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ABSTRACT

The production of marine protein from fishing and
aquaculture is influenced by environmental condi-
tions. Ocean temperature, for example, can change
the growth rate of cultured animals, or the distribution
of wild stocks. In turn these impacts may require
changes in fishing or farming practices. In addition to
short-term environmental fluctuations, long-term cli-
mate-related trends are also resulting in new condi-
tions, necessitating adjustment in fishing, farming and
management approaches. Longer-term climate fore-
casts, however, are seen as less relevant by many in the
seafood sector owing to more immediate concerns.
Seasonal forecasts provide insight into upcoming envi-
ronmental conditions, and thus allow improved deci-
sion making. Forecasts based on dynamic ocean
models are now possible and offer improved perfor-
mance relative to statistical forecasts, particularly
given baseline shifts in the environment as a result of
climate change. Seasonal forecasting is being used in
marine farming and fishing operations in Australia,
including wild tuna and farmed salmon and prawns, to
reduce uncertainty and manage business risks. Forecast
variables include water temperature, rainfall and air
temperature, and are considered useful up to approxi-
mately 4 months into the future, depending on the
region and season of interest. Species-specific habitat
forecasts can also be made by combining these envi-
ronment forecasts with biological habitat preference
data. Seasonal forecasts are useful when a range of

options are available for implementation in response
to the forecasts. The use of seasonal forecasts in sup-
porting effective marine management may also repre-
sent a useful stepping stone to improved decision
making and industry resilience at longer timescales.

Key words: climate variability, prawn, Predictive
Ocean Atmosphere Model for Australia, risk manage-
ment, salmon, tuna

INTRODUCTION

Marine food production from fisheries and aquaculture
plays an important role in many regional and national
economies and provides an important source of protein
for people worldwide (Brander, 2007; Allison et al.,
2009; Merino et al., 2012). With projections of human
population growth approaching 10 billion by 2050
and considerable challenges in increasing the harvest
from wild fisheries (Rice and Garcia, 2011; Cheung
et al., 2012), development of aquaculture is seen as
critical for future human food security (Bell et al.,
2009; Merino et al., 2012). Continued sustainable har-
vest of wild stocks must also continue, which requires
improved management approaches and economically
efficient fishing and farming strategies (Worm et al.,
2009; Branch et al., 2011; Callaway et al., 2012), par-
ticularly in areas with rapidly changing environments
(Melnychuk et al., 2014).

Just as in terrestrial food production, fisheries and
aquaculture production is subject to environmental
stresses that result in considerable interannual varia-
tion in production. Ocean temperature, for example,
can impact the growth rate of cultured and wild ani-
mals (Thresher et al., 2007; Neuheimer et al., 2011;
Callaway et al., 2012), and the distribution of wild
stocks (Heath et al., 2012; Jung et al., 2014; Pinsky
and Fogarty, 2012). In addition to short-term environ-
mental fluctuations, long-term climate-related trends
are also resulting in changing conditions in many mar-
ine regions (Hobday and Pecl, 2014). Given projected
long-term climate impacts on seafood production at
regional (Brown et al., 2009), national (Callaway
et al., 2012; Bell et al., 2013) and global (Cheung
et al., 2010; Merino et al., 2012) scales, adaptation in
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fishing, farming and management practices is required
to minimize losses in fisheries and aquaculture
production in some regions (Hobday et al., 2008; Sal-
inger and Hobday, 2013), whereas maximizing oppor-
tunities in others (Brander, 2007; Hobday et al., 2008;
Cochrane et al., 2009; Bell et al., 2013).

One way of improving performance of seafood busi-
nesses and managers is through the provision of envi-
ronmental forecasts. Management responses could be
implemented ahead of time to reduce impacts that
result from unfavorable conditions and maximize oppor-
tunities when optimal conditions occur. Just as weather
forecasts influence decision making at short timescales,
such as when and where to fish (e.g., Dell et al., 2011),
environmental information on longer timescales may
also be useful to planning. While there are a range of
obstacles that can limit delivery of such information
(e.g., Sarachik, 2000), attention to engagement with
stakeholders now receives much greater priority. For
example, considerable attention has been directed to
the development and dissemination of climate projec-
tions relevant to fisheries (e.g., Cheung et al., 2010;
Hobday, 2010; Bell et al., 2011) and aquaculture (Bat-
taglene et al., 2008; Hobday and Lough, 2011; Merino
et al., 2012) out to the end of the century. Climate fore-
casting at these timescales is considered useful for some
infrastructure, coastal planning and long-term industry
changes (Hobday et al., 2008). However, such long-
term climate forecasts are seen as less relevant by many
in the seafood sector given a wide range of more imme-
diate concerns, such as short-term environmental
conditions, labor costs, market pressures and environ-
mental regulation (Nursey-Bray et al., 2012; Fleming
et al., 2014). Thus, improved performance of fisheries
and aquaculture under changing environmental condi-
tions may be achieved by focusing on a more relevant
timescale to these users (Fig. 1).

