Competitive interactions between gray triggerfish (*Balistes capriscus*) and red snapper (*Lutjanus campechanus*) in laboratory and field studies in the northern Gulf of Mexico

Carrie M. Simmons and Stephen T. Szedlmayer

SEDAR62-RD-07

March 2019
Competitive interactions between gray triggerfish (*Balistes capriscus*) and red snapper (*Lutjanus campechanus*) in laboratory and field studies in the northern Gulf of Mexico

Carrie M. Simmons and Stephen T. Szedlmayer

Abstract: Field removal and laboratory studies examined competitive interactions between gray triggerfish (*Balistes capriscus*) and red snapper (*Lutjanus campechanus*). In field studies, all gray triggerfish and red snapper were counted and sizes estimated on 24 reef sites. Gray triggerfish were then removed from half of these reef sites, resulting in significantly fewer gray triggerfish on the removal reefs at the start of the experiment. After 7 months the experiment ended and reef sites were resurveyed. Gray triggerfish decreased on both treatments, while the mean number of red snapper did not differ between treatments; however, there were significantly more small (<400 mm total length) red snapper on reefs where gray triggerfish were removed. In seven laboratory growth trials (30 to 35 days each), red snapper held with gray triggerfish had significantly lower growth rates and numerous bite marks compared with red snapper alone. These competitive interactions indicate that management efforts to rebuild and increase gray triggerfish populations may have unintentional negative effects on red snapper populations, particularly for smaller fish.

Introduction

Competitive interactions between species can be substantial when resources are limited (Begon et al. 1996; Wootton 1998). Several studies have shown that shelter type and food can be limiting resources for fish on coral reefs (Shulman et al. 1983; Hixon and Beets 1989; Jones 1986), and field experiments have provided several examples of competition by removing one species and assessing change in abundance or growth of the other (Hixon 1980; Connell 1986; Schoener 1983).

Growth experiments have also examined interspecific competition between species confined in cages or in controlled laboratory conditions. Cage experiments demonstrate roach (*Rutilus rutilus*) suppressed the growth rate of age-0 European perch (*Perca fluviatilis*) (Persson 1987). Similarly, in a field removal study if either blackcap basslet (*Gramma loreto*) or fairy basslet (*Gramma melacara*) were removed from the study site, the other species had increased growth rates compared with control growth rates (Kindinger 2016).

Competition might be expected between gray triggerfish (*Balistes capriscus*) and red snapper (*Lutjanus campechanus*), because they are the most abundant co-occurring species on artificial reefs in the northern Gulf of Mexico (Kurz 1995; Lingo and Szedlmayer 2006; Simmons and Szedlmayer 2011). This competition may be due to overlapping diets (Blitch 2000; Ouzts and Szedlmayer 2003; Szedlmayer and Lee 2004) and limited suitable habitat that provides protection from predators (Piko and Szedlmayer 2007; Mudrak and Szedlmayer 2012; Herbig and Szedlmayer 2016). In the northern Gulf of Mexico, natural reefs are limited compared with artificial reefs and other structures such as oil and gas platforms (Parker et al. 1983; Gallaway et al. 2009).

Gray triggerfish are territorial and aggressive compared with many other reef fish species such as red snapper in the northern Gulf of Mexico. During the spawning season, male gray triggerfish defend a territory with one to three females on nests around the reef, while the nesting females also aggressively protect the eggs in the nest and chase off red snapper and other egg predators (Simmons and Szedlmayer 2012). In the present study, field removal and controlled laboratory experiments tested for competitive interactions between gray triggerfish and red snapper. Competition is defined as an interaction between individuals that results in
the participants suffering a net loss of fitness such as reduced growth rate or even survival (Wootton 1998). We examined potential interspecific competition in field removal experiments, since previous studies have provided evidence for this competition by changes in abundance of one species when a competitor is removed (Hixon 1980; Schmitt and Holbrook 1986; Robertson 1996). Red snapper and gray triggerfish competitive interactions were also examined in laboratory growth rate experiments where food resources were not limited, and competition can be inferred by changes in survival and growth (Persson 1987; Olson et al. 1995; Fernandes et al. 2015). Growth rates are an overall integrator of other environmental factors as well as biological interactions (Sogard 1997; Lorenzen and Enberg 2001). As such, they can provide a measure of the competitive interactions between gray triggerfish and red snapper. The present study examines such competitive interactions between two commonly co-occurring species through both field and laboratory studies in the northern Gulf of Mexico.

