Group Recommendation

Blacknose fisheries dependent gillnet index was recommended for base case due to longer time series data than sink gillnet observer data. Those two indices were constructed using fishery dependent data from the same fishery. (ranking=5)

Evaluation of Abundance Indices for SEDAR 21:

Coastal Fishery Logbook Longline (Sandbar) (SEDAR21-DW-41)

DESCRIPTION OF THE DATA SOURCE

1. Fishery Independent Indices
A. Describe the survey design (e.g. fixed sampling sites, random stratified sampling), location, seasons/months and years of sampling.
B. Describe sampling methodology (e.g. gear, vessel, soak time etc.)
C. Describe any changes in sampling methodology (e.g. gear, vessel, sample design etc.)
D. Describe the variables reported in the data set (e.g. location, time, temperature, catch, effort etc.).
E. What species or species assemblages are targeted by this survey (e.g. red snapper, reef fish, pelagic).
F. Describe the size/age range that the index applies to. Include supporting figures (e.g. size comp) if available.

2. Fishery Dependent Indices

A. Describe the data source and type of fishery (e.g. commercial handline, commercial longline, recreational hook and line etc.).
B. Describe any changes to reporting requirements, variables reported, etc.
C. Describe the variables reported in the data set (e.g. location, time, temperature, catch, effort etc.).

D Describe the size/age range that the index applies to. Include supporting figures (e.g. size comp) if available.

METHODS

1. Data Reduction and Exclusions
A. Describe any data exclusions (e.g. gears, fishing modes, sampling areas etc.). Report the number of records removed and justify removal.
B. Describe data reduction techniques (if any) used to address targeting (e.g. Stephens and MacCall, 2004; gear configuration, species assemblage etc).
C. Discuss procedures used to identify outliers. How many were identified? Were they excluded?

Working Group Comments:

2D unknown, data

 are pounds landed no size data reported
2. Management Regulations (for FD Indices)

A. Provide (or cite) history of management regulations (e.g. bag limits, size limits, trip limits, closures etc.).
B. Describe the effects (if any) of management regulations on CPUE
C. Discuss methods used (if any) to minimize the effects of management measures on the CPUE series.

3. Describe Analysis Dataset (after exclusions and other treatments)
A. Provide tables and/or figures of number of observations by factors (including year, area, etc.) and interaction terms.
B. Include tables and/or figures of number of positive observations by factors and interaction terms.
C. Include tables and/or figures of the proportion positive observations by factors and interaction terms.
D. Include tables and/or figures of average (unstandardized) CPUE by factors and interaction terms.
E. Include annual maps of locations of survey sites (or fishing trips) and associated catch rates $\boldsymbol{O R}$ supply the raw data needed to construct these maps (Observation, Year, Latitude, Longitude (or statistical grid, area), Catch, Effort).
F. Describe the effort variable and the units. If more than one effort variable is present in the dataset, justify selection.
G. What are the units of catch (e.g. numbers or biomass, whole weight, gutted weight, kilograms, pounds).

4. Model Standardization

A. Describe model structure (e.g. delta-lognormal)
B. Describe construction of GLM components (e.g. forward selection from null etc.)
C. Describe inclusion criteria for factors and interactions terms.
D. Were YEAR*FACTOR interactions included in the model? If so, how (e.g. fixed effect, random effect)? Were random effects tested for significance using a likelihood ratio test?
E. Provide a table summarizing the construction of the GLM components.
F. Summarize model statistics of the mixed model formulation(s) (e.g. log likelihood, AIC, BIC etc.)
G. Report convergence statistics.

Working Group

Comments:
2B, C add comment 3A-E. confidential data
4F,G. AOD

MODEL DIAGNOSTICS

Comment: Other model structures are possible and acceptable. Please provide appropriate diagnostics to the CPUE indices working group.

1. Binomial Component
A. Include plots of the chi-square residuals by factor.
B. Include plots of predicted and observed proportion of positive trips by year and factor (e.g. year*area)
C. Report overdispersion parameter and other fit statistics (e.g. chi-square / degrees of freedom).

2. Lognormal/Gamma Component

A. Include histogram of \log (CPUE) or a histogram of the residuals of the model on CPUE. Overlay the expected distribution.
B. Include plots describing error distribution (e.g. Studentized residuals vs. linear predictor.
C. Include QQ-plot - (e.g. Student deviance residuals vs. theoretical quantiles), Overlay expected distribution.
D. Include diagnostic plot for variance function (e.g. square root of std residuals vs. fitted values). Overlay expected distribution.
E. Include diagnostic plot for link function (e.g. linear response variable vs. linear predictor). Overlay expected distribution.
F. Include plots of the residuals by factor

3. Poisson Component
A. Report overdispersion parameter and other fit statistics (e.g. chi-square / degrees of freedom).
B. Include plots describing error distribution (e.g. Studentized residuals vs. linear predictor.
C. Include QQ-plot - (e.g. Student deviance residuals vs. theoretical quantiles), Overlay expected distribution.
D. Include diagnostic plot for variance function (e.g. square root of std residuals vs. fitted values). Overlay expected distribution.
E. Include diagnostic plot for link function (e.g. linear response variable vs. linear predictor). Overlay expected distribution.

4. Zero-inflated model
A. Include ROC curve to quantify goodness of fit.
B. Include plots describing error distribution (e.g. Studentized residuals vs. linear predictor).
C. Include QQ-plot (e.g. Student dev. residuals vs. theoretical quantiles), Overlay expected distribution.

The feasibility of this diagnostic is still under review.

Working Group
 Comments:

D. Include diagnostic plot for variance function (e.g. square root of std residuals vs. fitted values). Overlay expected distribution.
E. Include diagnostic plot for link function (e.g. linear response variable vs. linear predictor). Overlay expected distribution.

MODEL RESULTS

A. Tables of Nominal CPUE, Standardized CPUE, Observations, Positive Observations, Proportion Positive Observations and Coefficients of Variation (CVs). Other statistics may also be appropriate to report
B. Figure of Nominal and Standardized Indices with measure of variance (i.e. CVs).

IF MULTIPLE MODEL STRUCTURES WERE CONSIDERED:

(Note: this is always recommended but required when model diagnostics are poor.)

1. Plot of resulting indices and estimates of variance
2. Table of model statistics (e.g. AIC criteria)

	Date Received	Workshop Recommendation	Revision Deadline $* * *$	Author and Rapporteur Signatures
First Submission	$6 / 21 / 10$	accept as submitted		
Revision				

The revision deadline is negotiated by the author, the SEDAR coordinator and the CPUE rapporteur. The author DOES NOT commit to any LEGAL OBLIGATION by agreeing to submit a manuscript before this deadline. The maximum penalty for failure to submit a revised document prior to the submission deadline is rejection of the CPUE series.

Justification of Working Group Recommendation

Sandbar - this index was recommended for use in a sensitivity model run (ranking=1).
This data set includes fishery dependent, self-reported data. The time series of these data is long (1992-2007) and the spatial coverage is broad (TX-NC), however observer data are available for the fishery. The working group recommended the index constructed from those observer data for use in a base run of the model rather than the index constructed using self-reported data. The working group believed that observer data were more accurate than self-reported data.

Evaluation of Abundance Indices for SEDAR 21: NMFS SEAMAP Groundfish Trawl (SEDAR21-DW-43)

DESCRIPTION OF THE DATA SOURCE

1. Fishery Independent Indices
A. Describe the survey design (e.g. fixed sampling sites, random stratified sampling), location, seasons/months and years of sampling.
B. Describe sampling methodology (e.g. gear, vessel, soak time etc.)
C. Describe any changes in sampling methodology (e.g. gear, vessel, sample design etc.)
D. Describe the variables reported in the data set (e.g. location, time, temperature, catch, effort etc.).
E. What species or species assemblages are targeted by this survey (e.g. red snapper, reef fish, pelagic).
F. Describe the size/age range that the index applies to. Include supporting figures (e.g. size comp) if available.

2. Fishery Dependent Indices

A. Describe the data source and type of fishery (e.g. commercial handline, commercial longline, recreational hook and line etc.).
B. Describe any changes to reporting requirements, variables reported, etc.
C. Describe the variables reported in the data set (e.g. location, time, temperature, catch, effort etc.).

D Describe the size/age range that the index applies to. Include supporting figures (e.g. size comp) if available.

METHODS

1. Data Reduction and Exclusions
A. Describe any data exclusions (e.g. gears, fishing modes, sampling areas etc.). Report the number of records removed and justify removal.
B. Describe data reduction techniques (if any) used to address targeting (e.g. Stephens and MacCall, 2004; gear configuration, species assemblage etc).
C. Discuss procedures used to identify outliers. How many were identified? Were they excluded?

Working Group Comments:

2. Management Regulations (for FD Indices)

A. Provide (or cite) history of management regulations (e.g. bag limits, size limits, trip limits, closures etc.).
B. Describe the effects (if any) of management regulations on CPUE
C. Discuss methods used (if any) to minimize the effects of management measures on the CPUE series.

3. Describe Analysis Dataset (after exclusions and other treatments)
A. Provide tables and/or figures of number of observations by factors (including year, area, etc.) and interaction terms.
B. Include tables and/or figures of number of positive observations by factors and interaction terms.
C. Include tables and/or figures of the proportion positive observations by factors and interaction terms.
D. Include tables and/or figures of average (unstandardized) CPUE by factors and interaction terms.
E. Include annual maps of locations of survey sites (or fishing trips) and associated catch rates $\boldsymbol{O R}$ supply the raw data needed to construct these maps (Observation, Year, Latitude, Longitude (or statistical grid, area), Catch, Effort).
F. Describe the effort variable and the units. If more than one effort variable is present in the dataset, justify selection.
G. What are the units of catch (e.g. numbers or biomass, whole weight, gutted weight, kilograms, pounds).

4. Model Standardization

A. Describe model structure (e.g. delta-lognormal)
B. Describe construction of GLM components (e.g. forward selection from null etc.)
C. Describe inclusion criteria for factors and interactions terms.
D. Were YEAR*FACTOR interactions included in the model? If so, how (e.g. fixed effect, random effect)? Were random effects tested for significance using a likelihood ratio test?
E. Provide a table summarizing the construction of the GLM components.
F. Summarize model statistics of the mixed model formulation(s) (e.g. log likelihood, AIC, BIC etc.)
G. Report convergence statistics.

Working Group
Comments:

3A-D. AOD

4A. general Bayesian Lo et al. method

4G. AOD.

MODEL DIAGNOSTICS

Comment: Other model structures are possible and acceptable. Please provide appropriate diagnostics to the CPUE indices working group.

1. Binomial Component
A. Include plots of the chi-square residuals by factor.
B. Include plots of predicted and observed proportion of positive trips by year and factor (e.g. year*area)
C. Report overdispersion parameter and other fit statistics (e.g. chi-square / degrees of freedom).

2. Lognormal/Gamma Component

A. Include histogram of \log (CPUE) or a histogram of the residuals of the model on CPUE. Overlay the expected distribution.
B. Include plots describing error distribution (e.g. Studentized residuals vs. linear predictor.
C. Include QQ-plot - (e.g. Student deviance residuals vs. theoretical quantiles), Overlay expected distribution.
D. Include diagnostic plot for variance function (e.g. square root of std residuals vs. fitted values). Overlay expected distribution.
E. Include diagnostic plot for link function (e.g. linear response variable vs. linear predictor). Overlay expected distribution.
F. Include plots of the residuals by factor

3. Poisson Component

A. Report overdispersion parameter and other fit statistics (e.g. chi-square / degrees of freedom).
B. Include plots describing error distribution (e.g. Studentized residuals vs. linear predictor.
C. Include QQ-plot - (e.g. Student deviance residuals vs. theoretical quantiles), Overlay expected distribution.
D. Include diagnostic plot for variance function (e.g. square root of std residuals vs. fitted values). Overlay expected distribution.
E. Include diagnostic plot for link function (e.g. linear response variable vs. linear predictor). Overlay expected distribution.
4. Zero-inflated model
A. Include ROC curve to quantify goodness of fit.
B. Include plots describing error distribution (e.g. Studentized residuals vs. linear predictor).
C. Include QQ-plot (e.g. Student dev. residuals vs. theoretical quantiles), Overlay expected distribution.

Working Group Comments:

Frequentist diagnostics were not applicable for this Bayesian analysis.

Diagnostics examined included: posterior probabilities and credible intervals. Also examined, and judged to be sufficient, were mixing of the model and burn-in period.

The feasibility of this diagnostic is still under review.

Working Group Comments:

D. Include diagnostic plot for variance function (e.g. square root of std residuals vs. fitted values). Overlay expected distribution.
E. Include diagnostic plot for link function (e.g. linear response variable vs. linear predictor). Overlay expected distribution.

MODEL RESULTS

A. Tables of Nominal CPUE, Standardized CPUE, Observations, Positive Observations, Proportion Positive Observations and Coefficients of Variation (CVs). Other statistics may also be appropriate to report
B. Figure of Nominal and Standardized Indices with measure of variance (i.e. CVs).

IF MULTIPLE MODEL STRUCTURES WERE CONSIDERED:

(Note: this is always recommended but required when model diagnostics are poor.)

1. Plot of resulting indices and estimates of variance
2. Table of model statistics (e.g. AIC criteria)

	Date Received	Workshop Recommendation	Revision Deadline 	Author and Rapporteur Signatures
First Submission	$6 / 21 / 2010$	accept as prepared	N/A	
Revision				

The revision deadline is negotiated by the author, the SEDAR coordinator and the CPUE rapporteur. The author DOES NOT commit to any LEGAL OBLIGATION by agreeing to submit a manuscript before this deadline. The maximum penalty for failure to submit a revised document prior to the submission deadline is rejection of the CPUE series.

Justification of Working Group Recommendation

Blacknose GOM - recommended for use in base model run (ranking=2)

These data were collected from a fishery independent survey. The ranking was based upon the relatively extensive spatial coverage (TX-AL) and long time series (1987-2009) of those data. The survey used standardized methods with all changes in methodology known and accounted for in the analysis.

Evaluation of Abundance Indices for SEDAR 21:
 Large Pelagic Survey (SEDAR21-DW-44)

DESCRIPTION OF THE DATA SOURCE

1. Fishery Independent Indices

A. Describe the survey design (e.g. fixed sampling sites, random stratified sampling), location, seasons/months and years of sampling
B. Describe sampling methodology (e.g. gear, vessel, soak time etc.)
C. Describe any changes in sampling methodology (e.g. gear, vessel, sample design etc.)
D. Describe the variables reported in the data set (e.g location, time, temperature, catch, effort etc.)
E. What species or species assemblages are targeted by this survey (e.g. red snapper, reef fish, pelagic).
F. Describe the size/age range that the index applies to. Include supporting figures (e.g. size comp) if available

2. Fishery Dependent Indices

A. Describe the data source and type of fishery (e.g. commercial handline, commercial longline, recreational hook and line etc.).
B. Describe any changes to reporting requirements, variables reported, etc.
C. Describe the variables reported in the data set (e.g. location, time, temperature, catch, effort etc.).

D Describe the size/age range that the index applies to. Include supporting figures (e.g. size comp) if available.

METHODS

1. Data Reduction and Exclusions
A. Describe any data exclusions (e.g. gears, fishing modes, sampling areas etc.). Report the number of records removed and justify removal.
B. Describe data reduction techniques (if any) used to address targeting (e.g. Stephens and MacCall, 2004; gear configuration, species assemblage etc).
C. Discuss procedures used to identify outliers. How many were identified? Were they excluded?

2. Management Regulations (for FD Indices)

A. Provide (or cite) history of management regulations (e.g. bag limits, size limits, trip limits, closures etc.).
B. Describe the effects (if any) of management regulations on CPUE
C. Discuss methods used (if any) to minimize the effects of management measures on the CPUE series.

3. Describe Analysis Dataset (after exclusions and other treatments)
A. Provide tables and/or figures of number of observations by factors (including year, area, etc.) and interaction terms.
B. Include tables and/or figures of number of positive observations by factors and interaction terms.
C. Include tables and/or figures of the proportion positive observations by factors and interaction terms.
D. Include tables and/or figures of average (unstandardized) CPUE by factors and interaction terms.
E. Include annual maps of locations of survey sites (or fishing trips) and associated catch rates $\boldsymbol{O R}$ supply the raw data needed to construct these maps (Observation, Year, Latitude, Longitude (or statistical grid, area), Catch, Effort).
F. Describe the effort variable and the units. If more than one effort variable is present in the dataset, justify selection.
G. What are the units of catch (e.g. numbers or biomass, whole weight, gutted weight, kilograms, pounds).

4. Model Standardization

A. Describe model structure (e.g. delta-lognormal)
B. Describe construction of GLM components (e.g. forward selection from null etc.)
C. Describe inclusion criteria for factors and interactions terms.
D. Were YEAR*FACTOR interactions included in the model? If so, how (e.g. fixed effect, random effect)? Were random effects tested for significance using a likelihood ratio test?
E. Provide a table summarizing the construction of the GLM components.
F. Summarize model statistics of the mixed model formulation(s) (e.g. log likelihood, AIC, BIC etc.)
G. Report convergence statistics.

Working Group
Comments:

3E confidential data

MODEL DIAGNOSTICS

Comment: Other model structures are possible and acceptable. Please provide appropriate diagnostics to the CPUE indices working group.

1. Binomial Component
A. Include plots of the chi-square residuals by factor.
B. Include plots of predicted and observed proportion of positive trips by year and factor (e.g. year*area)
C. Report overdispersion parameter and other fit statistics (e.g. chi-square / degrees of freedom).

2. Lognormal/Gamma Component

A. Include histogram of \log (CPUE) or a histogram of the residuals of the model on CPUE. Overlay the expected distribution.
B. Include plots describing error distribution (e.g. Studentized residuals vs. linear predictor.
C. Include QQ-plot - (e.g. Student deviance residuals vs. theoretical quantiles), Overlay expected distribution.
D. Include diagnostic plot for variance function (e.g. square root of std residuals vs. fitted values). Overlay expected distribution.
E. Include diagnostic plot for link function (e.g. linear response variable vs. linear predictor). Overlay expected distribution.
F. Include plots of the residuals by factor

3. Poisson Component
A. Report overdispersion parameter and other fit statistics (e.g. chi-square / degrees of freedom).
B. Include plots describing error distribution (e.g. Studentized residuals vs. linear predictor.
C. Include QQ-plot - (e.g. Student deviance residuals vs. theoretical quantiles), Overlay expected distribution.
D. Include diagnostic plot for variance function (e.g. square root of std residuals vs. fitted values). Overlay expected distribution.
E. Include diagnostic plot for link function (e.g. linear response variable vs. linear predictor). Overlay expected distribution.

4. Zero-inflated model
A. Include ROC curve to quantify goodness of fit.
B. Include plots describing error distribution (e.g. Studentized residuals vs. linear predictor)
C. Include QQ-plot (e.g. Student dev. residuals vs. theoretical quantiles), Overlay expected distribution.

The feasibility of this diagnostic is still under review.

Working Group
 Comments:

D. Include diagnostic plot for variance function (e.g. square root of std residuals vs. fitted values). Overlay expected distribution.
E. Include diagnostic plot for link function (e.g. linear response variable vs. linear predictor). Overlay expected distribution.

MODEL RESULTS

A. Tables of Nominal CPUE, Standardized CPUE, Observations, Positive Observations, Proportion Positive Observations and Coefficients of Variation (CVs). Other statistics may also be appropriate to report
B. Figure of Nominal and Standardized Indices with measure of variance (i.e. CVs).

IF MULTIPLE MODEL STRUCTURES WERE CONSIDERED:

(Note: this is always recommended but required when model diagnostics are poor.)

1. Plot of resulting indices and estimates of variance
2. Table of model statistics (e.g. AIC criteria)

	Date Received	Workshop Recommendation	Revision Deadline $* * *$	Author and Rapporteur Signatures
First Submission	$6 / 21 / 2010$	accept as is		
Revision				

The revision deadline is negotiated by the author, the SEDAR coordinator and the CPUE rapporteur. The author DOES NOT commit to any LEGAL OBLIGATION by agreeing to submit a manuscript before this deadline. The maximum penalty for failure to submit a revised document prior to the submission deadline is rejection of the CPUE series.

Justification of Working Group Recommendation

Sandbar - recommend for use in base model (ranking=5)
Dusky - recommend for use base model (ranking=4)
These data are fishery dependent, reported by recreational fishers during dockside or telephone interviews. Some of those data were reported from fishing tournaments, therefore size/age composition of reported catch may be affected. The working group recommended that these indices be included in base model runs, but with low weighting due to data concerns (self-reported fishery dependent, collected during tournaments).

SEDAR

Southeast Data, Assessment, and Review

SEDAR 21
 HMS Sandbar Shark

SECTION III: Assessment Process Report

January 2011

SEDAR
4055 Faber Place Drive, Suite 201
North Charleston, SC 29405

This information is distributed solely for the purpose of peer review. It does not represent and should not be construed to represent any agency determination or policy.