At the other end of the spectrum to climate-scale
projections is weather forecasting, which is widely used

for planning activities on timescales from hours to days
(Fig. 1). Experienced individuals often use qualitative
forecasting for informing decision making: a simple
look skyward can allow a forecast about the potential
for rain in the coming hours. The main source of infor-
mation at this timescale, quantitative forecasts, is
issued by meteorological services and can support sea-
food production and management planning at 1–7 day
timescales.

Between these two extremes, is seasonal forecast-
ing, which aims to deliver information at a timescale
of weeks to months (e.g., Spillman and Alves, 2009).
Seasonal marine forecasts, as for agriculture, provide
information regarding future environmental condi-
tions, and thus allow improved decision making for a
range of these marine industries. It is important to
emphasize that the effective use of seasonal forecasts
requires proactive and responsive management with a
range of strategies that can be implemented on the
basis of the forecasts (Fig. 1) (Sarachik, 2000). In
aquaculture, for example, there are operational deci-
sions made at a range of timescales, some of which
could be modified in response to future environmen-
tal information (Fig. 1). Sea temperatures, for exam-
ple, are linked with salmon health and disease
prevalence (Battaglene et al., 2008). Advance warn-
ing of potentially warm summers or cold winters may
give farmers time to respond and adapt feeding or
stocking strategies to maximize production under par-
ticular conditions. Likewise, fishery managers may
implement particular management strategies if inter-
actions between target and bycatch species are sug-
gested to increase under environmental conditions
forecasted for the upcoming season (e.g., Hartog
et al., 2011).

Here, we show how seasonal forecasting is being
used in a range of marine farming and fishing opera-
tions in Australia, including wild tuna and farmed sal-
mon and prawns, to reduce uncertainty and manage

Weather
forecasting

Seasonal 
forecasting

Climate
projection

7-10 days Weeks to months Decades to centuries
Minimal warning time

Reactive management
Early window for

implementation of strategies
to minimize impacts

Long-term planning

Decision lead time

Figure 1. Information on future environ-
mental conditions can be delivered at a
range of timescales. The appropriate
timescale can depend on the period until
the decision must be implemented, or the
time at which the environmental condi-
tions are expected to occur.
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business risks. The use of seasonal forecasts in support-
ing effective, proactive marine management may also
provide a useful stepping stone to improved decision
making and industry resilience at longer timescales.

The why and how of seasonal forecasting

To many in the seafood production or management
sectors, climate variability is just ‘business as usual’
(Nursey-Bray et al., 2012). However, merely coping
with climate variability represents a responsive and
often conservative management approach (Hodgkin-
son et al., 2014). This is likely to be less cost-effective
than proactive management, where information about
future conditions is integrated into planning activities,
both helping to minimize impacts in poor seasons and
capitalize on opportunities in good seasons.

Seasonal forecasts can be based on statistical or
dynamical quantitative approaches. Statistical meth-
ods typically use historical data as the basis of estimat-
ing future outcomes, and can range from the simple
climatological forecasts to complex autoregressive
multi-parameter models. Statistical relationships may
exist between atmospheric or oceanic indicators and
local variables, or between local variables at two
points in time, and thus form the basis for prediction.
While statistical forecast methods can often be quite
skilful, dynamic ocean model forecasts do not assume a
constant climate baseline and can offer improved per-
formance under climate change (Spillman, 2011).

