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ARTICLE

Red Snapper Distribution on Natural Habitats and Artificial
Structures in the Northern Gulf of Mexico
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75 Virginia Beach Drive, Miami, Florida 33149, USA

Matthew D. Campbell
National Oceanic and Atmospheric Administration, Southeast Fisheries Science Center,
Mississippi Laboratories, 3209 Frederic Street, Pascagoula, Mississippi 39567, USA

Adam G. Pollack
Riverside Technology, Inc., National Oceanic and Atmospheric Administration,
Southeast Fisheries Science Center, Mississippi Laboratories, 3209 Frederic Street, Pascagoula,
Mississippi 39567, USA

J. Marcus Drymon and Sean Powers
Department of Marine Sciences, University of South Alabama, 5871 USA Drive North, Mobile, Alabama
36688, USA; and Dauphin Island Sea Lab, 101 Bienville Boulevard, Dauphin Island, Alabama 36528, USA

Abstract
In 2011, an intensive, multiple-gear, fishery-independent survey was carried out in the northernGulf ofMexico (GOM)

to collect comprehensive age and length information on Red Snapper Lutjanus campechanus. Based on this synoptic
survey, we produced a spatial map of Red Snapper relative abundance that integrates both gear selectivity effects and
ontogenetically varying habitat usage. Our methodology generated a spatial map of Red Snapper at a 10-km2 grid
resolution that is consistent with existing knowledge of the species: Red Snapper occurred in relatively high abundances at
depths of 50–90 m along the coasts of Texas and Louisiana and in smaller, patchy “hot spots” at a variety of depths along
the Alabama coast and the west Florida shelf. Red Snapper biomass and fecundity estimates were higher for the
northwestern GOM than for the northeastern GOM, as the latter area contained mostly smaller, younger individuals.
The existence of similar surveys on petroleum platforms and artificial reefs also enabled us to calculate their relative
contribution to Red Snapper distribution compared with that of natural habitats. We estimated that for the youngest age-
classes, catch rates were approximately 20 times higher on artificial structures than on natural reefs. Despite the high catch
rates observed on artificial structures, they represent only a small fraction of the total area in the northern GOM; thus, we
estimated that they held less than 14% of Red Snapper abundance. Because artificial structures—particularly petroleum
platforms—attractmostly the youngest individuals, their contribution was even lower in terms of total population biomass
(7.8%) or spawning potential (6.4%). Our estimates of Red Snapper relative abundance, biomass, and spawning potential
can be used to design spatial management strategies or as inputs to spatial modeling techniques.
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Spatial mapping of the distribution of marine resources is a
critical first step in many research and management applica-
tions, including ecosystem modeling (Cowen et al. 2006),
population connectivity studies (Cowen et al. 2007; Reich
and DeAlteris 2009), siting of marine protected areas
(Hamilton et al. 2010), and defining spatial management
(Cadrin and Secor 2009; Gaines et al. 2010). Unlike in the
terrestrial environment, where habitats are relatively straight-
forward to identify and where organisms can be directly
observed, the mapping of marine resources is more difficult
because organisms and habitats are rarely directly observed
and because many marine organisms exhibit a high degree of
movement or dispersal. Despite high dispersal and mobility,
there exist strong patterns of spatial predictability (Stephenson
et al. 2009), habitat associations (Ault et al. 2006), and spatial
autocorrelation, even for highly mobile marine organisms
(Kleisner et al. 2010). These spatial patterns define how
organisms relate to the marine habitat, and they represent
critical considerations for understanding marine processes.