Table of Contents

1. WORKSHOP PROCEEDINGS.. 4
1.1. INTRODUCTION.. 4
1.1.1. Workshop time and Place .. 4
1.1.2. Terms of Reference.. 4
1.1.3. List of Participants .. 6
1.1.4. List of Assessment Process Working and Reference Papers 8
1.2. PANEL RECOMMENDATIONS AND COMMENTS .. 8
1.2.1. Term of Reference 1 ... 8
1.2.2. Term of Reference 2 ... 8
1.2.3. Term of Reference 3 .. 9
1.2.4. Term of Reference 4 .. 9
1.2.5. Term of Reference 5 .. 9
1.2.6. Term of Reference 6 ... 9
1.2.7. Term of Reference 7 ... 9
1.2.8. Term of Reference 8 .. 9
1.2.9. Term of Reference 9 .. 10
1.2.10. Term of Reference 10... 10
2. DATA REVIEW AND UPDATE ... 10
2.1. CATCHES... 10
2.1.1. Commercial Landings... 10
2.1.2. Recreational and Mexican catches... 11
2.1.3. Menhaden Fishery Discards.. 11
2.2. LENGTH COMPOSITIONS, AGE COMPOSITIONS, AND SELECTIVITIES 11
2.2.1. Catches.. 13
2.2.2. Indices of relative abundance.. 13
2.3. INDICES OF RELATIVE ABUNDANCE ... 15
2.4. LIFE HISTORY INPUTS .. 15
2.5. REFERENCES.. 16
2.6. TABLES.. 17
2.7. FIGURES .. 22
3. STOCK ASSESSMENT MODEL(S) AND RESULTS 29
3.1. MODEL 1: STATE- SPACE AGE-STRUCTURED PRODUCTION MODEL (ASPM) 29
3.1.1. Model 1 Methods 29
3.1.2. Model 1 Results 40
3.1.3. Discussion 46
3.1.4. Recommendations for data collection and future research 48
3.1.5. References 48
3.1.6. Tables 50
3.1.7. Figures 69
3.1.8. Appendix 1. Algorithm used to estimate selectivities (implemented in MS Excel). 97

1. WORKSHOP PROCEEDINGS

1.1. INTRODUCTION

1.1.1. Workshop time and Place

The SEDAR 21 Assessment Process was held via a series of webinars between September 2010 and January 2011.

1.1.2. Terms of Reference

1. Review data, including any changes since the Data Workshop, and any analyses suggested by the data workshop. Summarize data as used in each assessment model. Provide justification for any deviations from Data Workshop recommendations.
2. Develop population assessment models that are compatible with available data and recommend which model and configuration is deemed most reliable or useful for providing advice. Document all input data, assumptions, and equations.
3. Provide estimates of stock population parameters (fishing mortality, abundance, biomass, selectivity, stock-recruitment relationship, etc); include appropriate and representative measures of precision for parameter estimates.
4. Characterize uncertainty in the assessment and estimated values, considering components such as input data, modeling approach, and model configuration. Provide appropriate measures of model performance, reliability, and 'goodness of fit'.
5. Provide spawning stock fecundity and stock-recruitment evaluations, including figures and tables of complete parameters.
6. Provide estimates for benchmark and biological reference points, consistent with the Consolidated HMS FMP, proposed FMPs and Amendments, other ongoing or proposed management programs, and National Standards. This may include: evaluating existing reference points, estimating benchmarks or alternative benchmarks, as appropriate, and recommending proxy values.
7. Provide declarations of stock status based on the status determination criteria.
8. Provide stochastic projections of stock status at various harvest or exploitation levels for various timeframes.
9. Project future stock conditions (biomass, abundance, and exploitation) and develop rebuilding schedules, if warranted. Provide the estimated generation time for each unit stock. Stock projections shall be developed in accordance with the following:
A) If stock is overfished:
$\mathrm{F}=0, \mathrm{~F}=$ current, $\mathrm{F}=\mathrm{Fmsy}$, Ftarget (OY),
$\mathrm{F}=$ Frebuild (max that rebuild in allowed time)
B) If stock is undergoing overfishing:
$\mathrm{F}=0, \mathrm{~F}=$ Fcurrent, $\mathrm{F}=\mathrm{Fmsy}, \mathrm{F}=\mathrm{Ftarget}(\mathrm{OY})$,
$\mathrm{F}=$ Freduce (different reductions in F that could prevent overfishing, as appropriate)
C) If stock is neither overfished nor undergoing overfishing:
$\mathrm{F}=\mathrm{Fc}$ urrent, $\mathrm{F}=\mathrm{Fmsy}, \mathrm{F}=$ Ftarget (OY)
10. Provide recommendations for future research and data collection (field and assessment); be as specific as practicable in describing sampling design and sampling intensity and emphasize items which will improve future assessment capabilities and reliability.
11. Prepare an accessible, documented, labeled, and formatted spreadsheet containing all model parameter estimates and all relevant population information resulting from model estimates and any projection and simulation exercises. Include all data included in assessment report tables and all data that support assessment workshop figures.
12. Complete the Assessment Workshop Report (Section III of the SEDAR Stock Assessment Report). Provide a list of tasks that were not completed, who is responsible for completing each task, and when each task will be completed.

1.1.3. List of Participants

SEDAR 21: HMS Sandbar, Dusky, and Blacknose Sharks

SEDAR 21 ASSESSMENT WEBINARS ATTENDANCE REPORT

First	Last	$\begin{gathered} \text { Web1 } \\ \text { 14- } \\ \text { Sep } \\ \hline \end{gathered}$	$\begin{gathered} \text { Web2 } \\ \text { 16- } \\ \text { Sep } \\ \hline \end{gathered}$	$\begin{gathered} \text { Web3 } \\ 30- \\ \text { Sep } \\ \hline \end{gathered}$	Web4 8-Oct	$\begin{array}{r} \text { Web5 } \\ 22- \\ \text { Oct } \\ \hline \end{array}$	$\begin{gathered} \text { Web6 } \\ 26- \\ \text { Oct } \end{gathered}$	$\begin{gathered} \text { Web7 } \\ 28- \\ \text { Oct } \end{gathered}$			Web10 8-Nov	$\begin{gathered} \text { Web11 } \\ \text { 10- } \\ \text { Nov } \end{gathered}$	Web12 2-Dec	Web13 8-Dec	Web14 11-Jan
PANELISTS															
Katie	Andrews	X	X	X	X	X	X	x	X	x	X	X	X	X	X
Enric	Cortes	X	X			X	X		X	X	X	X	X	X	X
Paul	Conn	X	X	X	X	X	X		X	X	X	X	X	X	X
Frank	Hester	X	X	X	X	X	X	X		X	X	X	X	X	X
Bill	Gazey	X	X												
Beth	Babcock		X	X	X			x	X	X	X		X	X	
Yan	Jiao		X					X							X
Ivy	Baremore	x	X	X			x	X	X		X	x	X	X	X
Lori	Hale	X	X		x		X		X	X		X			
Michelle	Passerotti	X	X	X	X		X								
HMS REPRESENTATION															
Jackie	Wilson	X	X				X	X	X	X		X	X	X	X
Steve	Durkee	X	X	X	X			X	X	X	X		X	X	X
Karyl	Brewster-Geisz			X	X			X	X	X	X	X	X	X	X
STAFF															
Julie	Neer	X		X	X	X	X	X	X	X	X	X	X	X	X
OBSERVERS															
Catherine	Kilduff	X													
Clark	Gray	X		X					X					X	X
Rusty	Hudson	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Adam	Pollack	X													
John	Carlson	X							X		X	X		X	X

1.1.4. List of Assessment Process Working and Reference Papers

SEDAR21-AW-01: Hierarchical analysis of blacknose, sandbar, and dusky shark CPUE indices
SEDAR21-AW-02: Computer code for the SEDAR 21 age-structured catch-free model for dusky sharks

1.2. PANEL RECOMMENDATIONS AND COMMENTS

1.2.1. Term of Reference 1

Review data, including any changes since the Data Workshop, and any analyses suggested by the data workshop. Summarize data as used in each assessment model. Provide justification for any deviations from Data Workshop recommendations.

All changes to the data and additional analyses following the Data Workshop (DW) are reviewed in Section 2. The main changes include 1) splitting commercial catches into Gulf of Mexico and Atlantic regions, 2) using separate selectivities for these two newly derived catch streams, 3) develop an approach for calculating total discard mortality for potential use in the SS3 model, and 4) use an approach based on the maximum estimate of survival at age obtained from four life-history invariant methods to generate a vector of natural mortality (M) values. There were also additional analyses undertaken that were not discussed at the DW, including 1) development of age-length keys to transform length-frequency distributions into age-frequency distributions, 2) derivation of selectivity curves from age frequencies, and 3) exploration of the impact of using different methods to estimate M on population parameters derived from a life table.

1.2.2. Term of Reference 2

Develop population assessment models that are compatible with available data and recommend which model and configuration is deemed most reliable or useful for providing advice. Document all input data, assumptions, and equations.

The original intent was to use two stock assessment models for this assessment: 1) stock synthesis (SS3), and 2) an age-structured production model (ASPM). Since this was the first time that implementation of SS3 was attempted for any species of HMS shark and owing to limited progress in that implementation (due in part to the simultaneous assessment of four stocks of sharks under SEDAR-21), it was decided that the ASPM would be the primary model

1.2.3. Term of Reference 3

Provide estimates of stock population parameters (fishing mortality, abundance, biomass, selectivity, stock-recruitment relationship, etc); include appropriate and representative measures of precision for parameter estimates.

Estimates of assessment model parameters and their associated CVs are reported in Section 3.1.2.

1.2.4. Term of Reference 4

Characterize uncertainty in the assessment and estimated values, considering components such as input data, modeling approach, and model configuration. Provide appropriate measures of model performance, reliability, and 'goodness of fit'.

Uncertainty in the assessment and estimated values is characterized in Section 3.1.2. Fits to observed catches and relative abundance indices are also provided in section 3.1.2.

1.2.5. Term of Reference 5

Provide spawning stock fecundity and stock-recruitment evaluations, including figures and tables of complete parameters.

Spawning stock fecundity and stock-recruitment evaluations are provided in Section
3.1.2.

1.2.6. Term of Reference 6

Provide estimates for benchmark and biological reference points, consistent with the Consolidated HMS FMP, proposed FMPs and Amendments, other ongoing or proposed management programs, and National Standards. This may include: evaluating existing reference points, estimating benchmarks or alternative benchmarks, as appropriate, and recommending proxy values.

Estimates of benchmark and biological reference points are provided in Section 3.1.2.

1.2.7. Term of Reference 7

Provide declarations of stock status based on the status determination criteria.

Stock status based on the status determination criteria is reported in Section 3.1.2.
1.2.8. Term of Reference 8

Provide stochastic projections of stock status at various harvest or exploitation levels for various timeframes.

For reasons explained in Section 3.1.2, stochastic projections of stock status at various exploitation levels were not performed, but will be provided before the Review Workshop.

1.2.9. Term of Reference 9

Project future stock conditions (biomass, abundance, and exploitation) and develop rebuilding schedules, if warranted. Provide the estimated generation time for each unit stock.

For reasons explained in Section 3.1.2, projections of future stock conditions and rebuilding schedules were not developed, but will be provided, if appropriate, before the Review Workshop. Estimated generation time is provided in Section 3.1.2.

1.2.10. Term of Reference 10

Provide recommendations for future research and data collection (field and assessment); be as specific as practicable in describing sampling design and sampling intensity and emphasize items which will improve future assessment capabilities and reliability.

Recommendations by the Assessment Panel (AP) for future research and data collection are provided in Section 3.1.4.

2. DATA REVIEW AND UPDATE

2.1. CATCHES

No changes were introduced to the catch streams presented and approved at the DW with the exception of splitting the commercial+unreported catch series into Gulf of Mexico and Atlantic components. Following the peer review provided by the CIE reviewer, we also attempted to quantify uncertainty in those landings and catches that were estimated and developed two sensitivity scenarios: a low catch scenario and a high catch scenario, both of which are described in Section 3.1.1.

2.1.1. Commercial Landings

Commercial landings data used in the assessment are presented in Table 2.1 and Figure 2.1.

A full description of the landings and how they were calculated is given in the SEDAR 21 DW Report and SEDAR21-DW-09. Following discussions and recommendations by the AP, it was decided that the single "commercial+unreported" catch series should be split into a Gulf of Mexico (GOM) and an Atlantic (ATL) component to reflect capture of animals of different sizes in the two areas and assign separate selectivity patterns to each area. Computation of these two separate catch series proceeded as follows. First, for 1991-2009, commercial landings were split into GOM and ATL using the percentage by region and year from the general canvass data (Table 7 of SEDAR21-DW-09). Second, prior to 1991 there were only regional landings data for 1987-1990, but the annual percentages oscillated widely from one area to another so for 1960-1990, total commercial landings were apportioned into GOM and ATL using the average percent composition by region for the first five years with more reliable data (1991-1995). The unreported commercial catches in 1986-1991 were split into the two regions using the percent composition reported on page 3 of SEDAR21-DW-09.

2.1.2. Recreational and Mexican catches

The recreational catch data used in the assessment are presented in Table 2.1 and Figure 2.1. A full description of the catches and how they were computed is given in the SEDAR 21 DW Report and SEDAR21-DW-09. Briefly, annual catch estimates are the sum of estimates reported in the MRFSS (fish landed [A] and discarded dead [B1]), Headboat survey (fish landed) and Texas Parks and Wildlife Department survey (fish landed). Catches of sandbar sharks caught in the states of Tamaulipas and Veracruz in Mexico, assumed to have come from the USA, were as reported in the previous assessment until 2000 and came from online fisheries statistics from Conapesca for 2001-2009 (see the SEDAR 21 DW Report and SEDAR21-DW-09).

2.1.3. Menhaden Fishery Discards

This was the only series of discards incorporated into the assessment (Table 2.1 and Figure 2.1) and has a very small magnitude (less than 1,000 fish). A full description of the derivation of these estimates is given in the SEDAR 21 DW Report and SEDAR21-DW-09.

2.2. LENGTH COMPOSITIONS, AGE COMPOSITIONS, AND SELECTIVITIES

Length and age composition data were not used directly in the assessment because catch-atlength and catch-at age information is not collected for sharks. However, length-frequency
information from animals caught in scientific observer programs, recreational fishery surveys, and various fishery-independent surveys was used to generate age-frequency distributions through age-length keys (Figures 2.2 to 2.6). Although the simplest way to obtain an agefrequency distribution from a length-frequency distribution is to back-transform length into age through a growth curve (von Bertalanffy or other), this approach has multiple biases, among them that 1) any observed length $>\mathrm{L}_{\infty}$ must be eliminated or arbitrarily assigned to older ages and 2) when an observed length approaches L_{∞}, it is mathematically allocated to ages above those attainable by aged fish within the stock, yielding in some cases unreasonably old ages. The next way to obtain an age-frequency distribution from a length-frequency distribution is an agelength key, an approach that also has biases and whose main assumption is that age can be estimated from length using information contained in a previously aged sample from the population. The AP decided that age frequencies be estimated using an age-length key and recommended that other approaches (e.g., age slicing, stochastic age-frequency estimation using the VBGF [Bartoo and Parker 1983] or probabilistic methods [Goodyear 1997]) be investigated in the future, although some of these methods require more information that may not be available.

The age-frequency distributions produced were then used to estimate selectivity curves externally to the stock assessment model. Although in theory the ASPM can estimate selectivities, there are no age and very few length data available for the model to do so, and so the estimation of selectivities must be done independently of the model. The derivation of selectivities from age-frequency distributions was done under the following assumptions. With only natural mortality (M) operating, one would expect an age-frequency histogram to decline with age. However, with both M and fishing mortality (F) operating, what is observed instead is an increase in the age frequency that reflects the increase in selectivity with age up to a "fully selected" age. Beyond the "fully selected" age, all subsequent ages are expected to consistently decline because they all experience (approximately) the same F and M . The fully selected age is thus determined by looking at the age-frequency distribution and identifying the "fulcrum" or modal age class, where younger ages show an increasing frequency and all subsequent ages decrease in frequency. The specific algorithm for deriving selectivities is in Appendix 1. Based on the above, the following selectivity curves were fitted statistically or by eye (to accommodate AP members beliefs of the selectivity of a particular gear type) to each catch and CPUE series:

2.2.1. Catches

Commercial+unreported GOM-Logistic curve, with age at full selectivity of 17, and with the ascending portion of the curve prior to the inflection point covering the younger age classes.

Commercial+unreported ATL-Logistic curve, with age at full selectivity of 14, and with the ascending portion of the curve prior to the inflection point covering the younger age classes.

Recreational + Mexican-A dome-shaped selectivity curve (double logistic) corresponding to the MRFSS CPUE index was assigned to this series, with age-1 being fully selected and only the descending right limb of the curve being represented.

Menhaden fishery discards-A constant selectivity of 1 was assumed as in the previous stock assessment (but expressed in logistic form).

2.2.2. Indices of relative abundance

BLLOP (bottom longline)-Logistic curve, with age at full selectivity of 12 , and with the ascending portion of the curve prior to the inflection point covering the younger age classes.

VIMS (bottom longline) - Since the AP recognized that this was a juvenile shark survey only, a double logistic curve was assumed, with age at full selectivity of 1 followed by a descending right limb.

LPS (hook and line)-The recommendation for this index was a double logistic curve with fully selected age at 9 and with an ascending portion of the curve prior to the inflection point covering the younger age classes. The reason for the dome shape was to reflect the fact that larger, older animals could escape by breaking the monofilament line.

PLLOP (pelagic longline) - The recommendation for this index was a double logistic curve with fully selected age at 13. As above, the reason for the dome shape was to reflect the fact that larger, older animals could escape by breaking the monofilament leader.

NELL (pelagic longline)—Logistic curve with full selectivity age of 19 .
NMFS COASTSPAN LL-AGE-1+ (bottom longline)—This was also a juvenile survey, but a logistic curve with age at full selectivity of 3 was assumed.

GA COASTSPAN-LL (bottom longline)—Essentially the same as above, with the same selectivity curve.

SC COASTSPAN-LL (bottom longline)—Essentially the same as above, with the same selectivity curve.

SC DNR HISTORIC RED DRUM-LL (bottom longline)—Logistic curve with age at full selectivity of 5 , and with the ascending portion of the curve prior to the inflection point covering the younger age classes.

PC GILLNET (gillnet)—This was also a juvenile survey and a double logistic curve with age at full selectivity of 1 was assumed, followed by a descending right limb that covered the older ages as well.

NMFS SE BLL (bottom longline)—Because the age-frequency distributions from this survey and the BLLOP were very similar, the resulting selectivities were almost identical. The AP thus decided to use the same selectivity curve derived for the BLLOP index (logistic age at full selectivity of 12 , and with the ascending portion of the curve prior to the inflection point covering the younger age classes).

Logistic curves fitted to the data were:

$$
s=\frac{1}{1-e^{-\left(\frac{a-a_{50}}{b}\right)}}
$$

where a_{50} is the median selectivity age (inflection point) and b is the slope. Double logistic curves were expressed as:

$$
s=\frac{\frac{1}{1-e^{-\left(\frac{a-a_{50}}{b}\right)}} \times\left(1-\frac{1}{1-e^{-\left(\frac{a-c_{50}}{d}\right)}}\right)}{\max (\mathrm{sel})}
$$

where a_{50} and c_{50} are the ascending and descending inflection points, b and d are the ascending and descending slopes, respectively, and max (sel) is the maximum selectivity.

All selectivities used in the assessment are summarized in Table 2.2 and Figure 2.7.

2.3. INDICES OF RELATIVE ABUNDANCE

The standardized indices of relative abundance used in the assessment are presented in Table 2.3 and Figure 2.8. The Index WG of the DW recommended the use of eleven indices: eight fisheryindependent series (VIMS LL, NELL, NMFS Coastspan age-1+ LL, GA Coastspan LL, SC Coastspan LL, SCDN Historic red drum LL, PCGN, and NMFS SE LL) and three fisherydependent series (the commercial BLLOP and PLLOP observer indices and the recreational LPS), all of which were standardized by the respective authors through GLM techniques (see SEDAR 21 DW Report). Since the baseline scenario used equal weighting of the CPUE indices, the coefficients of variation (CV) associated with the standardized indices will be presented in Section 3.1.1 (Sensitivity Analyses, inverse weighting scenario).

2.4. LIFE HISTORY INPUTS

The life history inputs used in the assessment are presented in Table 2.4. These include age and growth, as well as several parameters associated with reproduction, including sex ratio, reproductive frequency, fecundity at age, maturity and maternity at age, and month of pupping, and natural mortality. The ASPM uses most life history characteristics as constants (inputs) and others are estimated parameters, which are given priors and initial values. The estimated parameters are described in the Parameters Estimated section (3.1.1.4) of the report.