Seasonal forecasting methods for marine applica-
tions are based on dynamical global atmospheric and
oceanic circulation models. In each of the case studies
described below, the Australian Bureau of Meteorol-
ogy (BOM) seasonal forecast model, referred to as the
Predictive Ocean Atmosphere Model for Australia
(POAMA), was used. POAMA is a state-of-the-art
seasonal forecast system based on a coupled ocean/
atmosphere model and ocean/atmosphere/land obser-
vation assimilation systems (Spillman et al., 2012).
Extensive analyses have been done of the capability of
the POAMA system for regional forecasting of climate
around Australia (e.g., Spillman and Alves, 2009;
Marshall et al., 2012; Spillman et al., 2012; White
et al., 2013). Seasonal forecasts from POAMA of
high-risk conditions in marine ecosystems can be very
useful tools for managers, allowing for proactive man-
agement responses. For example, POAMA is currently
used to produce operational real-time forecasts for
coral bleaching risk on the Great Barrier Reef (Spill-
man and Alves, 2009; Spillman et al., 2012). These
bleaching forecasts provide an early warning of poten-
tial bleaching conditions prior to summer, which
allows reef managers to both focus monitoring

programs and implement strategies to minimize
bleaching damage, as well as to brief government
(Maynard et al., 2009).

Seasonal forecasts are potentially useful for other
marine sectors, such as fisheries and aquaculture, in sit-
uations where (i) there is an action that must be
planned in advance (e.g., ordering a new feed mix)
and (ii) the forecast skill remains useful at the point of
time in future when the action must be implemented
(e.g., time when feed mix is given to the cultured ani-
mals) (Fig. 2).

A first step in developing a seafood industry fore-
casting application is to assess model skill for the envi-
ronmental variables of interest. Forecast variables used
in our examples include water temperature (at surface
and at depth), rainfall and air temperature, and are
considered useful up to 4 months into the future,
depending on the region and season of interest. Model
skill can be assessed by correlating historical model
mean values with historical observed values in both
space and time using Pearson’s Correlation Coefficient
(Spillman and Alves, 2009; Spillman et al., 2012), or
probabilistically by assessing the forecast hit-rate (cor-
rect versus incorrect forecasts) (Spillman and Hobday,
2014). One primary criterion is that a sufficient period
of data is required to assess the performance and accu-
racy of forecasts over the historical period. In the case
of ocean temperatures, satellite sea surface tempera-
tures or observational data re-analyses (e.g., PEODAS;
Yin et al., 2011) can be used. Other historical datasets
can be used for variables such as air temperature and
rainfall (e.g., Bureau of Meteorology Australian Water
Availability Project AWAP; http://www.bom.gov.au/
climate/maps/). In the absence of such data, forecasts
can still be made, but the quality cannot be verified by
historical analysis.

Once the skill of the model forecasts has been
assessed, a second step may be required to relate the
regional forecast information to a local scale, such as
the location of aquaculture sites. Statistical downscal-
ing may be used where a significant relationship
between regional conditions and local conditions is
established. For example, there is a strong relationship
between regional ocean temperatures around Tasma-
nia and coastal salmon farm temperatures. Forecasts of
regional ocean temperature can be provided by
POAMA for several months into the future which can
then be used as input to forecast summer farm temper-
atures (Spillman and Hobday, 2014). Alternatively
POAMA forecasts can be used as input into statistical
habitat models to give sophisticated probability maps
of habitat distribution e.g., southern blue fin tuna
(Hobday et al., 2011). In some cases regional forecast

© 2016 John Wiley & Sons Ltd, Fish. Oceanogr., 25 (Suppl. 1): 45–56.

Seasonal forecasting for seafood industries 47

Daniel Crear


Daniel Crear


Daniel Crear


Daniel Crear


Daniel Crear


Daniel Crear


Daniel Crear


Daniel Crear




information directly from POAMA is the most useful
for industry and so no extra statistical modeling is
required.

SEASONAL FORECASTING APPLICATIONS
IN AUSTRALIAN SEAFOOD SECTORS

Here we describe four examples of seasonal forecasts
developed to aid Australian fisheries managers, fishers
and fish-farmers; two are aquaculture applications and

two are wild fishery applications (Fig. 3, Table 1). In
general, as aquaculture is location based, aquaculture
forecasts have been for environmental variables only
(e.g., water temperature at some time in the future), sta-
tistically downscaled to a region or site of interest, and
delivered with estimates of forecast skill. Applications
to wild fisheries have involved delivering either envi-
ronmental forecasts or habitat-based forecasts (obtained
by projecting species-specific habitat preferences onto
environmental forecasts; see Example 2 below), and
assessing the skill of these forecasts. The examples pre-
sented are intended to illustrate the range of seafood
sectors utilizing seasonal forecasting, and generalize
some insights from these examples.