One difficulty in the sampling of marine organisms is that it
is often impossible to capture all life stages of an organism or
to sample all habitats with a common sampling gear. For
instance, larval to juvenile stages are typically captured in
trawl gears (e.g., plankton or fish trawls), whereas adults
generally can avoid trawling gears but are vulnerable to
hook-based gears. Another sampling issue is that obtaining a
systemwide, synoptic view of a mobile marine organism’s
distribution is rarely possible. Generally, surveys are limited
in spatial or temporal extent such that any distribution map
would require combining multiple years of data or would
represent a very limited view of the full spatial distribution
of a population. For instance, in the northern Gulf of Mexico
(GOM), reef fish video and vertical line (VL) surveys are
conducted from April to May by the Southeast Area
Monitoring and Assessment Program (SEAMAP, National
Marine Fisheries Service [NMFS]; Gledhill et al. 1996),
whereas a bottom longline (LL) survey is conducted from
August to September by the NMFS Mississippi Laboratories
(Driggers et al. 2012). Therefore, any comparisons between
data from these gear types would be confounded by seasonal
movements. Furthermore, although these surveys have suffi-
cient power to create abundance indices that are spatially
representative, they are still sparsely distributed over the sam-
pling domain. Such sparseness can result in high sample-to-
sample variability, further complicating or confounding the
development of a complete spatial map from a single year of
sampling.

The Red Snapper Lutjanus campechanus is one of the most
economically valuable species in the GOM and occupies a
wide range of habitats throughout its life history. The pelagic
larval phase of Red Snapper lasts approximately 30 d (Drass
et al. 2000), after which they settle on low-relief mud and sand
bottoms where they are vulnerable to trawling gears (Gutherz
and Pellegrin 1988). Between ages 1 and 2, Red Snapper

move to various types of higher-relief reef structures
(Gallaway et al. 2009; Cowan et al. 2010), remaining there
through ages 6–8, during which time they are vulnerable to the
hook-based gears that are commonly used in rugose or com-
plex habitats (e.g., handline, VL, and rod and reel). At
approximately ages 6–8, Red Snapper once again shift their
habitat use to mud and sand bottom, where they are captured
by bottom LLs (Mitchell et al. 2004). This complex pattern of
habitat use throughout Red Snapper life history makes it
problematic to map their distribution based on the use of
only one survey gear.

An additional complication in mapping the distributions of
Red Snapper and other reef species in the GOM is that natural
habitats have been dramatically altered due to the installation
of various artificial structures. Since the 1950s, over 7,000 oil
rig platforms and approximately 20,000 artificial reefs have
been installed along the GOM’s northern continental shelf
(Shipp and Bortone 2009). The artificial reef structures have
been deployed specifically to increase reef habitat availability
in areas that are otherwise devoid of naturally occurring reefs
(Syc and Szedlmayer 2012); in some localized areas, catches
from artificial reefs now support the majority of Red Snapper
catch (Shipp and Bortone 2009). The specific contribution of
artificial structures in terms of habitat availability to the GOM
Red Snapper population is an issue that has complicated
management for decades (Cowan et al. 2010). Previous calcu-
lations suggest that approximately 70–80% of age-2 Red
Snapper reside on oil and gas platforms alone (Gallaway
et al. 2009), and it has thus been argued that the removal of
artificial structures would have a significant impact on the Red
Snapper population. However, a comprehensive study of Red
Snapper distributions among the various habitat types in the
GOM has not been attempted.

Here, we develop a spatial map and associated spatial variance
estimates of Red Snapper in the northern GOM by using a novel
methodology that combines multiple gear types and accounts for
the effects of both large-scale and small-scale habitat variations.
This methodology is the first to yield a comprehensive map of the
distribution and relative abundance of Red Snapper by age-class
across the multiple habitats where they are found in the GOM,
including artificial habitats. Funding obtained in 2011 from the
Congressional Supplemental Sampling Program (CSSP) allowed
for the most comprehensive spatial sampling of Red Snapper
conducted to date (Campbell et al. 2014). Our analysis focuses
on age-1 and older Red Snapper that are vulnerable to VL and LL
gear and that occur over a wide range of habitat types, including
natural and artificial reefs of low to high complexity and mud or
sand bottom. When combined with comprehensive maps of sedi-
ment types, petroleum extraction platforms, and artificial struc-
tures, this information provides the basis for developing a
predictive model of the spatial distribution of Red Snapper relative
abundance and biomass. By summing the relative index on each
habitat, our mapping approach also allows us to estimate the
spatial distribution of Red Snapper by habitat type. These
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predictions form a basis for future spatial management, ecosystem
modeling, or population connectivity studies and can serve as a
platform for developing more efficient stock surveys.