All biological input values in Table 2.4 are as reported in the DW report, with the exception of natural mortality at age. The values of M recommended by the Life History WG resulted in a negative population growth rate when used in a life table (where fishing mortality was set to zero). The AP agreed that one possible strategy that resulted in a more realistic, positive population growth rate in the absence of fishing was to take the maximum of several estimates at age. These estimates came from the same life history invariant methods that were explored at the DW (Hoenig [1983], Chen and Watanabe [1989], Peterson and Wroblewski [1984], and Lorenzen [1996]), but rather than taking the average of the Peterson and Wroblewski, Chen and Watanabe, and Lorenzen methods, the maximum of the four methods mentioned was used instead. For fecundity, since the ASPM tracks only females, the number of offspring produced was divided by 2 to account for females only and again by 2.5 to account for a 2.5 year reproductive cycle agreed upon at the DW. The proportion of females in maternal condition,
rather than the proportion of mature females, was used because the latter does not account for the time it takes for a female to become pregnant and produce offspring after it reaches maturity (Walker 2005).

2.5. REFERENCES

Bartoo, N.W. and K.R. Parker. 1983. Stochastic age-frequency estimation using the von Bertalanffy growth equation. Fish. Bull. 81:91-96.

Chen, S.B. and Watanabe, S. 1989. Age dependence of natural mortality coefficient in fish population dynamics. Nippon Suisan Gak. 55:205-208.

Goodyear, C.P. 1997. Fish age determined from length: an evaluation of three methods using simulated red snapper data. Fish. Bull. 95:39-46.

Hoenig, J. M. 1983. Empirical use of longevity data to estimate mortality rates. Fish. Bull. 81:898-903.

Lorenzen, K. 1996. The relationship between body weight and natural mortality in juvenile and adult fish: a comparison of natural ecosystems and aquaculture. J. Fish Biol. 49:627-647.

Peterson, I. and Wroblewski, J.S. 1984. Mortality rates of fishes in the pelagic ecosystem. Can. J. Fish. Aquat. Sci. 41:1117-1120.

SEDAR 21-DW-09. Updated catches of sandbar, dusky, and blacknose sharks.
Walker, T. I. 2005. Reproduction in fisheries science. In: Reproductive Biology and Phylogeny of Chondrichthyans: Sharks, Batoids, and Chimaeras (Ed. W.C. Hamlett) pp. 81-127. Science Publishers Inc., Enfield, NH, USA.

2.6. TABLES

Table 2.1. Catches of sandbar shark by fleet in numbers. Catches are separated into four fisheries: commercial landings + unreported commercial catches in the GOM, commercial landings + unreported commercial catches in the ATL, recreational + Mexican catches, and menhaden fishery discards.

Year	$\begin{aligned} & \text { Com+Un } \\ & \text { (GOM) } \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { Com + Un } \\ (\mathrm{SA}) \end{gathered}$	REC+MEX	Menhaden disc
1960	59	25	65	504
1961	119	51	129	504
1962	178	76	194	504
1963	237	102	259	504
1964	297	127	323	504
1965	356	152	388	504
1966	415	178	453	504
1967	475	203	517	504
1968	534	228	582	504
1969	593	254	647	504
1970	653	279	711	504
1971	712	305	776	504
1972	771	330	841	504
1973	831	355	905	504
1974	890	381	970	504
1975	949	406	1035	504
1976	969	414	1036	504
1977	1033	442	1079	504
1978	1236	529	2310	504
1979	1807	773	25366	504
1980	3018	1291	97983	504
1981	4650	1990	138933	696
1982	4650	1990	45401	713
1983	5024	2149	426979	705
1984	6861	2936	68135	705
1985	6373	2727	75593	635
1986	18908	6918	134151	626
1987	54132	19851	37438	653
1988	78241	46440	72789	635
1989	104839	55874	34532	670
1990	87469	34971	68479	653
1991	88900	7781	44428	505
1992	69488	31105	43450	444
1993	45201	26777	32922	452
1994	86311	39963	23411	486
1995	49038	35360	35206	445
1996	32126	33419	46817	444
1997	21190	20275	49315	452
1998	32264	30391	41846	435
1999	18087	35212	27329	479
2000	16781	20544	17794	409

2001	26185	21998	42127	383
2002	27572	28788	13062	374
2003	23663	21567	9252	365
2004	18472	20667	7395	374
2005	14109	19265	6126	374
2006	22096	20022	5059	374
2007	6068	10845	10638	374
2008	668	1485	7324	374
2009	2705	1281	7026	374

Table 2.2. Selectivity curves for catches and indices of relative abundance. All were fitted by eye except where otherwise indicated. Parameters are ascending inflection point (a_{50}), ascending slope (b), descending inflection point (c_{50}), descending slope (d), and maximum selectivity (max(sel)).

Series	Selectivity	a_{50}	b	C_{50}	d	max(sel)
CATCHES						
Commercial + unreported GOM	Logistic		2			
Commercial + unreported ATL	Logistic		1			
Recreational + Mexican	Double logistic	0.02	0.2	0.5	2.5	0.45
Menhaden discards	Logistic	-120	0.2			
INDICES OF ABUNDANCE						
BLLOP	Logistic	6	1			
VIMS	Logistic	0.02	0.24	8	2	0.96
LPS	Double logistic	5	2	12.5	2.5	0.71
PLLOP	Double logistic*	8.53	0.59	23.97	2.01	1.00
NELL	Logistic*	7.67	2.04			
NMFS Coastspan age-1+	Logistic	0.02	0.5			
GA Coastspan	Logistic	0.02	0.5			
SC Coastspan	Logistic	0.02	0.5			
SC Historic Red Drum	Logistic	2.5	0.4			
PC Gillnet	Double logistic	0.02	0.2	5	1.2	0.96
NMFS SE BLL	Logistic	6	1			

* Fitted by least squares

Table 2.3. Standardized indices of relative abundance used in the baseline scenario. All indices are scaled (divided by their respective mean).

YEAR	LPS	BLLOP	VA-LL	NMFS LLSE	NMFS Coast age 1+	$\begin{gathered} \text { NMFS- } \\ \text { NE } \\ \hline \end{gathered}$	PLLOP	GACoastspan	SC- Coastspan	SCDNRRed dr	PCGN
1960	-	-	-	-	-	-	-	-	-	-	-
1961	-	-	-	-	-	-	-	-	-	-	-
1962	-	-	-	-	-	-	-	-	-	-	-
1963	-	-	-	-	-	-	-	-	-	-	-
1964	-	-	-	-	-	-	-	-		-	-
1965	-	-	-	-	-	-	-	-	-	-	-
1966	-	-	-	-	-	-	-	-	-	-	-
1967	-	-	-	-	-	-	-	-	-	-	-
1968	-	-	-	-	-	-	-	.	-	-	-
1969	-	-	-	-	-	-	-	-	-	-	-
1970	-	-	-	-	-	-	-	-	-	-	-
1971	-	-	-	-	-	-	-	-	-	-	-
1972	-	-	-	-	-	-		-	-	-	-
1973	-	-	-	-	-		-	-	-	-	-
1974	-	-	-	-	-		-	-	-	-	-
1975	-	-	1.826	-	-		-	-	-	-	-
1976	-	-	-	-	,		-	-	-	-	-
1977	-	-	1.636	-	-	-	-	-	-	-	-
1978	-	-	-	-		-	-	-	-	-	-
1979	-	-	-	-		-	-	-	-	-	-
1980	-	-	2.293	-	-	-	-	-	-	-	-
1981	-	-	2.397		-	-	-	-	-	-	-
1982	-	-			-	-	-		-	-	-
1983	-	-	-	-	-	-	-	-	-	-	-
1984	-	-	-	-	-	-	-	-	-	-	-
1985	-	-	-	-	-	-	-	-	-	-	-
1986	3.480	-	-	-	-	-	-	-	-	-	-
1987	1.024	-	-	-	-	-	-	-	-	-	-
1988	3.193	-	-	-	-	-	-	-	-	-	-
1989	3.780	-	-	-	-	-	-	-	-	-	-
1990	1.243	-	0.396	-	-	-	-	-	-	-	-
19											
SEDAR 21	SAR SE	TION III		ASSESSMENT PROCESS REPORT							

1991	2.078	-	0.558	-	-	-	-	-	-	-	-
1992	1.624	-	0.232	-	-	-	3.326	-	-	-	-
1993	0.828	-	0.749	-	-	-	2.633	-	-	-	-
1994	0.509	0.617	-	-	-	-	1.863	-	-	-	-
1995	0.440	0.658	0.885	1.855	-	-	1.500	-	-	-	-
1996	0.541	0.568	0.882	0.972	-	0.138	1.223	-	-	-	0.965
1997	0.623	0.912	0.818	1.466	-	-1	1.239	-	-	-	0.551
1998	0.170	1.003	1.335	-	-	0.835	0.876	-	0.702	0.548	1.394
1999	0.245	0.741	1.054	0.462	-	-	1.117	-	0.613	2.329	-
2000	0.294	0.438	1.000	1.084	-	-	0.408	0.156	0.105	0.226	-
2001	1.220	1.262	1.103	1.019	1.343	0.412	0.481		0.055	1.369	0.842
2002	0.418	0.524	0.596	0.798	0.465	-	0.033	-	0.222	0.903	0.812
2003	0.192	0.746	0.508	0.979	1.267	-	0.029	0.856	0.310	0.604	0.659
2004	0.111	0.582	0.682	0.767	1.261	0.319	0.554	0.963	1.748	1.322	1.611
2005	0.473	0.763	0.435	0.349	1.308	-	0.196	0.299	1.064	0.606	1.243
2006	0.150	1.073	1.079	0.446	0.677	-	0.880	1.105	1.778	1.094	-
2007	0.333	1.421	0.311	0.970	0.707	1.408	0.554	1.785	2.024	-	0.425
2008	0.395	1.064	0.958	0.839	0.219	-	0.538	1.554	2.007	-	2.022
2009	0.636	3.627	1.268	1.995	1.754	2.888	0.550	1.283	1.373	-	0.474

Table 2.4. Life history inputs used in the assessment. All these quantities are treated as constants in the model.

Age	Proportion mature	Proportion maternal	M	Fecundity
1	0.00035	0.0024	0.15431	4.2488
2	0.00068	0.0036	0.15431	4.5079
3	0.00131	0.0054	0.15431	4.7670
4	0.00253	0.0082	0.15431	5.0261
5	0.00487	0.0124	0.15431	5.2852
6	0.00935	0.0186	0.15431	5.5443
7	0.01788	0.0279	0.15431	5.8034
8	0.03393	0.0417	0.15323	6.0625
9	0.06346	0.0618	0.14812	6.3216
10	0.11562	0.0908	0.13116	6.5807
11	0.20141	0.1313	0.13116	6.8398
12	0.32730	0.1863	0.13116	7.0989
13	0.48418	0.2575	0.13116	7.3580
14	0.64424	0.3443	0.13116	7.6171
15	0.77746	0.4430	0.13099	7.8762
16	0.87079	0.5464	0.12942	8.1353
17	0.92858	0.6460	0.12806	8.3944
18	0.96166	0.7343	0.12688	8.6535
19	0.97975	0.8071	0.12586	8.9126
20	0.98940	0.8637	0.12497	9.1717
21	0.99448	0.9057	0.12419	9.4308
22	0.99713	0.9356	0.12351	9.6899
23	0.99851	0.9566	0.12291	9.9490
24	0.99923	0.9709	0.12239	10.2081
25	0.99960	0.9806	0.12193	10.4672
26	0.99979	0.9871	0.12153	10.7263
27	0.99989	0.9914	0.12117	10.9854
at birth: Reprod		1:1		
frequenc		2.5 yr		
Pupping Age vs relation	nth: size	June pups $=0.2$	1*age + 3	897
Linf		181.15 cm FL		
k		0.12		
t_{0}		-2.33		
Weight vs length relation:		$W=0.000010885 L^{3.0124}$		

2.7. FIGURES

Figure 2.1. Catches of sandbar shark by fleet. Catches are separated into four fisheries: commercial landings + unreported commercial catches in the GOM, commercial landings + unreported commercial catches in the ATL, recreational + Mexican catches, and menhaden fishery discards (this last series does not show up in the figure due to its small magnitude).

Figure 2.2. Length-frequency (left panels) and age-frequency (right panels) distributions of sandbar shark from the Shark Bottom Longline Observer Program (BLLOP) for the Gulf of Mexico (GOM) and South Atlantic (SA) regions by sex for 1994-2009. Note that the age distributions for males and females within area are very similar. Age distributions for combined sexes for each area were used to estimate selectivities that were assigned to the commercial+unreported GOM and commercial+unreported SA catch series.

Figure 2.3. Length-frequency (left panels) ând age-frequency (right panels) distributions of sandbar shark from the MRFSS for 1981-2009 and the Shark Bottom Longline Observer Program (BLLOP) for areas combined for 1994-2009. Age distributions were used to estimate selectivities that were assigned to the recreational+Mexican catch series and to the BLLOP CPUE series.

Figure 2.4. Length-frequency (left panels) and age-frequency (right panels) distributions of sandbar shark from the VIMS (1975-2009), LPS (1986-2009), PLLOP (1992-2009), and NMFS LL SE (1994-2009) programs. Age distributions were used to estimate selectivities that were assigned to the VIMS, LPS, PLLOP, and NMFS LL SE CPUE indices, respectively.

Figure 2.5. Length-frequency (left panels) and age-frequency (right panels) distributions of sandbar shark from the NMFS Coastspan age-1+ (2001-2009), GA Coastspan (2000-2009), SC Coastspan (1998-2009), and SCDNR Historic Red Drum (1998-2006) surveys. Age distributions were used to estimate selectivities that were assigned to the NMFS Coastspan age1+, GA Coastspan, SC Coastspan, and SCDNR Historic Red Drum CPUE indices, respectively.

Figure 2.6. Length-frequency (left panels) and age-frequency (right panels) distributions of sandbar shark from the NMFS LL NE (1996-2009) and PCGN (1996-2009) surveys. Age distributions were used to estimate selectivities that were assigned to the NMFS LL NE and PCGN CPUE indices, respectively.

Figure 2.7. Selectivity curves for catches (upper panel) and indices of relative abundance (bottom panel). The maturity ogive for sandbar shark has been added to the upper panel.

Figure 2.8. Indices of relative abundance used for the baseline scenario. All indices are statistically standardized and scaled (divided by their respective mean and a global mean for overlapping years for plotting purposes).

3. STOCK ASSESSMENT MODEL(S) AND RESULTS

3.1. MODEL 1: STATE- SPACE AGE-STRUCTURED PRODUCTION MODEL (ASPM)

3.1.1. Model 1 Methods

3.1.1.1. Overview

The state-space, age-structured production model (ASPM) was finally used as the primary assessment modeling approach. The ASPM has been used extensively for assessing shark stocks domestically and under the auspices of ICCAT since 2002 (see e.g. ICCAT 2005). The ASPM allows incorporation of many of the important biological (mortality, growth, reproduction) and fishery (selectivity, effort) processes in conjunction with observed catches and CPUE indices (and length and age compositions if available). Similar to the catch-free methodology used for
dusky shark (see SEDAR 21 dusky shark assessment report), a first step in applying this method is to identify a year in which the stock can be considered to be at virgin conditions. Assuming that there is some basis for deriving historic removals, one can estimate a population trajectory from virgin conditions through a more data-poor historic period when only catch or effort data are available, until a more recent year ("modern period") when more data (e.g., CPUE indices) become available for model fitting.

3.1.1.2. Data Sources

Catches, indices of abundance, length and age compositions to derive selectivities, selectivities, and biological inputs used in the ASPM are described in Section 2.

3.1.1.3. Model Configuration and Equations

To derive numbers at age for the first model year, one must define a year when the stock could be considered to be at virgin conditions. The AP set the year of virgin conditions at 1960 (vs. 1975 in the previous assessment for sandbar shark).

Population Dynamics

The dynamics of the model are described below, and are extracted (and/or modified) from Porch (2002). The model begins with the population at unexploited conditions, where the age structure is given by

$$
N_{a, y=1, m=1}= \begin{cases}R_{0} & a=1 \tag{1}\\ R_{0} \exp \left(-\sum_{j=1}^{a-1} M_{j}\right) & 1<a<A \\ R_{0} \exp \left(-\sum_{j=1}^{A-1} M_{j}\right) \\ 1-\exp \left(-M_{A}\right) & a=A\end{cases}
$$

where $\mathrm{N}_{\mathrm{a}, \mathrm{y}, 1}$ is the number of sharks in each age class in the first model year ($\mathrm{y}=1$), in the first month ($m=1$), M_{a} is natural mortality at age, A is the plus-group age, and recruitment (R) is assumed to occur at age 1 .

The stock-recruit relationship was assumed to be a Beverton-Holt function, which was parameterized in terms of the maximum lifetime reproductive rate, α :
(2) $\quad R=\frac{R_{0} S \alpha}{S_{0}+(\alpha-1) S}$

In (2), R_{0} and S_{0} are virgin number of recruits (age- 1 pups) and spawners (units are number of mature adult females times pup production at age), respectively. The parameter α is calculated as:

$$
\begin{equation*}
\alpha=e^{-M_{0}}\left[\left(\sum_{a=1}^{A-1} p_{a} m_{a} \prod_{j=1}^{a-1} e^{-M_{a}}\right)+\frac{p_{A} m_{A}}{1-e^{-M_{A}}} e^{-M_{A}}\right]=e^{-M_{0}} \varphi_{0} \tag{3}
\end{equation*}
$$

where p_{a} is pup-production at age a, m_{a} is maturity at age a, and M_{a} is natural mortality at age a. The first term in (3) is pup survival at low population density (Myers et al. 1999). Thus, α is virgin spawners per recruit $\left(\varphi_{0}\right)$ scaled by the slope at the origin (pup-survival).

The time period from the first model year $\left(y_{1}\right)$ to the last model year $\left(y_{T}\right)$ is divided into a historic and a modern period (mod), where y_{i} for $\mathrm{i}<\bmod$ are historic years, and modern years are y_{i} for which $\bmod \leq \mathrm{i} \leq \mathrm{T}$. The historic period is characterized by having relatively fewer data compared to the modern period. The manner in which effort is estimated depends on the period modeled. In the historic period, effort is estimated as either a constant (4a) or a linear trend (4b)
(4a) $f_{y, i}=b_{0}$ (constant effort)
or
(4b) $\quad f_{y, i}=b_{0}+\frac{\left(f_{y=\bmod , i}-b_{0}\right)}{\left(y_{\bmod }-1\right)} f_{y=\bmod , i} \quad$ (linear effort),
where $\mathrm{f}_{\mathrm{y}, \mathrm{i}}$ is annual fleet-specific effort, b_{0} is the intercept, and $\mathrm{f}_{\mathrm{y}=\text { mod, }}$ is a fleet-specific constant. In the modern period, fleet-specific effort is estimated as a constant with annual deviations, which are assumed to follow a first-order lognormal autoregressive process:

$$
\begin{align*}
& f_{y=\bmod , i}=f_{i} \exp \left(\delta_{y, i}\right) \\
& \delta_{y, i}=\rho_{i} \delta_{y-1}+\eta_{y, i} \tag{5}\\
& \eta_{y, i} \sim N\left(0, \sigma_{i}\right)
\end{align*} .
$$

From the virgin age structure defined in (1), abundance at the beginning of subsequent months is calculated by

$$
\begin{equation*}
N_{a, y, m+1}=N_{a, y, m} e^{-M_{a} \delta}-\sum_{i} C_{a, y, m, i} \tag{6}
\end{equation*}
$$

where δ is the fraction of the year $(\mathrm{m} / 12)$ and $\mathrm{C}_{\mathrm{a}, \mathrm{y}, \mathrm{m}, \mathrm{i}}$ is the catch in numbers of fleet i . The monthly catch by fleet is assumed to occur sequentially as a pulse at the end of the month, after natural mortality:

$$
\begin{equation*}
C_{a, y, m, i}=F_{a, y, i}\left(N_{a, y, m} e^{-M_{a} \delta}-\sum_{k=1}^{i-1} C_{a, y, m, k}\right) \frac{\delta}{\tau_{i}} \tag{7}
\end{equation*}
$$

where τ_{i} is the duration of the fishing season for fleet i . Catch in weight is computed by multiplying (7) by $\mathrm{w}_{\mathrm{a}, \mathrm{y}}$, where weight at age for the plus-group is updated based on the average age of the plus-group.

The fishing mortality rate, F , is separated into fleet-specific components representing agespecific relative-vulnerability, v , annual effort expended, f , and an annual catchability coefficient, q:

$$
\begin{equation*}
F_{a, y, i}=q_{y, i} f_{y, i} v_{a, i} \tag{8}
\end{equation*}
$$

Catchability is the fraction of the most vulnerable age class taken per unit of effort. The relative vulnerability would incorporate such factors as gear selectivity, and the fraction of the stock exposed to the fishery. For this model application to sandbar sharks, both vulnerability and catchability were assumed to be constant over years.