Example 1: Southern bluefin tuna in eastern Australia

Southern bluefin tuna (SBT, Thunnus maccoyii) is a
quota-managed species, a proportion of which makes
annual winter migrations to the Tasman Sea off south-
eastern Australia (Fig. 3). During this period it inter-
acts with a year-round tropical tuna longline fishery
(Eastern Tuna and Billfish Fishery, ETBF). Fishery
managers seek to minimize the bycatch of SBT by
commercial ETBF longline fishers with limited or no
SBT quota through spatial restrictions (Hobday and
Hartmann, 2006). A temperature-based SBT habitat
model has been used since 2003 to provide managers
with an estimate of tuna distribution upon which they
can base their decisions about placement of manage-
ment boundaries. Data on adult SBT temperature pref-
erences are collected using pop-up satellite archival

Critical environmental period

Now

Forecast skill

Decision lead time

Seasonal forecast useful (forecast skill is adequate when required) 

Seasonal forecast less useful (forecast skill is poor i.e. lead-time is too long)

Seasonal forecast not useful (weather-scale forecast more relevant i.e. lead-time is very short)

Seasonal forecast not useful (reactive decision making)

(a)

(b)

Time

(c)

(d)

Figure 2. The utility of seasonal forecasting depends on the timing of both the management decision to be made and that of the
critical environmental period affecting the decision, in conjunction with whether the skill of the forecast is adequate at that
time. When the lead-time required to make and implement a decision (shaded portion of the horizontal bar) is such that the
forecast skill for the critical environmental period is adequate, a seasonal forecast may be useful (a). When the lead-time required
is too long, forecast skill during the critical environmental period may decline and be less than adequate, so a seasonal forecast
will be less useful (b). When the lead-time required is very short, weather forecasting may be more appropriate (c). When the
management decision is made after the critical environmental period occurs, forecasting is not useful (d).

Figure 3. Forecasts are being generated for a range of species
in several regions of Australia, including wild tuna fisheries
in eastern and southern Australia, and prawn and salmon
aquaculture in Queensland and Tasmania, respectively.
Salmon image courtesy of Peter Whyte and CSIRO, tuna
and prawn images courtesy of CSIRO.
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Table 1. General characteristics of the seasonal forecasting applications discussed in the text. All applications were co-sup-
ported by the relevant sector.

Longline fishery – east
Australia

SBT fishery – southern
Australia

Prawn pond aquaculture
– Queensland

Salmon coastal cage
aquaculture –
Tasmania

Industry annual
value

A$40M A$60M (wild catch) A$70M A$500M

Management issue Southern bluefin tuna
(SBT) is a quota
managed species in
the east Australian
longline fishery –
catch must be
regulated

Fishers wish to know
where fish are expected
to be located in order to
position vessels in best
region to access fish

Farmers wish to
optimize prawn growth
and yield

Farmers want optimal
conditions for
salmon growth and
health, and
information on
likelihood of sub-
optimal conditions

Environmental
driver

Water temperature
influences
distribution of SBT
in region

Water temperature
influences distribution of
SBT in region

Prawn growth is
sensitive to hot or cold
pond temperatures

Water temperature
linked to salmon
growth and health

Management need Mimimize non-quota
catch by fishers using
temperature-based
predictions of SBT
distribution

Improve economic
efficiency of fishing
operations using habitat
models to predict SBT
distribution

Reduce vulnerability to
cool temperature &
rainfall extremes

Reduce vulnerability
to temperature
extremes

Motivation to
engage with
forecasting
research

Communication and
extension with
fishers regarding
upcoming
management season

Recent anomalous years
of fish distribution

Recent cyclone, floods,
and awareness of
environmental impact

Recent warm
summers, and
awareness of
environmental
impact

Variable Temperature SST Air temperature, rainfall SST
Scale (region of
interest)

100’s km 100’s km m-km (ponds) km’s (lease areas)

Target season (time
of concern)

Winter Summer Annual Summer

Industry
engagement

Phone calls and email Fact sheet, port visit,
industry co-investigator

Fact sheet, farm visit (2
rounds, scoping and
feedback) industry
contacts, peak body
liaison