Materials and methods

Study design

The present study tested for competitive interactions between red snapper and gray triggerfish in both field and laboratory experiments. Field studies tested for differences in red snapper abundance and sizes after removals of gray triggerfish from reef sites compared with reef sites without gray triggerfish removals. Laboratory studies tested for differences in red snapper growth rates and survival among treatments of red snapper held alone, gray triggerfish held alone, and red snapper held with gray triggerfish.

Field study

The study sites were located 24–50 km south to southeast of Dauphin Island, Alabama, USA, in the northern Gulf of Mexico. Divers (SCUBA) visually and video (Sony TR101 Hi-8 video camera; Tokyo, Japan) surveyed 24 public reef sites made from M60 army tanks (9.3 m x 3.6 m x 3.2 m, 51.3 tonnes). Diver surveys identified, counted, and placed into 25 mm size classes all gray triggerfish and red snapper. The census methods used by divers followed the methods described as the “point method” by Bortone et al. (1989). Two divers positioned over the reef counted the number of gray triggerfish and red snapper on and around each artificial reef for 15–20 min, but if visibility was low diver surveys were aborted. Divers estimated red snapper sizes based on total length (TL, mm) and gray triggerfish based on fork length (FL, mm) due to extended rays on their long caudal fins. After counting fish, the divers removed gray triggerfish on the same dive by spearfishing on 12 reefs (removal reefs). We conducted the visual surveys and removals from 13 October to 7 November 2005. After 7 months, the field removal experiment was ended, and divers resurveyed all reefs from 1 to 23 June 2006 for gray triggerfish and red snapper abundance and size class estimations.

Environmental parameters in the Gulf of Mexico can differ seasonally and among locations; therefore, at the start and end of the experiment, temperature (°C), salinity (%), and dissolved oxygen (mg·L⁻¹) were measured at each reef site with a remote recording YSI-6920 meter (Yellow Springs Instruments, Yellow Springs, Ohio, USA). Mean values of these measures were calculated from continuous vertical recordings (1 s intervals) as the instrument was slowly retrieved from the seafloor up to 9 m below the surface.

Depths were compared between treatments with a t test in the field removal experiment. Temperature, salinity, and dissolved oxygen were compared among treatments, surveys, and treatment–survey interactions with repeated measures ANOVA (rmANOVA). Before removals, the mean numbers and mean sizes of gray triggerfish were compared between treatments with separate t tests, and at the end of the experiment the mean sizes of gray triggerfish (FL, mm) were compared between treatments with a t test. After removals the mean numbers and mean sizes of red snapper (TL, mm) and mean numbers of gray triggerfish were compared among treatments, surveys, and treatment–survey interactions by rmANOVA, and a Student–Newman–Keuls test was used to show specific differences. Length–frequency distributions for red snapper were compared between treatments within each survey period with chi-square (χ²) analyses. Differences were considered significant at P ≤ 0.05.

Laboratory study

Competitive interactions between gray triggerfish and red snapper were assessed in a temperature- and salinity-controlled 14 800 L closed recirculating laboratory seawater system with nine attached experimental tanks, each 1240 L (1.5 m diameter x 0.7 m depth) with the same lighting. Each experimental tank contained two polycvinyl chloride refuge boxes (28.5 cm x 18.5 cm x 39.5 cm) with holes (14 cm x 14 cm) cut into each side. Every 2 days, temperature, salinity, and dissolved oxygen were recorded with a YSI-85 meter (Yellow Springs Instruments, Yellow Springs, Ohio, USA), and ammonia, nitrite, and nitrate levels were measured with LaMotte test kits (LaMotte Company, Chestertown, Maryland, USA).

Fish were caught by hook and line, returned to the laboratory, and species held separately at densities of 10–15 fish per tank prior to competition trials. To limit barotrauma, fish were collected from artificial reefs in depths ≤22 m. In the field, each fish was vented (release expanded gases) with a 12-gauge needle inserted into the swim bladder. Each fish was tagged with a passive integrated transponder (PIT) tag placed in the peritoneal cavity for individual measurement of growth rates over the trial periods (Biomark, Boise, Idaho, USA). All fish were acclimated to captivity for 3–4 weeks before starting experiments.

At the start and the end of a trial, all fish were anesthetized by 2 min immersion in 150 mg·L⁻¹ of tricaine methanesulfonate (MS-222; Argent Chemical Laboratories, Redmond, Washington, USA), scanned for PIT tags, weighed to the nearest gram, and measured for standard length, FL, and TL (all in mm). Fish were randomly assigned to one of the following three treatments with a total of six fish per tank: six red snapper alone, six gray triggerfish alone, or mixed treatment of three red snapper and three gray triggerfish. Each trial had two replicate red snapper treatments, two replicate gray triggerfish treatments, and three replicate mixed treatments. Seven trials were completed with different fish for every trial, and each trial was 30 to 35 days. Fish were fed weighed rations of cut squid and shrimp typically ranging from 100 to 250 g per tank every 2 days to satiation. When feeding stopped, the remaining portion of food was removed and weighed to estimate mean daily ration consumed in each tank.