Catch per unit effort (CPUE) or fishery abundance surveys are modeled as though the observations were made just before the catch of the fleet with the corresponding index, i :

$$
\begin{equation*}
I_{y, m, i}=q_{y, i} \sum_{a} v_{a, i}\left(N_{a, y, m} e^{-M_{a} \delta}-\sum_{k=1}^{i-1} C_{a, y, m, k}\right) \frac{\delta}{\tau_{i}} \tag{9}
\end{equation*}
$$

Equation (9) provides an index in numbers; the corresponding CPUE in weight is computed by multiplying $\mathrm{v}_{\mathrm{a}, \mathrm{i}}$ in (9) by $\mathrm{w}_{\mathrm{a}, \mathrm{y}}$.

State space implementation

In general, process errors in the state variables and observation errors in the data variables can be modeled as a first-order autoregressive model:

$$
\begin{align*}
& g_{t+1}=E\left[g_{t+1}\right] e^{\varepsilon_{t+1}} \tag{10}\\
& \varepsilon_{t+1}=\rho \varepsilon_{t}+\eta_{t+1}
\end{align*}
$$

In (10), g is a given state or observation variable, η is a normally distributed random error with mean 0 and standard deviation σ_{g}, and ρ is the correlation coefficient. $\mathrm{E}[\mathrm{g}]$ is the deterministic expectation. When g refers to data, then g_{t} is the observed quantity, but when g refers to a state variable, then those g terms are estimated parameters. For example, effort in the modern period is treated in this fashion.

The variances for process and observation errors $\left(\sigma_{\mathrm{g}}\right)$ are parameterized as multiples of an overall model coefficient of variation (CV):
(11a) $\sigma_{g}=\ln \left[\left(\lambda_{g} C V\right)^{2}+1\right]$

$$
\begin{equation*}
\sigma_{g}=\ln \left[\left(\omega_{i, y} \lambda_{g} C V\right)^{2}+1\right] \tag{11b}
\end{equation*}
$$

The term λ_{g} is a variable-specific multiplier of the overall model CV. For catch series and indices (eq 11b), the additional term, $\omega_{\mathrm{i}, \mathrm{y}}$, is the weight applied to individual points within those series. For instance, because the indices are standardized externally to the model, the estimated variance of points within each series is available and could be used to weight the model fit.

Given the DW decision to use equal weighting between indices as a baseline, all $\omega_{i, y}$ were fixed to 1.0 and the same λ_{g} was applied to all indices. To evaluate the sensitivity case where indices were weighted by the inverse of their CV , each $\omega_{\mathrm{i}, \mathrm{y}}$ was fixed to the estimated CV for point y in
series i; an attempt was also made to estimate a separate λ_{g} for each series, however those multipliers were not estimable and so a single λ was applied to all indices.

In the present model, these multipliers on catches and indices were fixed after exploring the effects on model outputs for several different values. A fleet-specific effort constant was estimated, but by allowing for large process error it was effectively a free parameter (a log-scale variance of 5 was used); the correlation was fixed at 0.5 .

Additional model specifications

Individual points within catch and index series can be assigned different weights, based either on estimated precision or expert opinion. The base case model configuration downweighted the historical catches (1960-1980), giving them $1 / 2$ of the weight of catches from 1981-2009, on the rationale that they were less well known (as was done in the last assessment in 2006). Also in 2006, several weighting factors were evaluated for the value of the recreational catch in 1983. Recreational catch in 1983 was roughly ten times the value in 1982 and six times the value in 1984; also, it was about nine times the series average without that point. For these reasons, the value for 1983 catch seems anomalously high. Downweighting it by $1 / 2$ led to the predicted value matching it within 3%; downweighting it by $1 / 10$ led to a predicted value within 25%. In both cases, the relative benchmarks were nearly identical. It was decided to proceed by downweighting that point by $1 / 10$. The same weights were used for the current assessment.

One further model specification was the degree to which the model predicted values matched catches versus indices. An overall model CV is estimated (see equations 11a and 11b), and multiples (λ_{g}) of this overall CV can be specified separately for catches and indices (see Porch 2002). All catch series were assigned the same CV multiple, and all indices were assigned a single CV multiple (this forces equal weighting of the indices). Also in 2006, an initial attempt was made to estimate these multipliers. This resulted in boundary solutions for the multipliers. In a second attempt, the multiplier for catch was fixed at 1 and the index multiplier was estimated. Again, this resulted in the index multiplier estimate at the upper bound. An explanation for this behavior was that the interannual variability within indices is substantial in some cases, and additionally, indices with the same selectivity had conflicting trends. To deal with this, two values were evaluated for the CV multiplier of indices: a value that was 5 times
the catch CV multiplier, and a value equal to the catch CV multiplier. The former case implies that indices are less certain than catches, while the latter case implies the same relative certainty in catches and indices. Both results indicated an overfished stock with overfishing in the 2006 assessment. The estimate of relative biomass $\left(\mathrm{B}_{2004} / \mathrm{B}_{\text {MSY }}\right)$ was nearly identical between these two configurations (0.72 vs. 0.73 , respectively), while the degree of overfishing ($\mathrm{F}_{2004} / \mathrm{F}_{\mathrm{MSY}}$) was about 10% less (3.72 vs. 3.29). Given that the estimated stock status did not vary based on the weighting between catch and indices, it was decided to proceed by placing relatively more confidence in the catch series (notwithstanding the weighting of individual points within the catch series, as described in the paragraph above). The same weights were used for the current assessment.

3.1.1.4. Parameters Estimated

The model started in 1960 and ended in 2009, with the historic period covering 1960-1980, and the modern period spanning 1981-2009. Estimated model parameters were pup (age-0) survival, virgin recruitment $\left(\mathrm{R}_{0}\right)$, catchability coefficients associated with catches and indices, and fleetspecific effort. Virgin recruitment was given a uniform prior distribution ranging from 1000 to 10 billion individuals, whereas pup survival was given an informative lognormal prior with median $=0.81$ (mean $=0.85$, mode $=0.77$), a CV of 0.3 , and bounded between 0.50 and 0.99 . The mean value for pup survival matched closely that derived using life-history based methods (see Section 2.4).

A list of estimated model parameters is presented in Table 3.1 (other parameters were held constant and thus not estimated, see Section 3.1.2). The table includes predicted parameter values and their associated SDs from ASPM, initial parameter values, minimum and maximum values a parameter could take, and prior densities assigned to parameters.

3.1.1.5. Uncertainty and Measures of Precision

Numerical integration for this model was done in AD Model Builder (Otter Research Ltd. 2001), which uses the reverse mode of AUTODIF (automatic differentiation). Estimation can be carried out in phases, where convergence for a given phase is determined by comparing the maximum gradient to user-specified convergence criteria. The final phase of estimation used a convergence criterion of 10^{-6}. For models that converge, the variance-covariance matrix is
obtained from the inverse Hessian. Uncertainty in parameter estimates was quantified by computing asymptotic standard errors for each parameter (Table 3.1), which are calculated by ADMB by inverting the Hessian matrix (i.e., the matrix of second derivatives) after the model fitting process. Additionally, likelihood profiling was performed to examine posterior distributions for several model parameters and to provide probabilities of the stock being overfished and overfishing occurring. Likelihood profiles are calculated by assuming that the posterior probability distribution is well approximated by a multivariate normal (Otter Research Ltd. 2001). Model fit was assessed by comparing components of the relative negative loglikelihood (relative rather than exact because the constants in the likelihood were not included). The relative negative log-likelihood (objective function) and AICc (small sample AIC) values are listed in the tables of model results.

Uncertainty in data inputs and model configuration was examined through the use of sensitivity scenarios. Thirteen alternative runs are included in this report in addition to the baseline run. We also include continuity and retrospective analyses. The continuity analysis uses the same model and inputs as in 2006, but includes additional years of catches and indices, to see the effect that additional observations have on model results. Retrospective analyses of the baseline run were conducted, in which the model was refit while sequentially dropping the last five years of data to look for systematic bias in key model output quantities over time.

We now specifically describe how each of these sensitivities was implemented.
Baseline run: the base model configuration assumed virgin conditions in 1960, used the imputed historical catch series, the updated biological parameters, and the 11 base case CPUE indices. In addition, historic catches (1960-1980) were downweighted by $1 / 2$ and the 1983 recreational catch was downweighted by $1 / 10$; lastly, catches were assumed to be 5 times more certain than the indices.

Scenario 1: Inverse CV weighting-Same as the base run, but using the inverse of the CV to weight each CPUE series (Table 3.2).

Scenario 2: All CPUE series-Same as the base run, but adding three indices identified as "sensitivity" by the Index WG of the DW: Bottom longline logbook, Pelagic longline logbook, and NMFS historical longline (Table 3.3).

Scenario 3: Combined commercial catches-Same as the base run, but without splitting the commercial landings + unreported catch series into GOM and ATL, thus having only 3 catch series (fleets; Table 3.4)

Scenario 4: Combined commercial catches with inverse CV weighting-Same as scenario 3 but with inverse CV weighting of the indices.

Scenario 5: 2-year reproductive cycle-Same as the base run, but using a biennial reproductive periodicity, instead of 2.5 yr as in the baseline run.

Scenario 6: 3-year reproductive cycle-Same as the base run, but using a triennial reproductive periodicity, instead of 2.5 yr as in the baseline run.

Scenario 7: U-shaped M—Same as the base run, but using a U-shaped vector of natural mortality at age to account for increased natural mortality for the older ages. Initially the Chen and Watanabe (1989) method mentioned in Section 2.4 was used to derive a U-shaped curve for M, but given that the curve was not quite U-shaped because it decreased again for the oldest ages, another method (the "bathtub" method; see Siegfried [2006]) was used instead to approximate the M predicted by the Chen and Watanabe equation while maintaining a U shape (Table 3.5 and Figure 3.1). The equation for the "bathtub" method is:

$$
U(a)=c\left[e^{-\lambda_{d}(a-d)}+e^{\lambda_{g}(a-g)}\right]
$$

where c is a scaling factor, d is the age when constant M begins, g is the age where M starts to increase again, λ_{d} is the descending slope and λ_{g} is the ascending slope.

Scenario 8: Fishery-independent CPUE series-Same as the base run, but using only the eight fishery-independent indices (VIMS LL, NELL, NMFS Coastspan age-1+, GA Coastspan, SC Coastspan, SCDNR Historic red drum, PCGN, and NMFS SE LL).

Scenario 9: Rank-based weighting-Same as the base run, but using the inverse of the a priori ranks (based on criteria such as spatial coverage, reliability, etc.) provided by the Index WG after the DW to weight each CPUE series (Table 3.6). The ranks ranged from a best of 1 for the NMFS SE LL index to a worst of 5 for the LPS series.

Scenario 10: Hierarchical index—Same as the base run, but using only one hierarchical index of relative abundance weighted by the inverse of the CV (see document SEDAR21-AW-01 and

Table 3.7). The selectivity used for the single index was a weighted average of the selectivities associated with the individual indices (Figure 3.2). The inverse variance selectivity weights reported in SEDAR-21-AW-01 (NMFS SE LL: 0.207; NMFS Coastspan age-1+: 0.101; VIMS: 0.140; NELL: 0.033; SC Coastspan: 0.027; SCDNR Historic red drum: 0.087; BLLOP: 0.271 ; PLLOP: 0.052; LPS: 0.082; GA Coastspan and PCGN=SC Coastspan) were used to weight the individual selectivity curves. Once a weighted selectivity vector was obtained, a functional form (double logistic curve) was developed to approximate the weighted selectivity for input into the model.

Scenario 11: Hierarchical index with equal weighting-Same as scenario 10, but using equal weights for the single index.

Scenarios 12 and 13: Low and high catch scenarios-Same as the base run, but using a low and high catch scenario, respectively. The low and high catch series were constructed in an attempt to incorporate uncertainty in the magnitude of the catches as recommended by the DW CIE reviewer. This was done as follows. Commercial landings are reported in weight (not estimated), but then converted into numbers by using average weights from animals observed in the shark bottom longline observer program. Thus, the only way to incorporate uncertainty in this catch stream is in the average weights used for conversion from weight to numbers. Lower and upper 95% confidence intervals (CIs) of those average weights were thus computed (Figure 3.3a) and used to produced high and low commercial landings scenarios, respectively. For recreational catches, lower and upper CIs of the combined estimates of sharks landed and discarded dead (A+B1 in MRFSS terminology) were also computed (Figure 3.3b) and low and high catch scenarios produced. No measure of uncertainty was available for unreported commercial catches, menhaden fishery discards, or Mexican catches. The low and high catch scenarios varied widely with respect to the baseline catches (Tables 3.8 and 3.9; Figure 3.4).

3.1.1.6. Benchmark/Reference points methods

Benchmarks included estimates of absolute population levels and fishing mortality for year 2009 ($\mathrm{F}_{2009}, \mathrm{SSF}_{2009}, \mathrm{~B}_{2009}, \mathrm{~N}_{2009}$, Nmature $_{2009}$), reference points based on MSY ($\mathrm{F}_{\mathrm{MSY}}, \mathrm{SSF}_{\mathrm{MSY}}$, $\mathrm{SPR}_{\mathrm{MSY}}$), current status relative to MSY levels, and depletion estimates (current status relative to virgin levels). In addition, trajectories for $\mathrm{F}_{\text {year }} / \mathrm{F}_{\text {MSY }}$ and $\mathrm{SSF}_{\text {year }} / \mathrm{SSF}_{\text {MSY }}$ were plotted and phase plots provided. The ASPM also calculates other SPR-based reference points (e.g, SPR
$30 \%, 40 \%$, etc.), but those are not typically used for sharks.

3.1.1.7. Projection methods

Projections will be carried out using Pro-2Box (Porch 2003). Projections will be bootstrapped ≥ 500 times by allowing for process error in the spawner-recruit relationship. Lognormal recruitment deviations with $\mathrm{CV}=0.4$, with no autocorrelation, will be assumed. No other variability will be introduced into the projections. Under these assumptions, the base model will be projected at $\mathrm{F}=0$ to determine the year when the stock can be declared recovered with a 70% probability $\left(\mathrm{SSF}_{\mathrm{SSSF}}^{\mathrm{MSY}} \mathrm{>}\right)$). If that year is >10, then management action should be implemented to rebuild the stock within the estimated rebuilding time +1 generation time (Restrepo et al. 1998). The estimate of generation time is about 20 years, and was calculated as:

where i is age, f_{i} is the product of (fecundity at age) \times (maturity at age), and s_{j} is survival at age. Maximum age used in the calculations was 27 years. This generation time corresponds to the mean age of parents of offspring produced by a cohort over its lifetime (v_{1}; Caswell 2001); other formulae for calculating generation time gave very similar estimates (T : time required by the population to increase by $\mathrm{R}_{0}=19.8$; A: mean age of parents of offspring in a stable age distribution=19.5; Caswell 2001).

A fixed F strategy and a fixed TAC strategy will be estimated that would attain rebuilding by the designated year with a 50% and a 70% probability. Assumptions for these projections will include the above process error in stock-recruitment, the selectivity vector will be the geometric mean of the last 3 years (2007-2009), and it will be assumed that any modification to F or a TAC will impact each fishery by the same proportion. As per HMS Management Division guidance, the first year that management begins to operate will be set to 2013; in the interim years (20102012), F-based projections will be set equal to F_{2009} and TAC-based projections, to the mean of catches in 2008 and 2009.

Additionally, also as requested by the HMS Management Division, we will determine the probability of rebuilding by 2070, which is the current rebuilding timeframe under Amendment 2 to the 2006 Consolidated HMS FMP. These projections will be done with the current (for 2009) level of F and current TAC of 220 mt ww (158 mt dw).

3.1.2. Model 1 Results

3.1.2.1. Measures of Overall Model Fit

Catches were fit 5 times better than indices and thus were fit very well, with the exception of some years in the early 1980s for the recreational+Mexican catch series, in particular the estimated recreational 1983 value is below the observed value due to the downweighting of that point (Figure 3.5). The model appeared to have trouble reconciling the conflicting trends and oscillations of some of the indices of abundance. As a result, some of the indices were poorly fit, particularly the model did not fit well the steep decreasing trend in the early years of the LPS and the PLLOP series as well as the 4 first years of the VA LL series, which is the longest time series, beginning in 1975 (Figure 3.6). Several of the indices (BLLOP, VA-LL since 1990, NMFS LL SE, NMFS Coastspan age-1+, NMFS LL NE, SCDNR historic red drum, PCGN) showed no clear trend and two indices (GA Coastspan and SC Coastspan) showed a generally increasing trend. The model interpreted those trends by predicting a stabilization of abundance in the most recent years. It is worth noting also that the increasing trend in relative abundance of several of the indices in recent years conflicted with the catch data, which has been greatly reduced in recent years due to management action (Figure 2.1). In general, the poor fit to some of the indices is caused in part by high interannual variability that does not seem to be compatible with the life history of the species, suggesting that the statistical standardization of the indices done externally to the model may not have included all factors that help explain relative abundance.

Comparison of model fits

A comparison among models of relative likelihood values by model source (catch, indices, effort, catchability and recruitment) will be included before the Review Workshop.

3.1.2.2. Parameter estimates and associated measures of uncertainty

A list of model parameters is presented in Table 3.1. The table includes predicted parameter values with associated SDs, initial parameter values, minimum and maximum allowed values, and prior density functions assigned to parameters. Parameters designated as constant were estimated as such; parameters that were held fixed (not estimated) are not included in this table.

3.1.2.3. Stock Abundance and Recruitment

Predicted stock abundance at age is presented in Figure 3.7. The first six age classes made up about 50% of the population in any given year and mean age by year varied very little $(\min =6.80, \max =7.73)$.

The ASPM does not model age 0 s and thus no predicted age-0 recruits are produced, only the estimated virgin number of age-1 recruits (see Section 3.1.1.3). However, one can calculate an "observed" and an "expected" recruitment for different levels of relative SSB using the Beverton-Holt model reparameterized in terms of steepness (Francis 1992) and maximum lifetime reproductive rate, which are quantities estimated by ASPM. Figure 3.8 shows "observed" vs. predicted recruits for different levels of SSB depletion. Predicted recruits are given by equation (2) in Section 3.1.1.3 and "observed" recruits are given by:

$$
R=\frac{4 z S}{S P R_{0}(1-z)+\frac{S(5 z-1)}{\varphi_{0}}}
$$

where z is steepness, S is spawners, SPR_{0} is the spawning potential ratio at virgin conditions and φ_{0} is virgin spawners per recruit (from equation 3 in section 3.1.1.3).

3.1.2.4. Stock Biomass

Predicted abundance, total biomass, and spawning stock fecundity (numbers x proportion mature x fecundity in numbers) are presented in Table 3.10 and Figure 3.9. All trajectories show little depletion from 1960 to 1982 (a few years later for SSF), corresponding to very reduced catches, effort and estimated F in the historic period, and a marked decline until 2007, followed by stabilization until 2009. Decreasing biomass and abundance in 1983-2007 correspond to increased catches and possibly declining trends in the early years of some indices, whereas the
stabilization in the last few years of data likely corresponds to reduced catches and increasing tendencies for some of the indices in those years.

3.1.2.5. Fishery Selectivity

As explained in Section 2.2 and shown in Table 2.2 and Figure 2.7, selectivities are estimated externally to the model and a functional form inputted for each fleet and index. In Figure 2.7 one can see that most fleets fully select for immature animals, and that many of the indices include immature animals too.

3.1.2.6. Fishing Mortality

Predicted total and fleet-specific instantaneous fishing mortality rates are presented in Table 3.11 and Figure 3.10. Fishing mortality was very low in 1960-1981 in accordance with very reduced catches and effort during that period. Starting in 1982, fishing mortality widely oscillated but always exceeded the estimated $\mathrm{F}_{\text {MSY }}$ of 0.021 . Fishing mortality dropped below $\mathrm{F}_{\text {MSY }}$ in 2008 and 2009 in accordance with reduced catches imposed by management and increasing trends of some of the indices. During 1982-1987, fishing mortality was strongly influenced by the Recreational+Mexican fleet, after which the importance of this fleet and the two directed commercial fleets alternated (Figure 3.10). The contribution of the menhaden fishery fleet to total F was insignificant.

3.1.2.7. Stock-Recruitment Parameters

See Section 3.1.2.3 above for additional discussion of the stock-recruitment curve and associated parameters. The predicted virgin recruitment (R_{0}; number of age 1 pups) was 563,000 animals (Figure 3.8 and see next section for further discussion on R_{0}). The predicted steepness was 0.29 and the maximum lifetime reproductive rate was 1.64 , values in line with the life history of this species (Brooks et al. 2009). The estimated pup (age-0) survival was 0.84 (see next section for further discussion on pup survival).