Email, meetings

Data used to
support forecast
product
development

Scientific: tag and
historical
environmental data
Industry: catch data
for validation

Scientific: tag data, survey
data
Industry: historical
catch, survey data

Scientific:
meteorological data
Industry: historical
time series on pond
environment, and
meteorological data

Industry: historical
time series on farm
temperatures

Final product Habitat forecast Habitat forecast Environmental forecast Environmental
forecast

Delivery
mechanism

Fortnightly reports
emailed to managers,
(fishers advised by
VMS)

Web-based updates every
2 weeks

Web-based updates
every 2 weeks

Monthly emails to end
users

Response option
supported by
habitat forecasts

Spatial zoning to
regulate access by
fishermen

Planning of purse-seine
operations, such as
where and when to
move vessels

Timing of stocking &
harvesting, diet,
ordering supplies in
advance (variety)

Freshwater bathing,
diet modifications
(variety)
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tags, and the predicted location of SBT is determined
by matching temperature preferences to satellite sea
surface temperature (SST) data and vertical tempera-
ture data from an oceanographic model (Hobday and
Hartmann, 2006). Regular reports detailing the loca-
tion of predicted temperature-based SBT habitat are
produced during the fishing season when interactions
with SBT occur (essentially a ‘nowcast’ of SBT habi-
tat). These nowcasts have allowed managers to set
zones in such a way that an unwanted catch has been
reduced in proportion to the expected amount in each
of the zones (Hobday et al., 2010).

Since 2011, POAMA forecasts have also been pro-
vided to assist managers in this fishery (Hobday et al.,

2011). Ocean temperature forecasts are combined with
the statistical SBT habitat model to produce predicted
habitat maps for several months into the future
(Fig. 4). The forecast system has skill in predicting
SBT habitat boundaries out up to 3–4 months ahead
(Hobday et al., 2011). These habitat maps are used by
managers to prepare fishers for the upcoming season
and to indicate if zones will be typical or further north
or south than usual for the months ahead. Habitat pro-
jections and forecasts are delivered via email to fishery
managers, who then communicate the zoning decision
to the fishers. The seasonal forecasts are used by man-
agers to prepare fishers for potential restrictions that
may arise further into the season, but direct

FEB 1999 [L=0]
Emn:17.98oC Clim:16.81oC

MAR 1999 [L=1]
Emn:16.93oC Clim:15.87oC

APR 1999 [L=2]
Emn:15.49oC Clim:14.71oC

MAY 1999 [L=3]
Emn:13.74oC Clim:13.33oC TERCILES

Lower

Middle

Upper

Probability
of falling in each

tercile based

Forecast issued: 19990201

on 33 members

(a) (b)

(d)(c)

Figure 4. Forecast examples for (a) southern bluefin tuna in eastern Australia, (b) southern bluefin tuna in southern Australia,
(c) prawn farms in north-east Australia and (d) salmon farm in south-east Tasmania.
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management actions are based only on the habitat
‘nowcast’ (Hobday et al., 2011).

Example 2: Southern bluefin tuna in the Great Australian
Bight

Southern bluefin tuna are also captured by a quota-
limited purse-seine fishery in southern Australia
(Fig. 3), with schools of juvenile fish caught and towed
in cages back to Port Lincoln (~135°E 35°S) in the
summer where they are grown and fattened before har-
vest some months later. Data from a large-scale archi-
val tagging experiment conducted on juvenile SBT in
the mid to late 2000s have been used to model habitat
preferences of juvenile SBT off southern Australia
(Appendix 11 in Basson et al., 2012). SST and chloro-
phyll-a levels were found to influence the distribution
of SBT. In 2013, a project was initiated to forecast,
first, environmental conditions that affect SBT distri-
bution and, subsequently, habitat distribution of juve-
nile SBT in southern Australian waters based on
findings from Basson et al. (2012) (Fig. 4). As PO-
AMA is strictly a physical model and chlorophyll-a
levels are not simulated, only SST data have been used
in the environmental and habitat forecasts produced
to date.