METHODS

Sampling Design
Red Snapper catch data originated from three fishery-

independent surveys that were conducted in the northern
GOM (Figures 1, 2). The CSSP survey took place from
April 7 to October 25, 2011, and covered the continental
shelf of the northern GOM between 9- and 400-m depth
from Brownville, Texas, to the Florida Keys (Figure 1).
The CSSP survey deployed both LL and VL gear and
sampled the entire survey area on a monthly basis (a full
review of survey methodologies is provided by Campbell
et al. 2012). The LL stations were selected by using a random
stratified design defined by 18 spatial zones and three depth
zones (9–55, 55–183, and 183–400 m), with proportional
allocation by area. During the first 3 months of the CSSP
survey, VLs were deployed in conjunction with (i.e., paired
with, VLpair) the LLs, and five VL stations were completed
within 1.852 km (1 nautical mile) of the LL set’s starting
position. During the second half of the survey, the VLs were
deployed independently (VLind) of the LLs over natural reef
habitat that either was previously mapped and identified or
was found with side-scan sonar. Any sites that appeared to be
anthropogenic, as determined from viewing side-scan sonar
images of a survey strip, were not sampled. All captured Red
Snapper were aged from sectioned otoliths as described by
Allman and Fitzhugh (2007) and Allman et al. (2012).
Individuals with missing ages in the data set (21 of 1,709
VL catches; 61 of 776 LL catches) were assigned age esti-
mates from an age–length key (with 10-mm length bins)
based on the aged subsample of individuals from each
respective gear type. For individuals that were missing both
age and length information (1 individual in the VL catch; 25
individuals in the LL catch), ages were assigned randomly
based on probabilities that were proportional to the observed
age composition from each respective gear type.

The second survey was conducted from August 27 to
September 7, 2007, and deployed VLs on petroleum extrac-
tion platforms (VLplat) in the north-central GOM from
Alabama to Louisiana (87–92°W). Stations were selected
from strata defined by longitude and depth (6–30, 30–75,
and 75–152 m) and were proportional to the number of plat-
forms within a given stratum (see the full description of
methodology in Moser et al. 2012). Three VLs were fished
simultaneously at each site and consisted of 10 circle hooks
(size 11/0) per reel. Of the 289 Red Snapper that were
captured, 138 were aged using the protocols described by
Allman and Fitzhugh (2007), and length measurements only
were available for all but three of the remaining individuals.
For those individuals with only length observations, ages

FIGURE 1. Sampling sites used in the analysis of Red Snapper abundance in
the northern Gulf of Mexico. Depth contours are 20–500 m.

52 KARNAUSKAS ET AL.



were assigned based on an age–length key (10-mm length
bins) developed from the aged subsample of individuals. The
three individuals without age or length data were assigned
ages randomly based on probabilities that were proportional
to the observed age composition in the survey.

The third survey was conducted from March 21 to September
14, 2011, and deployed VLs on artificial reef structures (VLart)

within the Reef Permit Zone in the north-central GOM off the
coast of Alabama. Prior to VL sampling, structures were identified
and enumerated with side-scan sonar. Stations were then randomly
selected from strata defined by depth (18–37, 37–55, and 55–91 m
following Gregalis et al. 2012), with effort allocated in proportion
to the areal extent of each depth stratum. Two VLs were fished
simultaneously at each site; each line consisted of 12 circle hooks

FIGURE 2. Plots of Red Snapper fork length and age frequency based on captures in five different surveys within the northern Gulf of Mexico: bottom longline
(LL), vertical line paired with longline (VLpair), independent vertical line (VLind), vertical line on petroleum platform habitat (VLplat), and vertical line on
artificial reef habitat (VLart). Solid black lines denote the mean length and age for each survey.
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of sizes 8/0, 11/0, 13/0, and 15/0 (n = 3 hooks of each size).
Complete details are provided by Gregalis et al. (2012). Ages for
20 of the 519 Red Snapper were missing from the database;
therefore, the ages of those fish were back-calculated from
known lengths by using an age–length key based on the aged
sample in the survey. A single individual lacked both length and
age information andwas assigned an age randomly, as in the CSSP
and platform surveys. All other fish were aged in accordance with
the methods of Allman and Fitzhugh (2007). Other than the
structures targeted by the VLpair, VLind, VLplat, and VLart
surveys, the only other difference among surveys was the propor-
tions of different-sized hooks that were used.