3.1.2.8. Evaluation of Uncertainty

Estimates of asymptotic standard errors for all model parameters are presented in Table 3.1.

Posterior distributions for several model parameters of interest were obtained through likelihood profiling. Prior and posterior distributions for pup survival and virgin recruitment are shown in Figure 3.11. There appeared to be information in the data since the posteriors for these two parameters were different from the priors. The mode for the posterior of pup survival was estimated at a higher value than the prior mode, whereas the posterior for virgin recruitment of pups was very informative in contrast to its diffuse uniform prior (Figure 3.11).

Posterior distributions were also obtained for several benchmarks. The distributions for total biomass and spawning stock fecundity in 2009 have little overlap with their respective distributions for virgin conditions. The distributions for total biomass depletion and spawning stock fecundity depletion are wide, but most of the density is concentrated between about 0.2 and 0.6 , and about 0.1 and 0.6 , respectively (Figure 3.12). The estimate of F_{2009} ranges from 0 to about 0.05 and the estimate for mature number of fish in 2009 also shows little overlap with the corresponding distribution for virgin conditions (Figure 3.13).

Results of the base and sensitivity analyses are summarized in Table 3.12. Using the inverse CVs to weight the indices (sensitivity scenario 1) led to a somewhat more productive stock that showed higher depletion but experienced the same fishing mortality as the base run. The fits to several indices were improved with respect to the base run (Figure 3.14). Adding the sensitivity indices to those from the base run (scenario 2) resulted in a more optimistic status, with less depletion and less overfishing. However, the initial years of the additional NMFS Historic longline index were not fit well and thus the sharp initial decline indicated by that index was not captured by the model (Figure 3.15). Collapsing the two commercial catch streams into a single one (scenarios 3 and 4) as in the 2006 stock assessment improved and worsened the status, respectively. As expected, decreasing the length of the reproductive cycle to 2 years (scenario 5) or increasing it to 3 years (scenario 6) led to a more productive and less productive stock, respectively. The degree of stock depletion was little affected, but overfishing was substantially reduced in scenario 5 and approached the reference point in scenario 6 . The fits to catches and indices of both scenarios were very similar to those of the base run. Using a Ushaped vector for natural mortality (scenario 7) effectively decreased M at age and resulted in a little more depletion but less overfishing, with the fits again being very similar to those of the base run. Using only the eight fishery-independent indices (scenario 8) included in the base run was the most optimistic scenario and led to a change in status. The productivity of the stock was
almost identical to that of the base run, but the indices showed no trend or an increasing tendency in recent years. The VIMS LL index was the only series that started before 1995 and the first 4 years of that index covering the period 1975-1981 were very poorly fit (Figure 3.16). Using the inverse ranks derived by the Index WG (scenario 9) had little effect on results. Using only the hierarchical index did not alter status and had a small effect on results when weighting the index by the inverse of the CV (scenario 10). However, when using the index with equal weights (all $\mathrm{CVs}_{\mathrm{s}}=1$; scenario 11), the status worsened considerably and overfishing was occurring. Although neither model could fit 3 of the years in the index, scenario 10 (inverse CV weighting) fit the rest of the years better than scenario 11 (equal weighting; Figure 3.17). Finally, considering catches lower (scenario 12) and higher (scenario 13) than those in the base run did not change status; the most noticeable result being that with higher catches, scenario 13 predicted a substantially lower level of overfishing and absolute values of abundance and biomass about one order of magnitude larger than in the base run and the other sensitivity scenarios.

Continuity analysis

This run consisted of using the same exact model, data inputs and assumptions used in the 2006 assessment, but adding five additional years of catch data (2005-2009; Figure 3.18) and the same indices updated to 2009 (Figure 3.19). Table 3.13 shows the summarized results of the continuity analysis and of the 2006 base run. The base run in 2006 indicated that the stock was overfished with overfishing occurring, whereas the continuity run predicted a somewhat less overfished stock, but that overfishing was no longer occurring (Table 3.13). Although the same eight indices used in 2006 were also used in the continuity run, 7 of the 8 indices were reanalyzed and had five additional years of data. Figure 3.19 shows that 4 of those 7 indices have an increasing trend in the added 2005-2009 time period (very steep for the BLLOP and NMFS LL SE indices), whereas 3 of them (NMFS LL NE, BLL Logs, and PLL Logs) show a decreasing trend in 2005-2009. The model interpreted the upswing in relative abundance shown by several indices in recent years as an indication that abundance had stabilized, predicting that overfishing is no longer occurring, but that the stock is still depleted to levels below MSY, not having had yet enough time to rebuild.

Retrospective analysis

Results of the retrospective analysis are presented in Figure 3.20. Three model output quantities were examined in the analysis: 1) spawning stock fecundity, 2) relative spawning stock fecundity, and 3) relative fishing mortality. The SSF trajectories ran parallel to one another, sequentially dropping one year resulting in lower estimated abundance, except for the retrospective 2004-2005, and 2007-2008 runs which almost completely overlapped. The relative spawning fecundity ($\mathrm{SSF}_{\text {/ }} \mathrm{SSF}_{\mathrm{MSY}}$) trajectories did not all intersect until about 1990, converged for a few years, and were very close to one another before that (about 1960-1986), except for the 2008 retrospective run. However, no systematic pattern of over- or under-estimation of relative abundance was observable. The relative fishing mortality ($\mathrm{F} / \mathrm{F}_{\mathrm{MSY}}$) trajectories did not all converge until about 1983, but after that two groups were observable: the base and 2008 retrospective run, and the 2007-2004 retrospective runs. The base and 2008 retrospective runs ran closely in parallel during stretches of years and fully converged around 2005, whereas the 2007-2004 retrospective runs converged until about 1987, after which they seemed to split into two other groups, 2007-2006 and 2005-2004, each of which converged for several stretches of years and showed more divergence towards the most recent years of data.

3.1.2.9. Benchmarks/Reference Points/ABC Values

Benchmarks for the MSY reference points for the base run and all sensitivity scenarios are summarized in Table 3.12 and those for the continuity analysis in Table 3.13. The base model estimated an overfished stock but that overfishing was no longer occurring (Table 3.12; Figure 3.21). The model estimated that the stock had been overfished since 1996 but that overfishing no longer occurred in 2008 and 2009 (Figure 3.21). Probabilities obtained through likelihood profiling indicated that there was a 69% probability that the stock in 2009 was overfished $\left(\mathrm{P}\left(\mathrm{SSB}_{09}<\mathrm{SSB}_{\mathrm{MSY}}=0.69\right)\right)$ and an 86% probability that there was no overfishing in 2009 $\left(\mathrm{P}\left(\mathrm{F}_{09}<\mathrm{F}_{\mathrm{MSY}}=0.86\right)\right)$. All sensitivity runs estimated an overfished status, with the exception of run 8 (fishery-independent indices only), and all runs estimated that the stock was not undergoing overfishing, except for run 11 (hierarchical index with equal weights; Table 3.12). Figure 3.22 is a phase plot showing the outcomes of the base model, the 13 sensitivity scenarios, the continuity analysis, and the results of the base models from the 2006 and 2002 assessments. Figure 3.23 is a phase plot of the outcomes of the base model, the retrospective runs, and the 2006 assessment base model. The results of retrospective analysis support the conclusions from
the base run, i.e., that the stock stopped experiencing overfishing in 2008, but not before. The conclusion of the 2006 assessment (stock overfished with overfishing) is also replicated when using data up to 2004 only (retrospective run 2004) as in the 2006 assessment.

3.1.2.10. Projections

Projections will be undertaken prior to the Review Workshop.

3.1.3. Discussion

Although most shark species can likely be considered data poor when compared to most teleost stocks, information for sandbar sharks is relatively abundant mainly because-together with blacktip sharks-they have been the main target of commercial fisheries in the eastern U.S. seaboard since their inception. As a result, relatively good records of commercial landings exist and biological and fishery information is available mainly from the directed bottom longline shark fishery observer program. Multiple indices that theoretically track relative abundance, many of them fishery-independent, are also available. However, the majority of those fisheryindependent indices started after 1995 and thus did not cover the main period of exploitation of this stock in the western North Atlantic Ocean. The only scenario that included a historical index of relative abundance starting close to 1960, when the stock was considered to be in virgin conditions, poorly fit the early years of that index showing the greatest decline from the early 1960s to the end of that decade, leading actually to more optimistic conclusions. An issue of concern regarding the indices of relative abundance, is that many of them show interannual variability that does not seem to be compatible with the life history of the species, suggesting that the GLMs used to standardize the indices did not include all factors to help track relative abundance. The poor fit to some of the indices is thus likely the result of the model attempting to reconcile different signals provided by different indices and fitting a more central tendency ("compromise fit").

The uncertainty associated with biological parameters (reproduction and natural mortality) did not affect the outcome appreciably, with the possible exception of considering a three-year reproductive cycle (scenario 6) which increased the value of fishing mortality rate in 2009 close to the limit of 1 . Despite the significant differences between the inputs used in the 2006 and the current assessment, stock status only changed with regard to overfishing, a result
largely attributable to the stabilization and even increase in several of the indices of relative abundance used for the current assessment. Indeed, differences between the 2006 and current assessment include: the model now starts in 1960 (vs. 1975), catches span 1960-2009 (vs. 19752004) and commercial catches are split into the Gulf of Mexico and Atlantic (vs. one single commercial series), there are 11 indices, 5 of them new and all of which were reanalyzed (vs. 8 indices), there are 4 selectivities for catches, 3 of which are new (vs. 3), and 8 selectivities for indices (vs. 2), there are new biological parameters, including a new von Bertalanffy growth curve with a more rapid growth coefficient $\mathrm{K}=0.12$ (vs. 0.09), lifespan is now shorter at 27 years (vs. 40), there is a new maturity-at-age ogive that is shifted to younger ages, with a median maturity of 13 years (vs. 19), the DW panel agreed on a longer reproductive cycle of 2.5 years as a compromise between 2 and 3 years (vs. 2), and there are new estimates of natural mortality at age, with lower values for the younger ages and higher values for the older ages. These changes affect the potential productivity/resiliency of the stock in different directions: the higher K, shorter lifespan, and maturity ogive shifted to the left can be associated with a more productive stock, but at the same time there are 13 fewer years during which females can produce offspring and at a slower rate of every 2.5 years. Despite the maturity ogive having been shifted to the left, selectivities for all catch series and the vast majority of indices fully select for immature individuals, thus curtailing the reproductive potential of the stock.

The 2006 assessment estimated the total biomass in 1981, the first year with nonestimated catches, to be at 93% of yirgin levels, and $\mathrm{SSF}_{1981} / \mathrm{SSF}_{0}=0.98$. The current base model estimated both $\mathrm{B} / \mathrm{B}_{0}$ and $\mathrm{SSF} / \mathrm{SSF}_{0}$ at 98%. The current base model estimated a somewhat less productive stock than the 2006 assessment, with lower maximum lifetime reproductive rate (1.64 vs. 1.88) and steepness (0.29 vs. 0.32). However, the estimate of virgin recruitment (age-1 pups) was higher $(563,000$ vs. 461,000$)$ as a result of a substantially higher pup survival (0.84 vs. 0.62). Total biomass in 2009 was higher than that estimated for 2004 in the 2006 assessment $(80,000 \mathrm{mt}$ vs. $30,000 \mathrm{mt})$ and the estimate of MSY for the current base model $(1,295 \mathrm{mt})$ was also higher than the 2006 assessment estimate (403 mt).

Despite this better outlook compared to the 2006 assessment, the combination of some life-history parameters and the vulnerability of sandbar sharks to the various gears long before they are mature suggest a population that cannot support a large level of exploitation and help
explain the degree of depletion estimated by the model. However, the strict limitation on catches in recent years appears to have ended overfishing.
3.1.4. Recommendations for data collection and future research

- Investigate alternative approaches to age-length keys for estimating age from length

3.1.5. References

Brooks, E.N., J.E. Powers, and E. Cortés. 2010. Analytic reference points for age-structured models: application to data-poor fisheries. ICES J. Mar. Sci. 67:165-175.

Caswell, H. 2001. Matrix population models. 2nd ed. Sinauer, Sunderland, MA.
Chen, S.B. and Watanabe, S. 1989. Age dependence of natural mortality coefficient in fish population dynamics. Nippon Suisan Gak. 55:205-208.

Francis, R.I.C.C. 1992. Use of risk analysis to assess fishery management strategies: a case study using orange roughy (Hoplosthetus atlanticus) on the Chatham Rise, New Zealand. Can. J. Fish. Aquat. Sci. 49:922-930.

ICCAT (International Commission for the Conservation of Atlantic Tunas). 2005. Report of the 2004 Inter-sessional meeting of the ICCAT Subcommittee on by-catches: shark stock assessment. Col. Vol. Sci. Pap. ICCAT 58:799-890.

Methot, R. 2010. User manual for Stock Synthesis: model version 3.10b. Feb 26, 2010. NOAA Fisheries Service, Seattle, WA.

Myers, R.A., K.G. Bowen, and N.J. Barrowman. 1999. Maximum reproductive rate of fish at low population sizes. Can. J. Fish. Aquat. Sci. 56:2404-2419.

Otter Research Ltd. 2001. An introduction to AD MODEL BUILDER Version 6.0.2. Box 2040, Sidney, B. C. V8L 3S3, Canada.

Porch, C. E. 2002. A preliminary assessment of Atlantic white marlin (Tetrapturus albidus) using a state-space implementation of an age-structured model. SCRS/02/68 23pp.

Porch, C.E. 2003. Pro-2Box v.2.01 User's guide.
Restrepo, V. R., G. G. Thompson, P. M. Mace, W. L. Gabriel, L. L. Low, A. D. MacCall, R. D. Methot, J. E. Powers, B. L. Taylor, P.R. Wade, and J. F. Witzig. 1998. Technical guidance on the use of precautionary approaches to implementing National Standard 1 of the Magnuson-Stevens Fishery Conservation and Management Act. NOAA Technical Memo. NMFS-F/SPO-31, 54p. National Technical information Center, 5825 Port Royal Road, Springfield, VA 22161.

SEDAR 21-AW-01. Hierarchical analysis of blacknose, sandbar, and dusky shark CPUE indices.

Siegfried, K.I. 2006. Fishery management in data-limited situations: applications to stock assessment, marine reserve design and fish bycatch policy. PhD dissertation. U.C. Santa Cruz, CA.

3.1.6. Tables

Table 3.1. List of parameters estimated in ASPM for sandbar shark (base run). The list includes predicted parameter values with associated SDs, initial parameter values, minimum and maximum allowed values, and prior density functions assigned to parameters. Parameters designated as constant were estimated as such; parameters that were held fixed (not estimated) are not included in this table.

Parameter/Input name	Predicted		Initial	Min	Max	Prior pdf			Status
	Value	SD				Type	Value	SD (CV)	
Virgin recuitment	$5.63 \mathrm{E}+05$	1.13E+05	$5.00 \mathrm{E}+05$	$1.00 \mathrm{E}+03$	$1.00 \mathrm{E}+10$	uniform	-	(0.7)	estimated
Pup (age-0) survival	8.43E-01	$2.45 \mathrm{E}-01$	8.10E-01	$5.00 \mathrm{E}-01$	9.90E-01	lognormal	0.81	(0.3)	estimated
Catchability coefficient LPS index	5.83E-07	2.38E-07	$2.46 \mathrm{E}-03$	$1.00 \mathrm{E}-12$	$1.00 \mathrm{E}-02$	-	-	-	constant
Catchability coefficient BLLOP index	$9.47 \mathrm{E}-07$	4.84E-07	6.33E-03	$1.00 \mathrm{E}-12$	$1.00 \mathrm{E}-02$		-	-	constant
Catchability coefficient VA-LL index	$6.04 \mathrm{E}-07$	$2.44 \mathrm{E}-07$	$1.68 \mathrm{E}-03$	$1.00 \mathrm{E}-12$	$1.00 \mathrm{E}-02$		-	-	constant
Catchability coefficient NMFS LL SE index	$1.18 \mathrm{E}-06$	6.23E-07	3.55E-03	$1.00 \mathrm{E}-12$	$1.00 \mathrm{E}-02$		-	-	constant
Catchability coefficient NMFS Coastspan age-1+ index	$5.70 \mathrm{E}-07$	$3.35 \mathrm{E}-07$	$1.46 \mathrm{E}-03$	$1.00 \mathrm{E}-12$	$1.00 \mathrm{E}-02$	-	-	-	constant
Catchability coefficient NMFS LL NE index	$9.82 \mathrm{E}-07$	$6.28 \mathrm{E}-07$	8.33E-03	$1.00 \mathrm{E}-12$	$1.00 \mathrm{E}-02$	-	-	-	constant
Catchability coefficient PLLOP index	$1.27 \mathrm{E}-06$	$6.41 \mathrm{E}-07$	7.68E-03	$1.00 \mathrm{E}-12$	1.00E-02	-	-	-	constant
Catchability coefficient GA Coastspan index	$5.30 \mathrm{E}-07$	$3.21 \mathrm{E}-07$	$4.55 \mathrm{E}-03$.00E-12	$1.00 \mathrm{E}-02$	-	-	-	constant
Catchability coefficient SC Coastspan index	$3.93 \mathrm{E}-07$	2.13E-07	$4.55 \mathrm{E}-03$	$1.00 \mathrm{E}-1$	$1.00 \mathrm{E}-02$	-	-	-	constant
Catchability coefficient SCDNR Hist red drum index	$6.47 \mathrm{E}-07$	3.64E-07	$4.55 \mathrm{E}-03$	$1.00 \mathrm{E}-12$	$1.00 \mathrm{E}-02$	-	-	-	constant
Catchability coefficient PCGN index	1.10E-06	5.81E-07	$4.55 \mathrm{E}-0$	1.00E-12	$1.00 \mathrm{E}-02$	-	-	-	constant
Catchability coefficient Com+unrep GOM catch series	0.0018	$9.74 \mathrm{E}-04$	$4.68 \mathrm{E}-02$	$1.00 \mathrm{E}-06$	$1.00 \mathrm{E}-01$	-	-	-	constant
Catchability coefficient Com+unrep ATL catch series	0.0012	6.63E-04	$4.68 \mathrm{E}-02$	$1.00 \mathrm{E}-06$	$1.00 \mathrm{E}-01$	-	-	-	constant
Catchability coefficient Rec+Mex catch series	0.0015	$1.36 \mathrm{E}-03$	5.70E-02	$1.00 \mathrm{E}-06$	$1.00 \mathrm{E}+00$	-	-	-	constant
Catchability coefficient menhaden disc catch series	0.0021	7.77E-0	$3.44 \mathrm{E}-03$	$1.00 \mathrm{E}-06$	$1.00 \mathrm{E}-01$	-	-	-	constant
Historic effort Com+unrep GOM fleet	0.011	3.05E-0	0.01	0	9.90E-01	-	-	-	constant
Historic effort Com+unrep ATL fleet	0.010	$2.95 \mathrm{E}-03$	0.01	0	$9.90 \mathrm{E}-01$	-	-	-	constant
Historic effort Rec+Mex fleet	0.019	$1.90 \mathrm{E}-02$	0	0	$9.90 \mathrm{E}-01$	-	-	-	constant
Historic effort menhaden discard fleet	0.060	1.68E-02	0.05	0	9.90E-01	-	-	-	constant
Modern effort Com+unrep GOM fleet	13.8590	$3.91 \mathrm{E}+00$	15	0	$9.90 \mathrm{E}-01$	-	-	-	constant
Modern effort Com+unrep ATL fleet	14.3550	$4.05 \mathrm{E}+00$	15	0	$9.90 \mathrm{E}-01$	-	-	-	constant
Modern effort Rec+Mex fleet	16.2180	$4.75 \mathrm{E}+00$	16.2	0	$9.90 \mathrm{E}-01$	-	-	-	constant
Modern effort menhaden discard fleet	0.4149	$1.16 \mathrm{E}-01$	$\begin{gathered} 0.5 \\ -2.00 \mathrm{E}- \end{gathered}$	0	$9.90 \mathrm{E}-01$	-	-	-	constant
Overall variance	-3.22E-01	1.55E-02	01	-4.00E+00	-4.00E-02	-	-	-	constant
Effort deviation for Com+unrep GOM fleet in 1981	$-3.28 \mathrm{E}+00$	5.42E-01	$0.00 \mathrm{E}+00$	$-7.00 \mathrm{E}+00$	$7.00 \mathrm{E}+00$	lognormal	0	1	estimated
Effort deviation for Com+unrep GOM fleet in 1982	$-2.30 \mathrm{E}+00$	6.02E-01	0.00E+00	-7.00E+00	$7.00 \mathrm{E}+00$	lognormal	0	1	estimated
Effort deviation for Com+unrep GOM fleet in 1983	-2.20E+00	6.02E-01	0.00E+00	-7.00E+00	$7.00 \mathrm{E}+00$	lognormal	0	1	estimated
Effort deviation for Com+unrep GOM fleet in 1984	$-1.88 \mathrm{E}+00$	6.02E-01	0.00E+00	-7.00E+00	$7.00 \mathrm{E}+00$	lognormal	0	1	estimated
Effort deviation for Com+unrep GOM fleet in 1985	$-1.92 \mathrm{E}+00$	6.02E-01	0.00E+00	-7.00E+00	$7.00 \mathrm{E}+00$	lognormal	0	1	estimated
Effort deviation for Com+unrep GOM fleet in 1986	-8.25E-01	6.02E-01	0.00E+00	-7.00E+00	$7.00 \mathrm{E}+00$	lognormal	0	1	estimated
Effort deviation for Com+unrep GOM fleet in 1987	$2.58 \mathrm{E}-01$	6.02E-01	0.00E+00	-7.00E+00	$7.00 \mathrm{E}+00$	lognormal	0	1	estimated
Effort deviation for Com+unrep GOM fleet in 1988	$6.89 \mathrm{E}-01$	$6.02 \mathrm{E}-01$	0.00E+00	-7.00E+00	$7.00 \mathrm{E}+00$	lognormal	0	1	estimated
Effort deviation for Com+unrep GOM fleet in 1989	$1.06 \mathrm{E}+00$	6.03E-01	0.00E+00	-7.00E+00	$7.00 \mathrm{E}+00$	lognormal	0	1	estimated
Effort deviation for Com+unrep GOM fleet in 1990	9.53E-01	6.02E-01	0.00E+00	-7.00E+00	7.00E+00	lognormal	0	1	estimated
Effort deviation for Com+unrep GOM fleet in 1991	$1.02 \mathrm{E}+00$	6.02E-01	0.00E+00	-7.00E+00	$7.00 \mathrm{E}+00$	lognormal	0	1	estimated
Effort deviation for Com+unrep GOM fleet in 1992	8.17E-01	6.02E-01	0.00E+00	-7.00E+00	$7.00 \mathrm{E}+00$	lognormal	0	1	estimated
Effort deviation for Com+unrep GOM fleet in 1993	$4.43 \mathrm{E}-01$	6.03E-01	0.00E+00	-7.00E+00	$7.00 \mathrm{E}+00$	lognormal	0	1	estimated
Effort deviation for Com+unrep GOM fleet in 1994	$1.12 \mathrm{E}+00$	6.04E-01	0.00E+00	-7.00E+00	$7.00 \mathrm{E}+00$	lognormal	0	1	estimated
Effort deviation for Com+unrep GOM fleet in 1995	$6.27 \mathrm{E}-01$	6.06E-01	0.00E+00	-7.00E+00	7.00E+00	lognormal	0	1	estimated