POAMA SST forecasts for southern Australia are
useful up to lead-times of 2 months in the summer and
3–4 months in the winter (although fishing is in the
summer only). Delivery of forecasts is via a private
website to registered fishers which is updated every
2 weeks. These forecasts are being used by fishers to
plan where and when to send purse-seine vessels. As
the fishery is managed under a quota, which is cap-
tured every year, this application does not lead to more
fish being captured, but should improve the economic
efficiency of the catching operations, which is impor-
tant owing to rising costs and increasing international
competition in the Japanese market. Engagement with
industry representatives was critical in the develop-
ment of the forecast system, and is expected to provide
valuable feedback after the first summer of operation
(January–March 2014).

Example 3: Prawn aquaculture in Queensland

In Australia, pond-based prawn aquaculture for two
main species (tiger and banana prawns) is located pre-
dominately in a narrow coastal strip of north-east Aus-
tralia between Cairns and the Queensland border
(~15–25°S) (Fig. 3). Farms are typically located near a
tidal inlet or creek for access to a water supply to flush
and fill ponds and allow salinity control. Commercial
prawn farms typically consist of between 10 and 100
shallow ponds (~1.5 m deep) of ~1 ha in size. The

industry is vulnerable to both extremes in temperature
and rainfall and to tropical cyclones. Heavy rainfall
can reduce the water quality of water supplies to the
farm, particularly the first pulse of heavy falls for
the season, which flush the catchment and can render
the farm water supply unusable (herbicides, clay
particles and harmful algal species). Heavy rainfall can
also wash out roads and prevent supplies from reaching
remote farms, as well as lower pond salinity below
optimal levels. Temperature influences the growth of
prawns and thus the timing of harvest, which is critical
to delivering supply for peak market opportunities –
getting it right is important for farm cash flow.

Regional POAMA forecasts of maximum and mini-
mum air temperature, and rainfall showed forecast skill
up to a season ahead, with skill of air temperature fore-
casts exceeding those for rainfall. Forecasts for industry
sub regions are delivered via an industry-specific
website (Fig. 4, http://poama.bom.gov.au/marine_mw/
prawn_project.shtml). This website also points to
other useful information sources for farmers including
the Bureau of Meteorology forecasts for the annual
tropical cyclone season and the El Nino Southern
Oscillation (ENSO). In this project there were multi-
ple farm visits, which were found to be invaluable both
in designing useful forecast products and educating
farmers in their interpretation. To date, farmers have
used the forecast projections to plan when to stock
and harvest their ponds, consider different feed mixes,
and manage market expectations for the time of deliv-
ery and size of product.

Example 4: Atlantic salmon aquaculture in Tasmania

The Tasmanian salmon (Salmo salar) aquaculture
industry has grown from establishment in 1984 to now
represent Australia’s most valuable seafood industry
(DPIPWE, 2013). Several companies farm salmon in a
range of Tasmanian locations, with south-east Tasma-
nia accounting for up to 50% of the annual production
(Fig. 3). Salmon are moved from freshwater ponds to
coastal sea cages at 6–12 months of age for the final
2 years of production. While in sea cages the fish are
subject to the local environmental conditions, with
salmon grown in Tasmanian waters approaching their
upper thermal limit in summer (Battaglene et al.,
2008). Increases in water temperature occur seasonally
owing to the warming influence of the East Australia
Current (EAC) in summer, while there is also a long-
term warming trend and a poleward extension of the
EAC (Ridgway, 2007; Wu et al., 2012).

Farm-specific dynamic forecasts were first developed
in 2010, focusing on surface water temperature
(Table 1). Using historical farm records of water
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temperature to statistically downscale POAMA sea
surface temperature forecasts for the region in ques-
tion, Spillman and Hobday (2014) show that the fore-
casts have a useful skill (i.e. predictive ability) for all
months of the year up to 2 months ahead. Model skill
was highest when forecasting for the winter months,
and lowest for December and January. The poorer per-
formance in the summer may be as a result of the
increased variability owing to the convergence of sev-
eral ocean currents offshore from the salmon farming
region. Forecasts are delivered to individual salmon
companies via email every month during the critical
summer period October to March. In response to fore-
casts, farm managers can implement a range of
responses, including changing stocking densities, vary-
ing feed mixes, transferring fish to different locations
in the farm region, implementing disease manage-
ment, and modifying labor needs associated with these
responses (Table 1).