Hereafter, we use the term “gear” to model the five gear ×
survey type combinations described above (LL, VLpair,
VLind, VLplat, and VLart); note that while all VL surveys
use the same gear, the statistical design of each survey had
inference over a different area. By poststratifying the entire
northern GOM into the areas where each survey had valid
inference, we were able to combine inferences over the entire
region. The LL and VLpair surveys were conducted as part
of a stratified random sampling design wherein strata were
selected based solely upon depth and broad spatial areas,
with no consideration of habitat type. Furthermore, due to
safety and logistical considerations, LL deployments avoided
known wrecks, artificial reefs, and petroleum platforms.
Hence, the LL data and VLpair data had inference over the
entire sampling domain except for natural reefs, platforms,
and artificial reefs. In contrast, the VLind (independent VL
on identified rock and gravel structure), VLplat (platforms),
and VLart (artificial reef) surveys only had inference over
the particular substrate that they sampled.

Habitat Information
Habitat information from the usSEABED database (off-

shore surficial sediment data; Buczkowski et al. 2006) was
used to poststratify the northern GOM into areas of valid
inference for each survey and gear type. The usSEABED
database is an extensive collection of observations on benthic
substrate composition and represents the most comprehensive
habitat data source available for the region. A fuzzy logic
membership technique was used to categorize historical and
recent observations into broad grain types (Buczkowski et al.
2006). We used usSEABED’s 255,562 point estimates of
percent rock, gravel, sand, and mud throughout the northern
GOM as the basis for our habitat composition estimates. For
each grid cell in our 10-km2 prediction grid, we calculated the
average percent rock, gravel, sand, and mud for the data points
falling within that cell. The usSEABED database has a resolu-
tion of at least 2 km2 in most areas; therefore, most grid cells
contained approximately 25 point estimates of habitat cover.
When no usSEABED estimates were available (only 3 of
2,581 grid cells), an average from the eight surrounding grid
cells was used. The resulting output was a measure of percen-
tage composition for each prediction grid cell (Figure 3).

Petroleum platform locations were taken from the Platform
Structures Database (Bureau of Ocean Energy Management;
www.data.boem.gov/itaccessproj/platformstructures.mdb;
accessed December 2015). The database included 7,121 total
structures, 4,713 of which were marked as “removed” (i.e., clear
of any structure or trash) and thus were not included in the
analysis. Of the remaining 2,408 platforms, 2,014 fell within our
statistical study domain. Locations of artificial structures were
derived from the data sources described by Mueller (2012).
Artificial reef structures included both shipwrecks or obstructions
and state-permitted artificial reefs (including oil rigs that had been
converted to reefs) and comprised a total of 3,689 structures within
the prediction domain. In the Alabama Artificial Reef Zone
(AARZ), which encompasses approximately 2% of the total pre-
diction domain, the numbers of artificial reefs were updated based
on a side-scan sonar survey. For this survey, the AARZ was
divided into a series of 2-km2 grids prior to sampling. Between