Effort deviation for Com+unrep GOM fleet in 1996 Effort deviation for Com+unrep GOM fleet in 1997 Effort deviation for Com+unrep GOM fleet in 1998 Effort deviation for Com+unrep GOM fleet in 1999 Effort deviation for Com+unrep GOM fleet in 2000 Effort deviation for Com+unrep GOM fleet in 2001 Effort deviation for Com+unrep GOM fleet in 2002 Effort deviation for Com+unrep GOM fleet in 2003 Effort deviation for Com+unrep GOM fleet in 2004 Effort deviation for Com+unrep GOM fleet in 2005 Effort deviation for Com+unrep GOM fleet in 2006 Effort deviation for Com+unrep GOM fleet in 2007 Effort deviation for Com+unrep GOM fleet in 2008 Effort deviation for Com+unrep GOM fleet in 2009 Effort deviation for Com+unrep ATL fleet in 1981 Effort deviation for Com+unrep ATL fleet in 1982 Effort deviation for Com+unrep ATL fleet in 1983 Effort deviation for Com+unrep ATL fleet in 1984 Effort deviation for Com+unrep ATL fleet in 1985 Effort deviation for Com+unrep ATL fleet in 1986 Effort deviation for Com+unrep ATL fleet in 1987 Effort deviation for Com+unrep ATL fleet in 1988 Effort deviation for Com+unrep ATL fleet in 1989 Effort deviation for Com+unrep ATL fleet in 1990 Effort deviation for Com+unrep ATL fleet in 1991 Effort deviation for Com+unrep ATL fleet in 1992 Effort deviation for Com+unrep ATL fleet in 1993 Effort deviation for Com+unrep ATL fleet in 1994 Effort deviation for Com+unrep ATL fleet in 1995 Effort deviation for Com+unrep ATL fleet in 1996 Effort deviation for Com+unrep ATL fleet in 1997 Effort deviation for Com+unrep ATL fleet in 1998 Effort deviation for Com+unrep ATL fleet in 1999 Effort deviation for Com+unrep ATL fleet in 2000 Effort deviation for Com+unrep ATL fleet in 2001 Effort deviation for Com+unrep ATL fleet in 2002 Effort deviation for Com+unrep ATL fleet in 2003 Effort deviation for Com+unrep ATL fleet in 2004 Effort deviation for Com+unrep ATL fleet in 2005 Effort deviation for Com+unrep ATL fleet in 2006 Effort deviation for Com+unrep ATL fleet in 2007 Effort deviation for Com+unrep ATL fleet in 2008 Effort deviation for Com+unrep ATL fleet in 2009 Effort deviation for Rec+Mex fleet in 1981 Effort deviation for Rec+Mex fleet in 1982 Effort deviation for Rec+Mex fleet in 1983 Effort deviation for Rec+Mex fleet in 1984 Effort deviation for Rec+Mex fleet in 1985 Effort deviation for Rec+Mex fleet in 1986 Effort deviation for Rec+Mex fleet in 1987 Effort deviation for Rec+Mex fleet in 1988 Effort deviation for Rec+Mex fleet in 1989 Effort deviation for Rec+Mex fleet in 1990

$2.47 \mathrm{E}-01$	$6.08 \mathrm{E}-01$
$-1.26 \mathrm{E}-01$	$6.09 \mathrm{E}-01$
$3.16 \mathrm{E}-01$	$6.11 \mathrm{E}-01$
$-2.03 \mathrm{E}-01$	$6.15 \mathrm{E}-01$
$-2.42 \mathrm{E}-01$	$6.18 \mathrm{E}-01$
$2.27 \mathrm{E}-01$	$6.20 \mathrm{E}-01$
$3.25 \mathrm{E}-01$	$6.25 \mathrm{E}-01$
$2.12 \mathrm{E}-01$	$6.29 \mathrm{E}-01$
$1.88 \mathrm{E}-03$	$6.35 \mathrm{E}-01$
$-2.28 \mathrm{E}-01$	$6.41 \mathrm{E}-01$
$2.20 \mathrm{E}-01$	$6.45 \mathrm{E}-01$
$-1.03 \mathrm{E}+00$	$6.53 \mathrm{E}-01$
$-3.18 \mathrm{E}+00$	$6.55 \mathrm{E}-01$
$-1.83 \mathrm{E}+00$	$6.53 \mathrm{E}-01$
$-3.46 \mathrm{E}+00$	$5.40 \mathrm{E}-01$
$-2.47 \mathrm{E}+00$	$6.00 \mathrm{E}-01$
$-2.38 \mathrm{E}+00$	$5.99 \mathrm{E}-01$
$-2.06 \mathrm{E}+00$	$5.99 \mathrm{E}-01$
$-2.11 \mathrm{E}+00$	$5.99 \mathrm{E}-01$
$-1.18 \mathrm{E}+00$	$5.99 \mathrm{E}-01$
$-8.67 \mathrm{E}-02$	$5.99 \mathrm{E}-01$
$8.32 \mathrm{E}-01$	$6.00 \mathrm{E}-01$
$1.12 \mathrm{E}+00$	$6.00 \mathrm{E}-01$
$7.43 \mathrm{E}-01$	$6.00 \mathrm{E}-01$
$-6.49 \mathrm{E}-01$	$6.00 \mathrm{E}-01$
$7.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 . ~$	6.02 E

$7.49 \mathrm{E}-01 \quad 6.02 \mathrm{E}-01$ 6.67E-01 $1.11 \mathrm{E}+00$ $1.06 \mathrm{E}+00 \quad 6.08 \mathrm{E}-01$ $1.03 \mathrm{E}+00 \quad 6.10 \mathrm{E}-01 \quad 0$. $5.67 \mathrm{E}-01$ \square
$8.24 \mathrm{E}-01 \quad 6.36 \mathrm{E}-01 \quad 0.0$

$7.91 \mathrm{E}-01$	$6.43 \mathrm{E}-01$	0.0
$8.58 \mathrm{E}-01$	$6.50 \mathrm{E}-01$	0.0

$\begin{array}{ccc}2.75 \mathrm{E}-01 & 6.58 \mathrm{E}-01 & 0.00 \\ -1.67 \mathrm{E}+00 & 6.58 \mathrm{E}-01 & 0.0\end{array}$
$-1.84 \mathrm{E}+00 \quad 6.54 \mathrm{E}-01$
$-2.12 \mathrm{E}+00 \quad 8.18 \mathrm{E}-01$
$\begin{array}{ll}2.42 \mathrm{E}-01 & 8.64 \mathrm{E}-01 \\ 1.51 \mathrm{E}+00 & 1.37 \mathrm{E}+00\end{array}$
7.28E-01
$8.30 \mathrm{E}-01 \quad 8.62 \mathrm{E}-01$
$\begin{array}{ccccc}1.40 \mathrm{E}+00 & 8.62 \mathrm{E}-01 & 0.00 \mathrm{E}+00 & -7.00 \mathrm{E}+00 & 7.00 \mathrm{E}+00 \\ 1.78 \mathrm{E}-01 & 8.62 \mathrm{E}-01 & 0.00 \mathrm{E}+00 & -7.00 \mathrm{E}+00 & 7.00 \mathrm{E}+00 \\ 8.17 \mathrm{E}-01 & 8.62 \mathrm{E}-01 & 0.00 \mathrm{E}+00 & -7.00 \mathrm{E}+00 & 7.00 \mathrm{E}+00\end{array}$
$\begin{array}{lllll}8.17 \mathrm{E}-01 & 8.62 \mathrm{E}-01 & 0.00 \mathrm{E}+00 & -7.00 \mathrm{E}+00 & 7.00 \mathrm{E}+00 \\ 1.23 \mathrm{E}-01 & 8.61 \mathrm{E}-01 & 0.00 \mathrm{E}+00 & -7.00 \mathrm{E}+00 & 7.00 \mathrm{E}+00\end{array}$
$\begin{array}{lllll}1.23 \mathrm{E}-01 & 8.61 \mathrm{E}-01 & 0.00 \mathrm{E}+00 & -7.00 \mathrm{E}+00 & 7.00 \mathrm{E}+00 \\ 8.27 \mathrm{E}-01 & 8.61 \mathrm{E}-01 & 0.00 \mathrm{E}+00 & -7.00 \mathrm{E}+00 & 7.00 \mathrm{E}+00\end{array}$
$0.00 \mathrm{E}+00 \quad-7.00 \mathrm{E}+00 \quad 7.00 \mathrm{E}+00$
$0.00 \mathrm{E}+00 \quad-7.00 \mathrm{E}+00 \quad 7$.
$0.00 \mathrm{E}+00 \quad-7.00 \mathrm{E}+00 \quad 7.00 \mathrm{E}+00$
$\begin{array}{lll}0.00 \mathrm{E}+00 & -7.00 \mathrm{E}+00 & 7.00 \mathrm{E}+00 \\ 0.00 \mathrm{E}+00 & -7.00 \mathrm{E}+00 & 7.00 \mathrm{E}+00\end{array}$
$0.00 \mathrm{E}+00 \quad-7.00 \mathrm{E}+00 \quad 7.00 \mathrm{E}+00$
$0.00 \mathrm{E}+00 \quad-7.00 \mathrm{E}+00 \quad 7.00 \mathrm{E}+00$
$\begin{array}{lll}0.00 \mathrm{E}+00 & -7.00 \mathrm{E}+00 & 7.00 \mathrm{E}+00 \\ 0.00 \mathrm{E}+00 & -7.00 \mathrm{E}+00 & 7.00 \mathrm{E}+00\end{array}$
$0.00 \mathrm{E}+00$
0.00E+00
0.00E+00
0.00E+00
$0.00 \mathrm{E}+00$
$0.00 \mathrm{E}+00 \quad-7.00 \mathrm{E}+00 \quad 7.00 \mathrm{E}+00$
$\begin{array}{lll}0.00 \mathrm{E}+00 & -7.00 \mathrm{E}+00 & 7.00 \mathrm{E}+00 \\ 0.00 \mathrm{E}+00 & -7.00 \mathrm{E}+00 & 7.00 \mathrm{E}+00\end{array}$
$\begin{array}{lll}0.00 \mathrm{E}+00 & -7.00 \mathrm{E}+00 & 7.00 \mathrm{E}+00 \\ 0.00 \mathrm{E}+00 & -7.00 \mathrm{E}+00 & 7.00 \mathrm{E}+00\end{array}$
log

lognormal	0
	0

lognormal 0
$\begin{array}{ll}\text { lognormal } & 0 \\ \text { lognormal } & 0\end{array}$
$\begin{array}{ll}\text { lognormal } & 0 \\ \text { lognormal } & 0\end{array}$
$\begin{array}{ll}\text { lognormal } & 0 \\ \text { lognormal } & 0\end{array}$
lognormal 0
lognormal 0
$\begin{array}{ll}\text { lognormal } & 0 \\ \text { lognormal } & 0\end{array}$
lognormal 0
$\begin{array}{ll}\text { lognormal } & 0 \\ \text { lognormal } & 0\end{array}$
lognormal 0
lognormal 0
$\begin{array}{ll}\text { lognormal } & 0 \\ \text { lognormal }\end{array}$
$\begin{array}{ll}\text { lognormal } & 0 \\ \text { lognormal } & 0\end{array}$
estimated estimated

Effort deviation for Rec+Mex fleet in 1991 Effort deviation for Rec+Mex fleet in 1992 Effort deviation for Rec+Mex fleet in 1993 Effort deviation for Rec+Mex fleet in 1994 Effort deviation for Rec+Mex fleet in 1995 Effort deviation for Rec+Mex fleet in 1996 Effort deviation for Rec+Mex fleet in 1997 Effort deviation for Rec+Mex fleet in 1998 Effort deviation for Rec+Mex fleet in 1999 Effort deviation for Rec+Mex fleet in 2000 Effort deviation for Rec+Mex fleet in 2001 Effort deviation for Rec+Mex fleet in 2002 Effort deviation for Rec+Mex fleet in 2003 Effort deviation for Rec+Mex fleet in 2004 Effort deviation for Rec+Mex fleet in 2005 Effort deviation for Rec+Mex fleet in 2006 Effort deviation for Rec+Mex fleet in 2007 Effort deviation for Rec+Mex fleet in 2008 Effort deviation for Rec+Mex fleet in 2009 Effort deviation for menhaden disc fleet in 1981 Effort deviation for menhaden disc fleet in 1982 Effort deviation for menhaden disc fleet in 1983 Effort deviation for menhaden disc fleet in 1984 Effort deviation for menhaden disc fleet in 1985 Effort deviation for menhaden disc fleet in 1986 Effort deviation for menhaden disc fleet in 1987 Effort deviation for menhaden disc fleet in 1988 Effort deviation for menhaden disc fleet in 1989 Effort deviation for menhaden disc fleet in 1990 Effort deviation for menhaden disc fleet in 1991 Effort deviation for menhaden disc fleet in 1992 Effort deviation for menhaden disc fleet in 1993 Effort deviation for menhaden disc fleet in 1994 Effort deviation for menhaden disc fleet in 1995 Effort deviation for menhaden disc fleet in 1996 Effort deviation for menhaden disc fleet in 1997 Effort deviation for menhaden disc fleet in 1998 Effort deviation for menhaden disc fleet in 1999 Effort deviation for menhaden disc fleet in 2000 Effort deviation for menhaden disc fleet in 2001 Effort deviation for menhaden disc fleet in 2002 Effort deviation for menhaden disc fleet in 2003 Effort deviation for menhaden disc fleet in 2004 Effort deviation for menhaden disc fleet in 2005 Effort deviation for menhaden disc fleet in 2006 Effort deviation for menhaden disc fleet in 2007 Effort deviation for menhaden disc fleet in 2008 Effort deviation for menhaden disc fleet in 2009

$4.64 \mathrm{E}-01$	8.60E-01	0.00E+00	-7.00E+00	$7.00 \mathrm{E}+00$	lognormal	0	1	estimated
$4.90 \mathrm{E}-01$	8.59E-01	0.00E+00	-7.00E+00	$7.00 \mathrm{E}+00$	lognormal	0	1	estimated
$2.65 \mathrm{E}-01$	$8.58 \mathrm{E}-01$	0.00E+00	-7.00E+00	$7.00 \mathrm{E}+00$	lognormal	0	1	estimated
-1.59E-02	$8.57 \mathrm{E}-01$	0.00E+00	-7.00E+00	$7.00 \mathrm{E}+00$	lognormal	0	1	estimated
$4.45 \mathrm{E}-01$	8.57E-01	0.00E+00	-7.00E+00	$7.00 \mathrm{E}+00$	lognormal	0	1	estimated
8.02E-01	8.57E-01	0.00E+00	-7.00E+00	$7.00 \mathrm{E}+00$	lognormal	0	1	estimated
$9.24 \mathrm{E}-01$	8.57E-01	0.00E+00	-7.00E+00	$7.00 \mathrm{E}+00$	lognormal	0	1	estimated
8.18E-01	$8.58 \mathrm{E}-01$	0.00E+00	-7.00E+00	$7.00 \mathrm{E}+00$	lognormal	0	1	estimated
4.39E-01	$8.58 \mathrm{E}-01$	0.00E+00	-7.00E+00	$7.00 \mathrm{E}+00$	lognormal	0	1	estimated
$5.44 \mathrm{E}-02$	8.59E-01	0.00E+00	-7.00E+00	$7.00 \mathrm{E}+00$	lognormal	0	1	estimated
$9.20 \mathrm{E}-01$	8.61E-01	0.00E+00	-7.00E+00	$7.00 \mathrm{E}+00$	lognormal	0	1	estimated
-1.87E-01	8.62E-01	0.00E+00	-7.00E+00	$7.00 \mathrm{E}+00$	lognormal	0	1	estimated
-5.17E-01	8.63E-01	0.00E+00	-7.00E+00	$7.00 \mathrm{E}+00$	lognormal	0	1	estimated
-7.19E-01	8.65E-01	0.00E+00	-7.00E+00	$7.00 \mathrm{E}+00$	lognormal	0	1	estimated
-8.85E-01	8.67E-01	0.00E+00	-7.00E+00	$7.00 \mathrm{E}+00$	lognormal	0	1	estimated
$-1.04 \mathrm{E}+00$	$8.70 \mathrm{E}-01$	0.00E+00	-7.00E+00	$7.00 \mathrm{E}+00$	lognormal	0	1	estimated
-3.02E-01	8.73E-01	0.00E+00	-7.00E+00	$7.00 \mathrm{E}+00$	ognormal	0	1	estimated
-6.39E-01	8.76E-01	0.00E+00	-7.00E+00	$7.00 \mathrm{E}+00$	lognormal	0	1	estimated
-6.70E-01	8.75E-01	0.00E+00	-7.00E+00	$7.00 \mathrm{E}+00$	lognormal	0	1	estimated
$-1.54 \mathrm{E}+00$	4.89E-01	0.00E+00	-7.00E+00	$7.00 \mathrm{E}+00$	lognormal	0	1	estimated
$-1.52 \mathrm{E}+00$	4.92E-01	0.00E+00	-7.00E+00	$7.00 \mathrm{E}+00$	lognormal	0	1	estimated
-1.50E+00	4.92E-01	0.00E+00	$-7.00 \mathrm{E}+00$	$7.00 \mathrm{E}+00$	lognormal	0	1	estimated
$-1.48 \mathrm{E}+00$	4.93E-01	0.00E+00	$-7.00 \mathrm{E}+00$	$7.00 \mathrm{E}+00$	lognormal	0	1	estimated
$-1.57 \mathrm{E}+00$	4.93E-01	$0.00 \mathrm{E}+00$	$7.00 \mathrm{E}+00$	$7.00 \mathrm{E}+00$	lognormal	0	1	estimated
$-1.56 \mathrm{E}+00$	4.92E-01	0.00E+00	-7.00E+00	$7.00 \mathrm{E}+00$	lognormal	0	1	estimated
$-1.50 \mathrm{E}+00$	4.92E-01	$0.00 E+00$	-7.00E+00	$7.00 \mathrm{E}+00$	lognormal	0	1	estimated
$-1.49 \mathrm{E}+00$	4.92E-01	0.00E+00	-7.00E+00	$7.00 \mathrm{E}+00$	lognormal	0	1	estimated
$-1.39 \mathrm{E}+00$	$4.92 \mathrm{E}-0$	$0.00 \mathrm{E}+00$	-7.00E+00	$7.00 \mathrm{E}+00$	lognormal	0	1	estimated
$-1.36 \mathrm{E}+00$	4.92E-01	0.00E+00	-7.00E+00	$7.00 \mathrm{E}+00$	lognormal	0	1	estimated
-1.57E+00	4.93E-01	0.00E+00	-7.00E+00	$7.00 \mathrm{E}+00$	lognormal	0	1	estimated
$-1.65 \mathrm{E}+00$	4.94E-01	$0.00 \mathrm{E}+00$	-7.00E+00	$7.00 \mathrm{E}+00$	lognormal	0	1	estimated
$-1.59 \mathrm{E}+00$	$4.95 \mathrm{E}-01$	$0.00 \mathrm{E}+00$	-7.00E+00	$7.00 \mathrm{E}+00$	lognormal	0	1	estimated
$-1.47 \mathrm{E}+00$	4.97E-01	0.00E+00	-7.00E+00	$7.00 \mathrm{E}+00$	lognormal	0	1	estimated
$-1.49 \mathrm{E}+00$	$4.99 \mathrm{E}-01$	0.00E+00	-7.00E+00	$7.00 \mathrm{E}+00$	lognormal	0	1	estimated
$-1.44 \mathrm{E}+00$	5.02E-01	0.00E+00	-7.00E+00	$7.00 \mathrm{E}+00$	lognormal	0	1	estimated
$-1.37 \mathrm{E}+00$	5.06E-01	0.00E+00	-7.00E+00	$7.00 \mathrm{E}+00$	lognormal	0	1	estimated
$-1.36 \mathrm{E}+00$	5.11E-01	0.00E+00	-7.00E+00	$7.00 \mathrm{E}+00$	lognormal	0	1	estimated
$-1.22 \mathrm{E}+00$	5.16E-01	$0.00 \mathrm{E}+00$	-7.00E+00	$7.00 \mathrm{E}+00$	lognormal	0	1	estimated
-1.33E+00	5.20E-01	0.00E+00	-7.00E+00	$7.00 \mathrm{E}+00$	lognormal	0	1	estimated
-1.36E+00	5.26E-01	0.00E+00	-7.00E+00	$7.00 \mathrm{E}+00$	lognormal	0	1	estimated
$-1.34 \mathrm{E}+00$	5.32E-01	0.00E+00	-7.00E+00	$7.00 \mathrm{E}+00$	lognormal	0	1	estimated
$-1.33 \mathrm{E}+00$	5.38E-01	0.00E+00	-7.00E+00	$7.00 \mathrm{E}+00$	lognormal	0	1	estimated
$-1.28 \mathrm{E}+00$	5.44E-01	0.00E+00	-7.00E+00	$7.00 \mathrm{E}+00$	lognormal	0	1	estimated
$-1.25 \mathrm{E}+00$	5.50E-01	0.00E+00	-7.00E+00	$7.00 \mathrm{E}+00$	lognormal	0	1	estimated
$-1.23 \mathrm{E}+00$	5.57E-01	0.00E+00	-7.00E+00	$7.00 \mathrm{E}+00$	lognormal	0	1	estimated
-1.21E+00	5.63E-01	0.00E+00	-7.00E+00	$7.00 \mathrm{E}+00$	lognormal	0	1	estimated
-1.20E+00	5.67E-01	0.00E+00	-7.00E+00	$7.00 \mathrm{E}+00$	lognormal	0	1	estimated
-1.19E+00	5.68E-01	$0.00 \mathrm{E}+00$	-7.00E+00	$7.00 \mathrm{E}+00$	lognormal	0	1	estimated