DISCUSSION: LESSONS FOR SEASONAL
FORECASTING IN MARINE SEAFOOD
SECTORS

Information about the future will be useful if manage-
ment decisions can be modified on the basis of that
information. For a range of seafood industries, environ-
mental conditions can impact on business activities
and profitability, and therefore information on poten-
tial future environments is highly sought. Feedback
from end users in the examples described above has
shown that information about the future weather or
climate conditions is useful for risk management, busi-
ness planning and, if used correctly, improving overall
business performance. As for coral reef managers,

providing real-time seasonal forecasts (Maynard et al.,
2009; Spillman, 2011) can lead to better strategic
management approaches for seafood industries, as long
as suitable guidance in the use of forecasts is provided,
particularly in the interpretation of uncertainty
(Marshall et al., 2011).

While most agree that future information can
enhance business adaptation at a range of timescales,
development of appropriate forecast tools and products
is not straightforward. Our experience suggests that
development of a successful and enduring forecast sys-
tem has three stages: assessment of needs, forecast
development and implementation (Fig. 5). Engage-
ment with industry and/or management, as part of the
first stage, is critical to define the problems that sea-
sonal forecasting can address (see Table 1), to deter-
mine the critical timescales, and to source the data
needed for model verification (which may be held by
industry or managers). This stage can also be used to
explain how to interpret uncertainty, probabilistic
forecasts and lead-times, and to discuss realistic expec-
tations about forecast skill. These issues are also revis-
ited in the final implementation stage, but early
discussion is important to enhance forecast accep-
tance. While remote communication via email is pos-
sible, site visits are critical to building understanding
for both scientists and end users, and provides a solid
foundation for forecast development.

In the second stage, the model performance is
tested and evaluated (Fig. 5). Spatial and temporal
forecast skill varies around Australia, depending on
the particular environmental variable. Thus, forecast
skill must be assessed for each application, even if the
same environmental variable is being used. When the
forecast product involves predicting not only

End user decisionSource verification data
(where possible)

Produce POAMA-based forecast
(coupled with habitat model 

if needed)

Forecast product

Support and education

Assess skill using POAMA hindcast Forecast delivery

Determine critical variables 
and decision timescales

Define industry or 
management need

Forecast developmentAssess needs Implementation

User feedback

Figure 5. Stages in the development of a
forecasting application and the important
elements in each stage. After implemen-
tation there will need to be updates of the
forecast skill, particularly if conditions
are changing owing to climate change.
POAMA, Predictive Ocean Atmosphere
Model for Australia.
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environmental variables, but also species distribution
based on those environmental conditions (i.e. habitat
forecasts), the skill of the habitat model must also be
evaluated. In this case, historical biological data can
be used to assess whether animals were found in places
with environmental conditions they prefer according
to the habitat model. Unlike climate-scale projections
of biological response which are typically unverified
(Brander et al., 2013), seasonal forecasting allows
comprehensive estimates of projection uncertainty,
and thus can build user confidence in the tools. If the
skill is considered high enough to be useful, forecasts
products are then generated. Development of the fore-
cast product, the appearance, user-friendliness and
delivery mechanism, also benefit from stakeholder
involvement. We have found that presenting a suit-
able range of options helps tune the final product
delivered to end users (Fig. 4).

The third phase, implementation, involves opera-
tional delivery of forecasts, support and education
around forecast interpretation, and gathering informa-
tion about end-user decisions that can refine the par-
ticular product (Fig. 5). Forecasts have been delivered
via public or password-protected websites, or emailed
directly to users. With small user groups, email allows
feedback and a greater personal engagement with the
users; however, web-based delivery is more sustainable
in the long-term as it can be almost fully automated,
and ultimately managed by end users (provided the
data processing continues). This sustainability is
important as science research support tends to decline
after a project to develop a forecast system ends. Sup-
port and education is critical, as evidence shows that
several years are needed for some users to begin to
make decisions based on forecasts, and levels of inter-
est vary between users (Marshall et al., 2011). Industry
champions can enhance forecast uptake and dissemi-
nation, and if these can be identified in the first phase,
forecast uptake is likely to be enhanced. Similar les-
sons emerge from development of agricultural forecast
systems (Marshall et al., 2011). These forecasts are
being generated in response to industry needs, with
both industry and government funding, and while we
are establishing enduring delivery mechanisms, such as
automated websites, long-term continuation is not
guaranteed. In particular, ongoing extension work and
validation will need dedicated funding.