FIGURE 3. Distribution of natural habitats and artificial structures throughout
the prediction domain within the northern Gulf of Mexico, as defined by the
databases used in this study. Percent artificial structure influence is calculated
based on the number of structures (petroleum platforms and artificial reefs) in
each prediction cell multiplied by the area of assumed influence (a 100-m
radius; AARZ = Alabama Artificial Reef Zone).
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2011 and 2014, 60 grids were randomly selected and surveyed
with side-scan sonar. Surveyed structures within the grids were
classified either as (1) qualifying as an artificial reef structure (area
> 4 m2; vertical relief > 0.5 m2) or (2) nonqualifying (area < 4 m2,
vertical relief < 0.5 m2; Gregalis et al. 2012). After categorization,
the qualifying structures within each of the surveyed grids were
identified and enumerated to calculate an artificial reef density
(artificial reefs/km2) for each surveyed grid. Artificial reef densi-
ties were then interpolated from the side-scan sonar surveyed grids
by using the Empirical Bayesian Kriging Interpolation tool in
ArcGIS version 10.2. These interpolated densities (summing to
7,266 artificial structures in the AARZ) were then used in lieu of
the artificial reef density estimates from the Mueller (2012) data-
base (which contained only 673 artificial structures in the AARZ;
Figure 3). Because this difference could imply that the Mueller
(2012) database similarly underestimated the numbers of artificial
reefs in areas outside of the AARZ, we carried out a sensitivity
analysis wherein the numbers of artificial reefs were quadrupled
for each grid cell outside the AARZ, giving a total of 19,330
artificial reefs in our statistical domain compared to 10,282 artifi-
cial reefs in the baseline case. The sensitivity analysis allowed us
to understand how our final results could be affected by a poten-
tially gross underestimate of the number of artificial reefs.

Statistical Modeling Approach
Below, we present a detailed explanation of our statistical

approach; a flowchart is included for a conceptual represen-
tation (Supplementary Figure S.1 available separately online
with this article). The index of Red Snapper relative abun-
dance at grid cell i was calculated as a weighted average
of relative abundances on natural habitat and artificial
structures,

RSi ¼ NATi 100�%PLATareai �%ARTareaið Þ
þ PLATi �%PLATareai þ ARTi �%ARTareai; (1)

where NAT is the relative abundance on natural habitat (given
by equation 2); PLAT is the relative abundance on platforms
(calculated from equation 13); ART is the relative abundance
on artificial reefs (calculated from equation 14); and
%PLATarea and %ARTarea are the percentages of the 10-km2

grid cell i covered by platforms and artificial reefs, respectively
(Figure 3). The area is calculated by multiplying the number of
artificial structures in each 10-km2 grid cell by π·0.12 km2, as
the high fish densities found on platforms have been shown to
extend approximately 100 m from the platform center (Reynolds
2015).

The relative abundance on natural habitats within each 10-km2

grid cell i was calculated as

NATi ¼
P6
a¼1

Na;iFa;r; (2)

where

Na;i ¼ VLpaira;ið%mudi þ%sandiÞ
þ VLinda;i %rocki þ%gravelið Þ; (3)

a represents different age-classes; VLpair and VLind are stan-
dardized relative abundances calculated for the paired VL and
independent VL gear, respectively (from equations 6 and 7);
%mud, %sand, %rock, and %gravel are estimates of the percent
habitat type in each 10-km2 grid cell; and Fa,r is an age adjust-
ment factor that accounts for the fact that no gear selects 100%
of the fish in each of the age-classes (see equation 8).

Calculation of NATi.—Estimates of relative abundance on
the different habitat types in each sample site d were
calculated for the VLpair and VLind surveys by modeling
the effects of gear and other sampling artifacts in a two-
stage approach. The two-stage approach was used due to the
zero-inflated nature of the data set; only about 6% of the
observations had one or more individuals present. The
presence–absence (p) of six age-classes was modeled with
logistic regression and as a function of age, gear type, the
month and hour of sampling, and the longitude and depth at
which sampling was conducted,

logit pð Þa;d ¼ β0A þ β1A age� gearð Þ þ β2A age� depthð Þ
þ β3A depth� longitudeð Þ
þ β4A ageð Þ þ β5A gearð Þ þ β6A depthð Þ
þ β7A longitudeð Þ þ β8A monthð Þ
þ β9A hourð Þ: (4)

Abundance when present was modeled as a Poisson regression
using the following link function:

log μð Þa;d ¼ β0B þ β1B age � gearð Þ
þ β2B age � depthð Þ
þ β3B depth� longitudeð Þ þ β4B ageð Þ
þ β5B gearð Þ þ β6B depthð Þ þ β7B longitudeð Þ
þ β8B monthð Þ þ β9B hourð Þ: (5)