Table 3.2. Coefficients of variation used for weighting the indices of relative abundance in sensitivity scenario 1.

| | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | | | |

1991	0.174	1	0.628	1	1	1	1	1	1	1	1
1992	0.185	1	0.898	1	1	1	0.318	1	1	1	1
1993	0.551	1	0.594	1	1	1	0.209	1	1	1	1
1994	0.470	0.170	1	1	1	1	0.231	1	1	1	1
1995	0.575	0.140	0.294	0.257	1	1	0.289	1	1	1	1
1996	0.586	0.150	0.372	0.339	1	0.366	0.382	1	1	1	0.222
1997	0.471	0.180	0.367	0.269	1	1	0.336	1	1	1	0.307
1998	0.978	0.190	0.310	1	1	0.267	0.516	1	0.699	0.464	0.351
1999	0.837	0.210	0.529	0.270	1	1	0.407	1	0.640	0.353	1
2000	0.861	0.310	0.369	0.182	1	1	0.455	2.769	0.924	0.549	1
2001	0.651	0.200	0.341	0.248	0.227	0.272	0.482	1	0.854	0.468	0.351
2002	0.762	0.400	0.518	0.222	0.411	1	1.969	1	0.864	0.402	0.351
2003	0.586	0.370	0.611	0.246	0.241	1	1.970	0.906	0.734	0.365	0.254
2004	0.664	0.380	0.464	0.256	0.270	0.345	0.355	0.890	0.365	0.293	0.423
2005	0.464	0.420	0.491	0.593	0.255		0.477	2.062	0.256	0.423	0.423
2006	0.788	0.400	0.290	0.364	0.308		0.430	0.707	0.234	0.261	1
2007	0.441	0.410	0.645	0.388	0.286	0.304	0.368	0.517	0.318	1	0.351
2008	0.437	0.430	0.335	0.318	0.488		0.281	0.572	0.377	1	0.423
2009	0.389	0.370	0.362	0.211	0.187	0.207	0.279	0.545	0.374	1	0.276

Table 3.3. Additional standardized indices of relative abundance used in sensitivity scenario 2. All indices are scaled (divided by their respective mean). The three indices are bottom longline logbooks (BLL Logs), pelagic longline logbooks (Pel Logs), and the NMFS historical longline survey (NMFS Hist LL).

			NMFS Hist
YEAR	BLL Logs	Pel Logs	LL
1960	-	-	-
1961	-	-	3.769
1962	-	-	2.111
1963	-	-	1.304
1964	-	-	6.744
1965	-	-	5.425
1966	-	-	-
1967	-	-	0.038
1968	-	-	0.014
1969	-	-	0.214
1970	-	-	0.159
1971	-	-	-
1972	-	-	-
1973	-	-	-
1974	-	-	-
1975	-	-	0.076
1976	-	-	0.072
1977	-	-	0.056
1978	-	-	0.281
1979	-	-	0.459
1980	-	-	0.364
1981	-	-	0.126
1982	-	-	0.344
1983	-	-	0.202
1984	-	-	1.384
1985	-	-	0.581
1986	-	-	0.809
1987	-	-	0.904
1988	-	-	0.124
1989	-	-	0.498
1990	-	-	0.069
1991	-	-	0.794
1992	1.601	-	-
1993	0.671	-	0.079
1994	0.093	0.074	-
1995	0.229	1.589	-
1996	0.793	1.557	-
1997	1.000	1.024	-
1998	1.210	1.103	-
1999	1.443	1.315	-
2000	1.371	1.348	-
2001	1.234	1.182	-
2002	1.291	1.196	-
2003	1.157	1.047	-
2004	0.968	1.208	-
2005	1.009	0.934	-
2006	0.975	0.859	-
2007	0.954	0.521	-
	-	0.471	-
		0.570	
	-	-	-
	-	-	-

Table 3.4. Catches of sandbar shark by fleet in numbers used in sensitivity scenario 3. Catches are separated into three fisheries: a single commercial landings + unreported commercial catches, recreational + Mexican catches, and menhaden fishery discards.

Year	Com + Un	REC+MEX	Menhaden disc
1960	85	65	504
1961	169	129	504
1962	254	194	504
1963	339	259	504
1964	424	323	504
1965	508	388	504
1966	593	453	504
1967	678	517	504
1968	763	582	504
1969	847	647	504
1970	932	711	504
1971	1017	776	504
1972	1101	841	504
1973	1186	905	504
1974	1271	970	504
1975	1356	1035	504
1976	1383	1036	504
1977	1474	1079	504
1978	1764	2310	504
1979	2581	25366	504
1980	4309	97983	504
1981	6640	138933	696
1982	6640	45401	713
1983	7173	426979	705
1984	9797	68135	705
1985	9100	75593	635
1986	25826	134151	626
1987	73984	37438	653
1988	124681	72789	635
1989	160713	34532	670
1990	122440	68479	653
1991	96681	44428	505
1992	100593	43450	444
1993	71978	32922	452
1994	126274	23411	486
1995	84398	35206	445
1996	65545	46817	444
1997	41465	49315	452
1998	62655	41846	435
1999	53299	27329	479
2000	37324	17794	409
2001	48182	42127	383
2002	56360	13062	374
2003	45229	9252	365
2004	39139	7395	374
2005	33374	6126	374
2006	42117	5059	374
2007	16913	10638	374
2008	2153	7324	374
2009	3986	7026	374

Table 3.5. Values of natural mortality (M, instantaneous natural mortality rate) at age obtained by applying a U-shaped equation in sensitivity scenario 7 .

Table 3.6. Ranks used for weighting the indices of relative abundance in sensitivity scenario 9 .

1991	5	2	2	1	2	2	2	4	3	3	4
1992	5	2	2	1	2	2	2	4	3	3	4
1993	5	2	2	1	2	2	2	4	3	3	4
1994	5	2	2	1	2	2	2	4	3	3	4
1995	5	2	2	1	2	2	2	4	3	3	4
1996	5	2	2	1	2	2	2	4	3	3	4
1997	5	2	2	1	2	2	2	4	3	3	4
1998	5	2	2	1	2	2	2	4	3	3	4
1999	5	2	2	1	2	2	2	4	3	3	4
2000	5	2	2	1	2	2	2	4	3	3	4
2001	5	2	2	1	2	2	2	4	3	3	4
2002	5	2	2	1	2	2		4	3	3	4
2003	5	2	2	1	2	2	2	4	3	3	4
2004	5	2	2	1	2	2	2	4	3	3	4
2005	5	2	2	1	2		2	4	3	3	4
2006	5	2	2	1	2		2	4	3	3	4
2007	5	2	2	1	2	2	2	4	3	3	4
2008	5	2	2	1	2		2	4	3	3	4
2009	5	2	2	1	2	2	2	4	3	3	4

Table 3.7. Standardized hierarchical index of relative abundance used in sensitivity scenario 10 with associated CVs. The index is scaled (divided by the mean).

Table 3.8. Low catch scenario of sandbar shark used in sensitivity scenario 12. Catches are by fleet in numbers.

Year	$\begin{gathered} \text { Com+Un } \\ (\mathrm{GOM}) \end{gathered}$	Com + Un (SA)	REC+MEX	Menhaden disc
1960	59	25	27	504
1961	119	51	29	504
1962	178	76	31	504
1963	237	102	33	504
1964	297	127	35	504
1965	356	152	38	504
1966	415	178	40	504
1967	475	203	43	504
1968	534	228	46	504
1969	593	254	50	504
1970	653	279	53	504
1971	712	305	57	504
1972	771	330	61	504
1973	831	355	65	504
1974	890	381	70	504
1975	949	406	75	504
1976	969	414	75	504
1977	1033	442	78	504
1978	1236	529	167	504
1979	1807	773	1838	504
1980	3018	1291	7098	504
1981	4650	1990	10065	696
1982	4650	1990	11822	713
1983	5024	2149	11649	705
1984	6861	2936	11708	705
1985	6373	2727	8612	635
1986	11486	821	12174	626
1987	32833	2317	6962	653
1988	52727	36240	10314	635
1989	65555	30802	8480	670
1990	49948	1717	18455	653
1991	48662	4209	12153	505
1992	37590	16827	10678	444
1993	24452	14485	13117	452
1994	51442	23818	10636	486
1995	25911	18684	12808	445
1996	15991	16634	11519	444
1997	10271	9827	18065	452
1998	13944	13134	7893	435
1999	8236	16034	7976	479
2000	10716	13119	7133	409
2001	14199	11928	6900	383
2002	16474	17200	5071	374
2003	14134	12882	4338	365
2004	10868	12160	4258	374
2005	9243	12621	4420	374
2006	14213	12879	4692	374
2007	3990	7132	4244	374
2008	458	1020	2570	374
2009	1904	902	2696	374

Table 3.9. High catch scenario of sandbar shark used in sensitivity scenario 13. Catches are by fleet in numbers.

Year	$\begin{gathered} \hline \text { Com+Un } \\ \text { (GOM) } \\ \hline \end{gathered}$	Com + Un (SA)	REC+MEX	Menhaden discards
1960	59	25	1000	504
1961	119	51	1071	504
1962	178	76	1148	504
1963	237	102	1230	504
1964	297	127	1318	504
1965	356	152	1412	504
1966	415	178	1513	504
1967	475	203	1621	504
1968	534	228	1737	504
1969	593	254	1861	504
1970	653	279	1994	504
1971	712	305	2136	504
1972	771	330	2288	504
1973	831	355	2452	504
1974	890	381	2627	504
1975	949	406	2815	504
1976	969	414	2819	504
1977	1033	442	2936	504
1978	1236	529	6282	504
1979	1807	773	68999	504
1980	3018	1291	266524	504
1981	4650	1990	377914	696
1982	4650	1990	96519	713
1983	5024	2149	974681	705
1984	6861	2936	151169	705
1985	6373	2727	174849	635
1986	87941	36453	303420	626
1987	252228	104605	90040	653
1988	315537	147965	158186	635
1989	470208	212194	74671	670
1990	436442	184276	134740	653
1991	463139	41001	87011	505
1992	366158	163904	88165	444
1993	238181	141098	58110	452
1994	267907	124046	41199	486
1995	456216	328966	70361	445
1996	256149	266450	99651	444
1997	171033	163646	91865	452
1998	200559	188916	99555	435
1999	265109	516107	56976	479
2000	38660	47329	33210	409
2001	167980	141118	85714	383
2002	84495	88219	27360	374
2003	72617	66185	18612	365
2004	61501	68807	13372	374
2005	29797	40687	9491	374
2006	49614	44957	5557	374
2007	12659	22626	22139	374
2008	1228	2731	15773	374
2009	4669	2212	13526	374

Table 3.10. Predicted abundance (numbers), total biomass (kg), and spawning stock fecundity (numbers) of sandbar shark for the base run.

Year	N	B	SSF
1960	4,136,052	88,307,548	1,157,184
1961	4,135,480	88,294,090	1,157,010
1962	4,134,619	88,274,185	1,156,732
1963	4,133,523	88,249,192	1,156,395
1964	4,132,124	88,217,597	1,155,981
1965	4,130,510	88,180,897	1,155,490
1966	4,128,645	88,138,044	1,154,922
1967	4,126,575	88,089,966	1,154,274
1968	4,124,267	88,035,502	1,153,528
1969	4,121,738	87,975,820	1,152,724
1970	4,119,018	87,911,547	1,151,850
1971	4,116,115	87,842,350	1,150,900
1972	4,113,000	87,767,679	1,149,871
1973	4,109,733	87,689,191	1,148,772
1974	4,106,229	87,604,799	1,147,593
1975	4,102,552	87,516,177	1,146,338
1976	4,098,701	87,423,467	1,145,037
1977	4,094,689	87,326,255	1,143,642
1978	4,090,482	87,224,521	1,142,178
1979	4,086,122	87,119,246	1,140,667
1980	4,081,608	87,010,124	1,139,070
1981	4,076,893	86,896,459	1,137,423
1982	4,071,819	86,773,595	1,135,623
1983	4,025,192	86,137,310	1,130,645
1984	3,882,774	84,458,374	1,123,653
1985	3,834,516	83,300,472	1,115,474
1986	3,784,642	82,110,607	1,107,222
1987	3,671,804	79,837,404	1,086,772
1988	3,603,422	76,582,667	1,034,921
1989	3,442,693	71,293,576	946,597
1990	3,269,287	65,311,505	837,586
1991	3,088,063	60,884,602	758,891
1992	2,949,985	57,897,374	704,227
1993	2,805,026	54,684,577	644,964
1994	2,692,431	52,540,571	603,754
1995	2,530,868	48,700,128	536,991
1996	2,391,551	46,166,875	494,628
1997	2,259,984	44,116,196	464,346
1998	2,154,324	42,800,641	449,447
1999	2,041,650	40,720,368	425,258
2000	1,954,665	38,982,212	405,796
2001	1,894,891	37,912,155	397,026
2002	1,806,557	36,256,021	383,467
2003	1,740,611	34,525,532	365,366
2004	1,688,826	33,268,064	353,121
2005	1,645,191	32,247,512	343,206

2006	$1,608,720$	$31,436,577$	335,358
2007	$1,565,308$	$30,383,263$	323,068
2008	$1,541,327$	$30,139,700$	322,934
2009	$1,539,102$	$30,431,026$	330,902

Table 3.11. Estimated total and fleet-specific instantaneous fishing mortality rates by year.

Year	Total F	Fleet-specific F			
		$\begin{gathered} \text { Com+Un } \\ (\mathrm{GOM}) \end{gathered}$	$\begin{gathered} \mathrm{Com}+\mathrm{Un} \\ (\mathrm{SA}) \\ \hline \end{gathered}$	REC+MEX	Menhaden disc
1960	0.00016	0.00002	0.00001	0.00003	0.00013
1961	0.00030	0.00006	0.00004	0.00017	0.00013
1962	0.00044	0.00011	0.00006	0.00031	0.00013
1963	0.00058	0.00015	0.00009	0.00045	0.00013
1964	0.00072	0.00019	0.00011	0.00059	0.00013
1965	0.00086	0.00023	0.00014	0.00072	0.00013
1966	0.00101	0.00028	0.00017	0.00086	0.00013
1967	0.00115	0.00032	0.00019	0.00100	0.00013
1968	0.00129	0.00036	0.00022	0.00114	0.00013
1969	0.00143	0.00041	0.00024	0.00128	0.00013
1970	0.00157	0.00045	0.00027	0.00142	0.00013
1971	0.00171	0.00049	0.00029	0.00156	0.00013
1972	0.00185	0.00053	0.00032	0.00170	0.00013
1973	0.00200	0.00058	0.00034	0.00184	0.00013
1974	0.00214	0.00062	0.00037	0.00198	0.00013
1975	0.00228	0.00066	0.00039	0.00212	0.00013
1976	0.00242	0.00071	0.00042	0.00226	0.00013
1977	0.00256	0.00075	0.00045	0.00239	0.00013
1978	0.00270	0.00079	0.00047	0.00253	0.00013
1979	0.00284	0.00084	0.00050	0.00267	0.00013
1980	0.00299	0.00088	0.00052	0.00281	0.00013
1981	0.00319	0.00092	0.00055	0.00295	0.00019
1982	0.03147	0.00247	0.00147	0.03128	0.00019
1983	0.11148	0.00273	0.00161	0.11141	0.00019
1984	0.05108	0.00377	0.00221	0.05086	0.00020
1985	0.05654	0.00360	0.00210	0.05636	0.00018
1986	0.09998	0.01079	0.00537	0.09931	0.00018
1987	0.04807	0.03186	0.01597	0.02936	0.00020
1988	0.08935	0.04901	0.04001	0.05560	0.00020
1989	0.12463	0.07083	0.05332	0.02778	0.00022
1990	0.10083	0.06380	0.03662	0.05619	0.00022
1991	0.07743	0.06798	0.00910	0.03907	0.00018
1992	0.09286	0.05572	0.03682	0.04012	0.00017
1993	0.07254	0.03834	0.03394	0.03203	0.00018
1994	0.12910	0.07559	0.05302	0.02418	0.00020
1995	0.09653	0.04609	0.05009	0.03834	0.00020
1996	0.08070	0.03150	0.04885	0.05478	0.00021
1997	0.06348	0.02169	0.03068	0.06188	0.00022
1998	0.08074	0.03375	0.04663	0.05568	0.00023
1999	0.07637	0.02010	0.05586	0.03810	0.00026
2000	0.05355	0.01932	0.03394	0.02594	0.00023
2001	0.06846	0.03087	0.03723	0.06163	0.00022
2002	0.08490	0.03405	0.05049	0.02038	0.00023
2003	0.07068	0.03043	0.03993	0.01465	0.00023
2004	0.06467	0.02466	0.03970	0.01197	0.00024
2005	0.05830	0.01959	0.03840	0.01014	0.00025
2006	0.07207	0.03065	0.04107	0.00864	0.00026
2007	0.03205	0.00883	0.02293	0.01817	0.00026
2008	0.01323	0.00103	0.00326	0.01297	0.00026
2009	0.01305	0.00395	0.00275	0.01257	0.00027

Table 3.12. Summary of results for base and sensitivity runs for sandbar shark. R_{0} is the number of age- 1 pups at virgin conditions. SSF is spawning stock fecundity (sum of number at age times pup production at age). All biomass metrics are in kg , except for MSY (numbers). AICc is the Akaike Information Criterion for small sample sizes, which converges to the AIC statistic as the number of data points gets large. Sensitivity runs are: S1 (inverse CV weighting), S2 (all indices), S3 (combined catches), S4 (combined catches and inverse CV weighting), S5 (2-yr cycle), S6 (3-yr cycle), S7 (U-shaped M), S8 (fishery-independent indices only), S9 (ranked indices), S10 (hierarchical index), S11 (hierarchical index, no weighting), S12 (low catch), and S13 (high catch).