Specific growth rates (change in mass (g) · start mass (kg)−¹ · number of experiment days−¹) of individual fish and mean daily ration (food consumed in each tank (g) · total mass of six fish in the tank (kg)−¹ · number of experiment days−¹) were compared among treatments by ANOVA and a Student–Newman–Keuls test. Differences were considered significant at P ≤ 0.05.

Results

Field study

Depths of reefs differed between removal (mean 25.2 m, range 20.7–29.6 m) and nonremoval treatments (mean 27.9 m, range 23.4–30.1 m; t[22] = 2.6, P = 0.015). Salinity did not differ (mean 34.2%, range 33.0–35.8%; F[1,16] = 0.10, P = 0.76), temperature did not differ (mean 24.7 °C, range 21.6–27.2 °C; F[1,16] = 0.06, P = 0.81), and dissolved oxygen did not differ (mean 5.9 mg·L⁻¹, range 5.0–7.2 mg·L⁻¹; F[1,16] = 0.33, P = 0.57) between treatments. There were significant differences in salinity (mean difference = 0.3%), temperature (mean difference = 1.1 °C), and dissolved oxygen (mean...
Fig. 1. Mean (+ standard error, SE) number of gray triggerfish per reef counted on removal (black bars) and nonremoval (gray bars) artificial reefs before removals (a) and after removals at the start (13 October – 7 November 2005) and the end (1–23 June 2006) of the field experiment (b). Significant differences (P ≤ 0.05) are shown by different letters between treatments before removal (a) and after removal between start and end (b).

Fig. 2. Mean (+ standard error, SE) number of red snapper counted on removal (black bars) and nonremoval (gray bars) artificial reefs at the start (13 October – 7 November 2005) and the end (1–23 June 2006) of the experiment. Means did not differ among treatments (P > 0.05).

Fig. 3. Red snapper length distributions on removal (black bars) and nonremoval (gray bars) artificial reefs at the start (13 October – 7 November 2005) and the end (1–23 June 2006) of the experiment. Frequency distributions did not differ at the start (a), but differed at the end (b) (P ≤ 0.05).

difference = 0.7 mg·L⁻¹) between start and end of the field experiment, but these differences were considered small and biologically unimportant. There were no significant treatment–survey interaction effects for salinity (P = 0.38), temperature (P = 0.78), or dissolved oxygen (rmANOVA, P = 0.51).

The mean number of gray triggerfish did not differ between treatments before removals (t₁,₂₂ = 1.6, P = 0.126). Divers removed 91% (77 of 85) of the gray triggerfish on removal reefs. After removals, gray triggerfish numbers were significantly lower on removal compared with nonremoval treatments (F₁,₂₂ = 34.0, P < 0.001), decreased between surveys (start and end: F₁,₂₂ = 8.8, P = 0.007), and showed a treatment–survey interaction effect where they decreased on nonremovals but did not differ on removal reefs between surveys (F₁,₂₂ = 20.4, P < 0.001; Fig. 1). The mean number of red snapper did not differ by treatments (F₁,₂₂ = 0.01, P = 0.95), surveys (F₁,₂₂ = 1.9, P = 0.180), or show a treatment–survey interaction (F₁,₂₂ = 0.1, P = 0.77; Fig. 2).

Size comparisons

Gray triggerfish were significantly larger on removal reef treatments before being removed at the start of the field experiment (removal: 316 ± 5.3 mm FL; nonremoval: 298 ± 15.2 mm FL; t₁,₂₂ = −2.8, P = 0.007). Red snapper mean lengths (±standard error, SE) did not differ between treatments (removal = 298 ± 2.6 mm and mean mass was 491 ± 10 g (n = 156). Specific rations consumed (g·kg⁻¹·day⁻¹) were <0.01 mg·L⁻¹, and nitrite (NO₂⁻) levels were <0.1 mg·L⁻¹ through the laboratory experiments. Red snapper mean FL ± SE was 584 ± 20 g (n = 156). Specific rations consumed (g·kg⁻¹·day⁻¹) did not differ among red snapper alone, mixed treatments, and gray triggerfish alone (F₁,₂₂ = 1.6, P = 0.1; Fig. 4). Red snapper in the mixed treatments with gray triggerfish showed significantly slower growth rate (g·kg⁻¹·day⁻¹) than gray triggerfish alone, red snapper alone, and gray triggerfish in the mixed treatments (F₁,₂₂ = 14.1, P = 0.001; Fig. 5).