Keeping track of end-user decisions (Fig. 5) is more
difficult, however, as these are often commercial and
hence confidential. However, trust between end users
and the science research team can provide informal
feedback. For example, some prawn farmers delayed
stocking in response to projections for a cold period in

2011, and realized financial benefit as a result of sav-
ings in feed costs. This information can be useful in
tuning forecast products, based on the types of deci-
sions that are considered. In the case of fisheries man-
agement based on short-term habitat ‘nowcasts’,
decisions were publicly reported and the use of the
nowcasts increased over time (Hobday et al., 2010).
Similar approaches could be taken with seasonal fore-
casts, provided the management responses can be
tracked. In the case of Tasmanian salmon farmers, dur-
ing the period that forecasts have been delivered, some
farm operators have changed from occasional imple-
mentation of response options to forecasts (e.g.,
increasing oxygenation of cages in warm waters) to
permanent implementation of the action. This repre-
sents a risk management response, and while now fore-
cast independent, illustrates a change in behavior as a
result of a climate risk identified by the forecasts. In
most cases, the seasonal forecast information will be
only one of several factors behind a particular decision.
Prawn farmers have market drivers that dictate when
stocking of ponds or harvest must occur, and seasonal
forecasts may only partially influence behaviors. Simi-
larly, in the case of fishery managers in eastern Austra-
lia, spatial habitat forecasts are just one tool; quota
availability, vessel monitoring, observers and fisher–
manager relationships all contribute to the overall
management decision taken (Hobday et al., 2009).
Thus, tracking direct responses to forecasts as a mea-
sure of forecast success is complicated.

The economic value of forecasting is even more dif-
ficult to quantify. Benefits must be assessed over a con-
siderable period of time (say 10–20 years), as forecasts
are probabilistic (they will be wrong in some years),
and may only provide value in certain years (e.g.,
when particular environmental conditions are
exceeded). In general, we argue that benefits will
accrue though the use of forecasts, but to date we lack
quantitative evidence for financial benefit for our case
studies.

The use of seasonal forecasting to support seafood
production can be extended to many other locations.
National and global seasonal forecasts are issued for a
range of large-scale drivers, such as ENSO (e.g., Hen-
don et al., 2009), and the expected frequency of
extreme weather events, such as cyclones (e.g., Wer-
ner and Holbrook, 2011). Seafood businesses and man-
agers may already use these coarse forecasts; tailored
local-scale forecasts can be considered complementary
to these existing products. The POAMA seasonal
forecasting model used in the examples presented here
is global; similar models have been developed in other
countries, although their application to fisheries is less
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advanced (http://www.washington.edu/news/2013/08/30/
new-ocean-forecast-could-help-predict-fish-habitat-
six-months-in-advance/). We have provided exam-
ples where the model forecasts had sufficient skill to
be useful for decision support. In cases where even
longer lead-times are required, or where model skill is
lower, a range of options to improve the skill may
exist, including forecast calibration and hybrid mod-
els combining statistical and dynamical forecasts.

Development of seasonal forecasting for the distri-
bution of other marine species, such as turtles and sea-
birds, could be extended from existing efforts that
describe environmental relationships (e.g., Howell
et al., 2008; Hazen et al., 2013). These forecasts could
then be used to minimize interactions with wild fisher-
ies, as a component of dynamic spatial management
(Hobday et al., 2014). However, for such forecasts to
be useful, there must be conservation management or
fisher decisions that are made at lead-times that match
the skill of the seasonal forecast (Fig. 1). One example
might be in the designation of closed areas that are
projected to contain the species of interest.

Use of seasonal forecasting can be considered to
represent a risk-based approach to seafood production
and management (Hobday et al., 2008). Better man-
aged marine resources are also likely to have improved
resilience under climate variability and climate change
(Marshall et al., 2013). At longer timescales, climate
change will also be a new factor for a range of busi-
nesses, and risk-based approaches are likely to be
appropriate (Hobday and Poloczanska, 2010). It is
unlikely that experience in managing for climate vari-
ability will be sufficient, as climate projections suggest
that some environmental variables will move outside
the envelope of previous experience. Given that cli-
mate variability has always had an influence on sea-
food production, and climate change has already
begun to impact fisheries and aquaculture (Merino
et al., 2012; Pinsky and Fogarty, 2012), managers and
operators in the seafood sectors that can manage pro-
actively using seasonal forecasts will be in a better
position to respond to the challenges of climate.
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