	Base		S1		S2		S3				S5		S6	
	Est	CV	Est	CV	Est	CV	Est		Est	CV	Est	CV	Est	CV
AICc	718.01		652.84		767.34		617.71		538.54		717.81		718.71	
Objective function	117.95		85.37		158.18		133.56		93.98		117.85		118.30	
$\mathrm{SSF}_{2009} / \mathrm{SSF}_{\mathrm{MSY}}$	0.66	0.83	0.56	0.70	0.81	0.52	0.78	0.73	0.58	0.73	0.64	0.71	0.66	1.09
$\mathrm{F}_{2009} / \mathrm{F}_{\text {MSY }}$	0.62	0.57	0.62	0.44	0.46	0.52	0.53	0.30	0.61	0.30	0.46	0.55	0.93	0.61
$\mathrm{N}_{2009} / \mathrm{N}_{\text {MSY }}$	0.74	---	0.38	---	0.49		0.48	---	0.38	---	0.43	---	0.43	---
MSY	160643	---	264367	---	313002		299543	---	252875	---	264927	---	313581	---
$\mathrm{SPR}_{\text {MSY }}$	0.78	0.06	0.74	0.09	0.77	0.11	0.79	0.01	0.74	0.01	0.69	0.09	0.86	0.04
$\mathrm{F}_{\text {MSY }}$	0.021	---	0.025	---	0.022		0.020	---	0.026	---	0.030	---	0.030	---
$\mathrm{SSF}_{\text {MSY }}$	477590	---	430320	---	507410		509800	---	402450	---	503420	---	503420	---
$\mathrm{N}_{\text {MSY }}$	1928165	---	3120188	,	3741763	---	3608844	---	2971324	---	3063451	---	3639906	---
F_{2009}	0.01	0.57	0.02	0.44	0.01	---	0.01	0.30	0.02	0.30	0.01	0.55	0.01	0.61
SSF_{2009}	312890	0.60	240950	0.40	410450	0.38	397980	0.37	234890	0.37	319760	0.59	313510	0.63
N_{2009}	1539102	---	1277408	--	1966818	---	1857216	---	1219683	---	1408804	---	1688767	---
$\mathrm{SSF}_{2009} / \mathrm{SSF}_{0}$	0.28	0.41	0.24	0.27	0.34	0.33	0.35	0.25	0.24	0.25	0.25	0.42	0.32	0.41
$\mathrm{B}_{2009} / \mathrm{B}_{0}$	0.34	0.33	0.30	0.18	0.40	0.27	0.40	0.18	0.30	0.18	0.33	0.33	0.35	0.34
R_{0}	563490	0.20	516900	0.14	612910	0.08	587230	0.16	494350	0.16	516810	0.18	612140	0.23
Pup-survival	0.84	0.29	0.94	0.30	0.86	0.00	0.82	0.29	0.94	0.29	0.84	0.29	0.84	0.29
alpha	1.64	---	1.84	---	1.67	---	1.59	---	1.82	---	2.05	---	1.37	---
steepness	0.29	---	0.31	---	0.29	---	0.28	---	0.31	---	0.34	---	0.25	---

Table 3.12 (continued)

	S7		S8		S9		S10		S11		S12		S13	
	Est	CV												
AICc	717.40		721.25		791.27		753.73		781.79		712.71		716.79	
Objective function	117.644		93.60		154.58		51.94		65.97		115.30		117.34	
$\mathrm{SSF}_{2009} / \mathrm{SSF}_{\text {MSY }}$	0.57	0.59	1.17	0.83	0.66	0.85	0.61	0.82	0.41	1.07	0.66	0.79	0.77	0.81
$\mathrm{F}_{2009} / \mathrm{F}_{\mathrm{MSY}}$	0.41	0.51	0.26	0.95	0.63	1.02	0.67	0.57	1.14	0.83	0.70	0.57	0.21	0.58
$\mathrm{N}_{2009} / \mathrm{N}_{\mathrm{MSY}}$	0.43	---	0.67	---	0.42	---	0.39	---	0.27	---	0.43	---	0.46	---
MSY	225930	---	427070	---	292289	---	282174	-	252619	---	145726	---	1350123	---
$\mathrm{SPR}_{\text {MSY }}$	0.62	0.11	0.78	0.06	0.79	0.05	0.78	0.07	0.79	0.06	0.78	0.07	0.78	0.06
$\mathrm{F}_{\text {MSY }}$	0.044	---	0.021	---	0.020	---	0.021		0.020	---	0.014	---	0.023	---
$\mathrm{SSF}_{\text {MSY }}$	543750	---	721400	---	491570	---	471350	--	418530	---	249020	---	2233800	---
$\mathrm{N}_{\text {MSY }}$	2501535	---	5128279	---	3522572	---	3386675	---	3046233	---	1770890	---	16150499	---
F_{2009}	0.02	0.51	0.01	0.95	0.01	1.02	0.01	0.57	0.02	0.83	0.01	0.57	0.00	0.58
SSF_{2009}	312140	0.56	841940	1.04	326150	1.07	288810	0.59	172330	0.89	163310	0.62	1722400	0.59
N_{2009}	1163572	---	3720384	---	1583756		1436508	---	900438	---	823421	---	7932433	---
$\mathrm{SSF}_{2009} / \mathrm{SSF}_{0}$	0.22	0.43	0.52	0.50	0.29	0.48	0.27	0.41	0.18	0.71	0.29	0.41	0.33	0.37
$\mathrm{B}_{2009} / \mathrm{B}_{0}$	0.30	0.33	0.56	0.41	0.35	0.42	0.32	0.33	0.23	0.59	0.36	0.32	0.38	0.31
R_{0}	439030	0.15	836730	0.55	572880	0.59	552790	0.19	495180	0.19	285570	0.21	2644800	0.22
Pup-survival	0.85	0.29	0.85	0.29	0.83	0.29	0.85	0.29	0.81	0.29	0.86	0.29	0.84	0.29
alpha	2.69	---	1.65		1.61	---	1.65	---	1.59	---	1.68	---	1.63	---
steepness	0.40	---	0.29	--	0.29	---	0.29	---	0.28	---	0.30	---	0.29	---

Table 3.13. Summary of results for continuity run and 2006 base run for sandbar shark. R_{0} is the number of age- 1 pups at virgin conditions. SSF is spawning stock fecundity (sum of number at age times pup production at age). All biomass metrics are in kg , except for MSY (numbers). AICc is the Akaike Information Criterion for small sample sizes, which converges to the AIC statistic as the number of data points gets large.

	Continuity		2006 Base	
	Est	CV	Est	CV
AICc	253.02		145.13	
Objective function	-80.11		118.92	
$\mathrm{SSF}_{\text {cur }} / \mathrm{SSF}_{\text {MSY }}$	0.80	0.70	0.72	0.46
$\mathrm{F}_{\mathrm{cu}} / \mathrm{F}_{\text {MSY }}$	0.37	1.50	3.72	0.15
$\mathrm{N}_{\text {cur }} / \mathrm{N}_{\text {MSY }}$	0.90		0.79	---
MSY	147058		138304	---
$\mathrm{SPR}_{\text {MSY }}$	0.65	0.39	0.73	0.02
$\mathrm{F}_{\text {MSY }}$	0.06	---	0.02	---
$\mathrm{SSF}_{\text {MSY }}$	556810	---	594300	---
$\mathrm{N}_{\text {MSY }}$	1737724	---	1769980	---
$\mathrm{F}_{\text {cur }}$	0.02	1.50	0.06	0.15
$\mathrm{SSF}_{\text {cur }}$	444130	0.59	428340	0.19
$\mathrm{N}_{\text {cur }}$	1685467	---	1520555	---
$\mathrm{SSF}_{\text {curr }} / \mathrm{SSF}_{0}$	0.32	0.53	0.31	0.13
$\mathrm{B}_{\text {cur }} / \mathrm{B}_{0}$	0.39	0.54	0.35	0.10
R_{0}	467100	0.25	461100	0.07
Pup-survival	0.79	0.23	0.62	0.27
alpha	2.38	---	1.88	---
steepness	0.37	---	0.32	---

cur $=2009$ for continuity, 2004 for Base 2006 assessment

3.1.7. Figures

Figure 3.1. Natural mortality at age derived from the Chen and Watanabe (1989) and "bathtub" methods. The "bathtub" method was used to approximate the values of the Chen and Watanabe method while providing a better U shape.

Figure 3.2. Selectivity for the hierarchical index. "Weighted selectivity" is the selectivity obtained by weighting the base run selectivities by the inverse variance selectivity weights reported in SEDAR-21-AW-01; "functional form" is an approximation of the weighted selectivity for input into sensitivity scenarios 10 and 11 .

A

B

Figure 3.3. A) Average weights of sandbar shark from the bottom longline observer program showing mean and upper and lower 95% CIs; B) Recreational catches of sandbar shark (sum of animals landed and discard dead) showing mean and upper and lower 95\% CIs.

Sandbar shark alternative catch scenarios

Figure 3.4. Low and high catch estimates for sandbar shark used in sensitivity scenarios 12 and 13. Catch series are stacked.

Figure 3.5. Predicted fits to catch data for the base run.

Figure 3.6. Predicted fits to indices (left) and residual plots (right) for the base run.

Figure 3.6 (continued). Predicted fits to indices (left) and residual plots (right) for the base run.

Figure 3.6 (continued). Predicted fits to indices (left) and residual plots (right) for the base run.

Figure 3.7. Predicted abundance at age for sandbar shark.

Figure 3.8. Predicted and "observed" Beverton-Holt recruitment (number of age-1 pups) for sandbar sharks at different levels of SSB depletion. The label shows the estimated virgin number of (age-1) recruits.

Figure 3.9. Predicted abundance, total biomass, and spawning stock fecundity trajectories for sandbar sharks.

Figure 3.10. Estimated total fishing mortality (top) and fleet-specific F (bottom) for sandbar shark. The dashed line in the middle panel indicates $\mathrm{F}_{\mathrm{MSY}}(0.021)$.

Figure 3.11. Profile likelihoods for pup survival and virgin recruitment. Both prior and posterior distributions are shown.

Figure 3.12. Profile likelihoods for total biomass and spawning stock fecundity in virgin conditions and in 2009 (top) as well as depletion estimates of these parameters (bottom).

Figure 3.13. Profile likelihoods for number of mature individuals in virgin conditions and in 2009 (top) and for fishing mortality in 2009 (bottom).

Figure 3.14. Predicted fits to indices (left) and residual plots (right) for sensitivity scenario 1 (inverse CV weighting).

Figure 3.14 (continued). Predicted fits to indices (left) and residual plots (right) for sensitivity scenario 1 (inverse CV weighting).

Figure 3.14 (continued). Predicted fits to indices (left) and residual plots (right) for sensitivity scenario 1 (inverse CV weighting).

Figure 3.15. Predicted fits to indices (left) and residual plots (right) for sensitivity scenario 2 (all indices).

Figure 3.15 (continued). Predicted fits to indices (left) and residual plots (right) for sensitivity scenario 2 (all indices).

Figure 3.15 (continued). Predicted fits to indices (left) and residual plots (right) for sensitivity scenario 2 (all indices).

Figure 3.15 (continued). Predicted fits to indices (left) and residual plots (right) for sensitivity scenario 2 (all indices).

Figure 3.16. Predicted fits to indices (left) and residual plots (right) for sensitivity scenario 8 (fishery-independent indices only).

Figure 3.16 (continued). Predicted fits to indices (left) and residual plots (right) for sensitivity scenario 8 (fishery-independent indices only).

Figure 3.17. Predicted fits to indices (left) and residual plots (right) for sensitivity scenarios 10 and 11 (hierarchical index with inverse CV and equal weighting, respectively).

Figure 3.18. Comparison of catch streams used in the 2006 assessment and in the current continuity analysis.

Figure 3.19. Indices used in the 2006 assessment (thin red line) vs. current continuity analysis (thick black line). The Delaware Bay Juvenile index was as used in 2006; the other seven indices were re-analyzed. All indices are scaled (divided by their respective mean).

Figure 3.20. Retrospective analysis for sandbar shark with last five years of data sequentially removed from the model. Model quantities examined include spawning stock fecundity (top), relative spawning stock fecundity (middle), and relative fishing mortality rate (bottom).

A

B

SSB/SSB MSY

Figure 3.21. (A) Estimated relative biomass and fishing mortality rate trajectories for sandbar shark in the base run. The dashed line indicates $\mathrm{F}_{\text {MSY }}$. (B) Phase plot of relative biomass and fishing mortality rate by year. The diamond indicates current (for 2009) conditions. The dashed vertical blue line indicates $\operatorname{MSST}\left((1-\mathrm{M}) * \mathrm{~B}_{\mathrm{MSY}}\right)$.

Figure 3.22. Phase plot of sandbar shark stock status. Results are shown for the base model (base), 13 sensitivity scenarios (S1: inverse CV weighting; S2: all indices; S3: combined catches; S4: combined catches and inverse CV weighting; S5: 2-yr cycle; S6: 3-yr cycle; S7: U-shaped M; S8: fishery-independent indices only; S9: ranked indices; S10: hierarchical index; S11: hierarchical index, no weighting; S12: low catch; S13: high catch), continuity analysis (2010 Cont), and 2006 and 2002 assessment base models (2006 base, 2002 base). The circle indicates the position of the base run, which overlaps with that of sensitivity runs 9 and 12 . Points to the left of the vertical dashed line indicate runs in which the stock is estimated to be overfished; points above the horizontal black line indicate runs in which overfishing is estimated to be occurring.

Figure 3.23. Phase plot of sandbar shark stock status for the base model (base), retrospective analysis (sequentially dropping one year from the model: retro08, retro07, retro06, retro05, and retro04), and 2006 assessment base model (2006 base). Points to the left of the vertical dashed line indicate runs in which the stock is estimated to be overfished; points above the horizontal black line indicate runs in which overfishing is estimated to have occurred.
3.1.8. Appendix 1. Algorithm used to estimate selectivities (implemented in MS Excel).

1. Obtain age-frequencies
2. Identify age of full selectivity. You should expect to see the age frequency bar chart increase with age to a modal age (age_full), after which it begins to decline again. One can assume that age_full is the age which is fully selected
3. Calculate the observed proportion at age: $\mathrm{Obs}[$ prop.CAA] $=$ freq(age)/Total_samples
4. Take the natural log of observed proportion at age, plot age against it, and fit a trend line
5. Use the fitted trend line to predict expected proportion at age, $E[$ prop.CAA $]=\exp$ (trend line)
6. Use the ratio of $\mathrm{Obs}[$ prop.CAA] $/ \mathrm{E}[$ prop.CAA] to estimate the non-fully selected ages (i.e. selectivity of ages < age_full)
7. Normalize the column of $\mathrm{Obs} /$ Exp by dividing by the ratio value for age_full (this will scale ages so that the maximum selectivity will be 1 for age_full)
8. The age frequency for ages $>$ age_full should decline as a result of natural mortality alone. If natural mortality is relatively constant for those ages, this should be a linear decline when you look at the $\log ($ Obs[prop.CAA]). If that decline departs severely from a linear trend, it may be that true selectivity is dome-shaped. Also, you may know because of gear characteristics that selectivity is lower for older animals. In this instance, a double logistic could be estimated to capture the decline in selectivity for the older animals
9. Fit a logistic curve (or alternatively a double logistic curve) by least squares by minimizing the sum of squared residuals of the expected value and the normalized Obs/Exp value
10. If the resulting fitted curve does not cover the ages as expected according to "expert" knowledge, manipulate parameter values to satisfaction ("fit by eye")

SEDAR

Southeast Data, Assessment, and Review

SEDAR 21

HMS Sandbar Shark

SECTION IV: Research Recommendations

SEDAR
4055 Faber Place Drive, Suite 201
North Charleston, SC 29405

This information is distributed solely for the purpose of peer review. It does not represent and should not be construed to represent any agency determination or policy.

1. DATA WORKSHOP RESEARCH RECOMMENDATIONS

1.1 LIFE HISTORY WORKING GROUP

- Increase research on post-release survivorship of all shark species by gear type
- Continue to investigate reproductive periodicity for sandbar sharks
- Continue to collect vertebral samples from the sandbar shark research fishery to develop an ageing material archive and to keep track of the age distribution of the catch, and continue monitoring juvenile sandbar shark ages through the collection of fishery-independent samples
- Develop empirically based estimates of natural mortality
- Continue tagging efforts

1.2 COMMERCIAL STATISTICS WORKING GROUP

- Expand observer coverage to obtain 5\% coverage of total trips or 20 to 30\% PSE (percent standard error).
- Conduct more studies to better estimate post-release mortality
- Review bycatch estimation models
- Discard rates of sandbar sharks in the current directed and non-directed bottom longline fishery should be calculated and extrapolated using BLLOP data.
- Continue to develop better methods to quantify discards and effort from logbook programs and observer programs

1.3 RECREATIONAL STATISTICS WORKING GROUP

No recommendations were provided.

1.4 INDICES OF ABUNDANCE WORKING GROUP

No general research recommendations were provided. Recommendations specific to each index can be found in the workshop text and on the appropriate index scorecard.

2. CIE REVIEW RECOMMENDATIONS - DATA WORKSHOP

Conclusions and Recommendations

The Data Workshop provides a productive environment in which stakeholders and scientists can share knowledge to optimize the information available for assessment. It also serves as a mechanism where differences of opinion can be resolved before assessments are completed. The quality of science was high and appropriate for the purpose of stock assessment.

Compared with many stocks the availability of data are comparatively limited, especially in relation to catches, whether landings or discards. Although there is a large quantity of abundance index information the quality of these data is limited by the amount of fishery independent information or spatial coverage of the survey. Preliminary inspection of the indices at the meeting suggested that there was very little similarity of trends suggesting they have high uncertainty. There is a danger that the assessment might be driven arbitrarily by one of the time series if it happened to have low estimated CVs. I would recommend that more exploratory analyses are done with the CPUE indices to try to identify those which contribute the most information on stock trends over the area of the assessment. One possible line of analysis would be to use factor analysis to see if a common annual signal could be extracted from the suite of indices.

During the meeting some time was devoted to filling out a 'report card' for each series. In order to save time I would recommend that the report card is completed by the author and that more time at the meeting is devoted to assessing the value of each time series for the assessment. The latter should include participation by assessment analysts.

The catch data suffer from a high degree of uncertainty. As much of the uncertainty relates to historical records there is not much that can be done to improve them. However, I would recommend that an analysis is performed to try to quantify the uncertainty in the time series of catch data. This would help in characterizing the overall uncertainty in the assessment.

The frequency of spawning by female sharks may be an important factor in estimating the spawning potential of the stock. Biological examination of female sharks appears to be able to determine that some species spawn less often that annually but the actual frequency cannot yet be established. In the absence of definitive information on spawning frequency I would recommend that female sharks are examined in the spawning period to determine the proportion of spawning females. While this will not provide an estimate of spawning frequency, it may provide sufficient information to estimate annual spawning biomass.

Estimates of discard survival proved an area of disagreement between scientists and fishing industry representatives. This was in part a result of differing perceptions of the meaning of discard survival. It is important that such disagreements don't lead to negotiated values that have no scientific basis. It might be worth investing in further discussion with the industry to reach a common understanding of the parameter in question. It might also help if a desk study was undertaken to examine whether the choice of discard survival has a significant bearing on the estimated status of the stock in relation to MSY reference points. If the sensitivity of the assessments to this quantity is low, it might defuse some of the polarization over the chosen values.

There may be a case for assessment analysts at the workshop to be more active in commenting whether certain biological effects can usefully be incorporated into assessments. This might be because some biological phenomena that are statically significant in their own right have little importance in determining the assessment outcome or where added biological realism in an assessment model is negated by the added uncertainty in input parameter values.

3. ASSESSMENT WORKSHOP RESEARCH RECOMMENDATIONS

- Investigate alternative approaches to age-length keys for estimating age from length

4. REVIEW PANEL RESEARCH RECOMMENDATIONS

TO BE COMPETED FOLLOWING THE REVIEW WORKSHOP

[^0]: ${ }^{1}$ At that time, sandbar and dusky sharks were managed within the large coastal shark complex, and blacknose sharks were managed within the small coastal shark complex.

[^1]: ${ }^{2}$ In addition to white, basking, sand tiger, bigeye sand tiger, whale sharks, which were already prohibited, NMFS prohibited Atlantic angel, bigeye sixgill, bigeye thresher, bignose, Caribbean reef, Caribbean sharpnose, dusky, Galapagos, longfin mako, narrowtooth, night, sevengill, sixgill, and smalltail sharks.