Length–frequency distributions

Red snapper length–frequency distributions (100 mm bins, starting at 150 to 250 mm) did not differ between removal and nonremoval reefs at the start of the field experiment (Χ²₁₀₀ = 12.9, P = 0.115; Fig. 3a). After 7 months the length–frequency distribution of red snapper differed between treatments (Χ²₁₀₀ = 20.1, P = 0.010; Fig. 3b) with a higher frequency of smaller fish (<400 mm TL) on removal treatments.

Laboratory study

Mean ± SE temperature was 21.1 ± 0.1 °C and ranged from 18.8 to 24.8 °C (n = 100), mean salinity was 34.9 ± 0.1% and ranged from 32 to 38‰ (n = 100), and mean dissolved oxygen was 6.1 ± 0.1 mg L⁻¹ and ranged from 5.3 to 7.4 mg L⁻¹ (n = 80). Ammonia (NH₃) levels were <0.01 mg·L⁻¹, and nitrite (NO₂⁻) levels were <0.1 mg·L⁻¹ throughout the laboratory experiments. Red snapper mean FL ± SE was 292 ± 2.8 mm and mean mass was 491 ± 10 g (n = 161), and gray triggerfish mean FL ± SE was 292 ± 2.8 mm and mean mass was 584 ± 20 g (n = 156). Specific rations consumed (g·kg⁻¹·day⁻¹) did not differ among red snapper alone, mixed treatments, and gray triggerfish alone (F₁,₂₂ = 1.6, P = 0.1; Fig. 4). Red snapper in the mixed treatments with gray triggerfish showed significantly slower growth rate (g·kg⁻¹·day⁻¹) than gray triggerfish alone, red snapper alone, and gray triggerfish in the mixed treatments (F₁,₂₂ = 14.1, P = 0.001; Fig. 5).
For the present study the pooled standard deviation = 30
field experiments should attempt to increase sample size. For
low (\(n = 12\)) for both removal and nonremoval treatments. However, a higher frequency of smaller size classes (<400 mm TL) of red snapper on removal compared with nonremoval treatments in the field provides evidence for competition between red snapper and gray triggerfish and was consistent with previous studies. These changes in size distributions were likely caused by gray triggerfish aggression having less effect on larger red snapper. Thus, after gray triggerfish removals, smaller red snapper were able to colonize these reef sites, which caused a shift in size class to smaller red snapper.

In the laboratory experiments, gray triggerfish presence negatively affected the growth rate of red snapper. Similar results were shown when age-0 European perch were mixed with roach in enclosed cages, which caused lower growth rates of perch that were sometimes negative (Persson 1987). Olson et al. (1995) also used enclosures and observed slower growth rate in age-0 large-mouth bass (Micropterus salmoides) with high densities of bluegill (Le
pomis ma
crochirus). Numerous bite marks on red snapper in mixed treatments (Fig. 6a) but not in red snapper alone treatments (Fig. 6b) suggest interference competition may have been a consequence of direct aggression by gray triggerfish excluding red snapper from ingesting food (Schoener 1983; Kindinger 2016).

These laboratory observations are consistent with previous behavioral field studies. For example, male and female gray triggerfish showed aggressive behavior during the spawning season (June–July) in the northern Gulf of Mexico, chasing away numerous other species of fish in the families Lutjanidae, Serranidae, and Carangidae (Simmons and Szedlmayer 2012). The males were especially aggressive and would attack any approaching fish and SCUBA divers. The only species not attacked by nesting and guarding gray triggerfish was a large (2 m) sandbar shark (Carcharhinus plumbeus) (Simmons and Szedlmayer 2012).