Gears included in the model were LL, VLpair, and VLind.
Note that although the LL gear was included in the model
because it was informative for helping the model estimate
effect sizes for each factor as well as the VL gear’s
selectivity at age, the relative abundance estimates pro-
duced from LL gear were not used in subsequent calcula-
tions. Those estimates could not be used because the “gear
effect” estimated for the LL gear contained the confound-
ing effects of (1) differences in abundance due to habitat
type and (2) differences in catchability due to the nature of
the gear. Because the gears used in the VLpair and VLind
surveys were identical in every aspect except the habitat
they sampled, they could be used in reference to each
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other to estimate the relative abundances on the different
habitat types; in other words, the gear effects estimated by
the model for the VL gears contained only habitat effects.

All other variables included in the generalized linear mod-
els (GLMs) were treated as categorical factors; longitude
(from 98°W to 81°W) was binned at 1.5° or 2.0° resolution,
depth (7–140 m) was categorized into 10-m bins, and time (all
24 h) was assigned to 6-h bins. Variables were checked for the
presence of collinearity; none of the pairs had a correlation
coefficient (r) greater than 0.20. To attain model convergence,
age-classes were limited to those ages observed by all gears;
thus, age-1 and age-2 individuals were combined into a single
age-class, and age-7 and older individuals were combined into
the oldest age-class. Age × gear interaction effects were mod-
eled because catchability rates for both gears appeared to be
largely dependent on fish size, and age × depth interactions
were included because of the well-documented ontogenetic
movement of Red Snapper from shallow to deep waters
(Mitchell et al. 2004). Age × month and age × hour interaction
effects were also included in candidate models. We considered
several rugosity measures based on the 30-arc-second-resolu-
tion bathymetry data from the General Bathymetric Chart of
the Oceans (www.gebco.net); however, rugosity was highly
correlated with depth (r > 0.70) and therefore was not ideal for
inclusion. Instead, we included a depth × longitude interaction
factor, which allowed for the depth effect to differ by area. In
modeling the positive count data, we considered both Poisson
and negative binomial regression. Decisions on which factors
to include in the model and on the form of the regression were
initially made based on Akaike’s information criterion (AIC).
Models with similar AIC scores were subjected to further
model performance testing based on a 10-fold cross-validation
procedure. In this procedure, the full data set was randomly
split into 10 groups, and each group served once as a valida-
tion data set while the other nine groups were used as a model
training set. Model performance was evaluated by (1) estimat-
ing the model on the training data set, (2) using the model to
predict data points in the validation set, and (3) measuring the
agreement between the observed validation set and the pre-
dicted values via Pearson’s product-moment correlation coef-
ficient. The two-stage logistic–Poisson regression model
containing the full suite of individual factors and three inter-
action effects (as described above) had the best performance,
and the outputs were selected for further calculations.

For the purposes of model prediction, a regular 10-km2 grid
was overlaid on the study domain; the domain was defined by
the isobaths between which Red Snapper were actually
observed during the surveys (i.e., from 7- to 140-m depth).
To estimate the total biomass across the domain, we first
extracted the longitude and depth at which each of the center
grid points fell. Using the parameter estimates from the logis-
tic model (equation 4) and Poisson model (equation 5) that
were built previously (Table 1), we then predicted, for each
grid cell, the expected probability of occurrence (p) and

positive counts (number present [NP]). The expected quanti-
ties were calculated separately for VLpair and VLind and for
each Red Snapper age-class based on the given longitude and
depth bins and based on the average month and hour effects.
Multiplying p by NP then yielded the relative abundance
expected for each gear type across the study domain in the
absence of sampling artifacts,

VLpaira;i ¼ pVLpair;a;i � NPVLpair;a;i (6)

and

VLinda;i ¼ pVLind;a;i � NPVLind;a;i: (7)

The relative abundance of Red Snapper on natural habitat in each
grid cell i was then calculated as a weighted average of the
abundance estimated by each gear type times the percent cover
in the grid cell of the habitat over which each gear type had
inference (equation 3). This final estimate of relative abundance
was then multiplied by the factor Fa,r (equation 2), which
accounted for the fact that due largely to size selectivity, neither
the VL gear nor the LL gear sampled the younger age-classes as
efficiently as the older age-classes; thus, the model predicted that
age-3 and age-4 fish were more abundant than age-1 and age-2
fish. Abundance at age was extracted from estimates from the
most recent stock assessment (Cass-Calay et al. 2015), and the
multiplicative factor was calculated as