The lack of red snapper abundance differences from field removal experiments could indicate that competition in the open environment does not exist, but based on the laboratory growth rate effects and size frequency shifts, it is likely that other factors masked field abundance effects. Perhaps sample sizes were too low (\(n = 12\)) for both removal and nonremoval reefs, and further field experiments should attempt to increase sample size. For example, in the present study the pooled standard deviation = 30 and the sample size was \(n = 12\) per treatment; thus, there needed to be a 37% difference in red snapper abundance between removal and nonremoval treatments for an 80% probability of correctly rejecting the null hypothesis. If sample size is increased to \(n = 38\) per treatment, detectable differences in abundance of red snapper decreases to 20% (Steidl et al. 1997). Another possibility for lack of significant differences in red snapper abundance between removal and nonremoval reefs at the end of the experiment may have been that too much time had elapsed (7 months) before ending the experiment. For example, other studies documented competitive interactions after much shorter time periods between surveys (i.e., 2 weeks; Hixon 1980; Sano 1990). A third reason was that experimental artificial reefs used during the present study were open to public fishing. It is likely that increased fishing mortality was responsible for the decrease in gray triggerfish on the nonremoval reefs due to the widespread destruction of artificial reefs from Hurricane Katrina in August 2005, when a majority of the private and public reefs were destroyed, buried, or moved in the northern Gulf of Mexico (Kaiser and Kasprzak 2008). For example, Hurricane Katrina displaced an offshore oil platform on the beach at Dauphin Island, Alabama, USA. As a result of this reef loss, fishers concentrated their effort on the remaining army tanks used in the present study, one of the few types of artificial reef that survived Hurricane Katrina due to large size and heavy weight (51 tonnes). Further, this fishing mortality effect was only detectable on the nonremoval reefs, because they had higher abundances available for capture, while the removal reefs had most (91%) gray triggerfish already removed. In addition, higher fishing mortality (\(F = 0.41\)) of red snapper has been documented on artificial reefs in the same study area (Williams-Grove and Szedlmayer 2016). These uncontrolled variables may mask any competitive interaction effects between gray triggerfish and red snapper abundance. Future removal studies should attempt to use experimental reef sites with locations that are not released to sport and commercial fishers and reduce the time period between surveys.

The present field removal study only used artificial habitats, but both species are also associated with natural rock–reef structure in the Gulf of Mexico (Frazer and Lindberg 1994; Kurz 1995; Lingo and Szedlmayer 2006). Ecologically, artificial reefs are temporary compared with natural reefs and provide different structure, biotic communities, and ecological functions compared with natural habitats (Simon et al. 2013; Cresson et al. 2014; Ferrario et al. 2016). In fact, artificial reefs may be considered disturbed habitat when compared with naturally occurring sand–mud substrates.
and scattered natural rock reefs in the northern Gulf of Mexico (Dufrene 2005; Gallaway et al. 2009; Schroeter et al. 2015). The time-stability hypothesis suggests that competition may be greater on artificial reefs compared with natural reefs, because species have more time to evolve greater specialization and reduced competition on natural reefs (Hessler and Sanders 1967; Sanders 1968; McClain and Schlacher 2015). Thus, in the present study the competitive interaction of gray triggerfish and red snapper could be the result of a disturbed habitat, and interactions may not be detected on more stable natural habitats. Studies that address these ecological functions of artificial habitats are limited (Smith et al. 2015), and future studies comparing gray triggerfish and red snapper interactions between natural and artificial habitats are needed.

At the time of the present study, red snapper and gray triggerfish were considered overfished, and management strategies were separately focused on increasing stocks of both species by reducing fishing mortality rates in an effort to rebuild these stocks (SEDAR 31 2015; SEDAR 43 2015). Questions remain as to the importance of food or habitat limitation, but gray triggerfish and red snapper showed competitive interactions based on significant differences in red snapper length frequencies in field removal treatments and lower growth rates of red snapper when held with gray triggerfish in laboratory experiments. Considering that these interactions may negatively affect one species over another, management strategies may need to be altered. For example, increasing gray triggerfish stocks that aggressively chase smaller red snapper (<400 mm TL) off critical habitats could cause increased natural mortality from predators and result in unintentional declines in red snapper stocks due to competitive exclusion on reefs (Lorenzen and Enberg 2001; Kindinger 2016). Managers could use this ecological information in the design and placement of artificial structures that might help protect smaller red snapper from gray triggerfish aggression. In addition, the direct gray triggerfish effect that caused reduced growth rates in red snapper would likely further decrease red snapper abundance (Lorenzen and Enberg 2001). Estimating such sources of natural mortality for younger age classes becomes increasingly more important as managers move towards ecosystem-based management strategies (May et al. 1979; Agnew et al. 2000; Coleman et al. 2011).

Acknowledgements

We thank Sabrina Beyer, Allison Chapin, Lee Grove, Diana Miller, David Nadeau, Rebecca Redman, Darin Topping, Rebecca Wingate, and Bill Wildberger for field assistance. This project was funded by Mississippi–Alabama Sea Grant Consortium (MASGC R/SP-14) NOAA award number NA06OAR4170078 and Marine Resources Division, Alabama Department of Conservation and Natural Resources. This study is a contribution of the Alabama Agricultural Experiment Station and School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University.

References


Fig. 6. Example of red snapper showing bite marks from the laboratory when held with gray triggerfish (a) compared with red snapper held alone (b).