Fa;r ¼ Sa;rPi

1 Na;i

� �
r

; (8)

where Sa,r is the abundance-at-age-a vector by region r in 2011,
as estimated from the stock assessment; and Na,i is the total
relative abundance at age calculated by the weighted model as
above (equation 3). Region r is defined as either east or west,
with a cutoff at approximately the Mississippi–Louisiana border
(–89.1°W), as is used in the assessment. Application of the
multiplicative factor adjustment did not change the patterns in
spatial distribution by age, as it was a constant applied across all
grid cells. However, the adjustment was necessary to ensure that
the spatial distribution of the summed age-classes was driven by
the spatial distributions of the youngest age-class rather than the
older age-classes—thus emulating reality, wherein abundance
decreases with age due to natural mortality. It was also necessary
to make the multiplicative factor region-specific to account for
the fact that the binned age-classes (ages 1–2 and ages 7+)
contained different age compositions in each region; most nota-
bly, the eastern region had substantial age truncation relative to
the western region. Note that this scaling was done only to
correct for selectivity but not to scale to the actual abundance
estimates produced by the assessment; the abundance index
produced by our method is relative.
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Calculation of PLATi and ARTi.—The relative abundance
of Red Snapper on artificial structures was calculated via a
comparison of VL sampling on natural reefs, platforms, and
artificial reefs. Because the same gear and sampling
methodology were used in all three surveys, any differences
in catch rate are presumably due only to differences in
relative abundance on the various habitat types (i.e., natural
habitat with structure; petroleum platforms; or artificial
reefs). For the comparison, the same two-stage modeling
procedure was employed as described above (similar to
equations 4 and 5), except that because the three surveys
differed slightly in the arrangement of the various hook sizes,
an additional age × hook size interaction term was included
(the depth × longitude interaction factor was excluded due to
nonconvergence):

logit pð Þa;d ¼ β0C þ β1C age� habitatð Þ
þ β2C age� hookð Þ þ β3C age� depthð Þ
þ β4C ageð Þ þ β5C habitatð Þ þ β6C depthð Þ
þ β7C longitudeð Þ þ β8C monthð Þ
þ β9C hourð Þ þ β10C hookð Þ (9)

and

log μð Þa;d ¼ β0D þ β1D age� habitatð Þ
þ β2D age� hookð Þ þ β3D age� depthð Þ
þ β4D ageð Þ þ β5D habitatð Þ þ β6D depthð Þ
þ β7D longitudeð Þ þ β8D monthð Þ
þ β9D hourð Þ þ β10D hookð Þ: (10)

Because the same gear was used across different habitat types,
this approach produced estimates of the “habitat effect” after
accounting for differences in other sampling artifacts. The
model coefficients from equations (9) and (10) were then
used to predict back onto all combinations of depth bin, long-
itude bin, month, hour bin, and hook size for each gear type
and age-class. Average relative abundances for each gear type
were averaged over the individual depth bins and age-classes.
This calculation represents, for each depth and age-class, the
relative estimates of Red Snapper abundance on platforms,
artificial reefs, and natural reefs without the effects of sam-
pling artifacts. Ratios of abundance (platforms : natural reefs;
artificial reefs : natural reefs) were then calculated based on
the mean estimated abundances (�NVLplat, �NVLart, and �NVLind; see
Table 2). Because the platform sampling was carried out in
2007 and all other sampling was conducted in 2011, the ratio
also had to account for the differences in numbers at age

TABLE 1. Percent deviance explained by each factor in the logistic model
of the probability of presence and the Poisson model of positive counts
(i.e., abundance when present) for Red Snapper in the northern Gulf
of Mexico.

Factor df Deviance
Residual

df
Residual
deviance

Deviance
explained

(%)

Logistic model (probability of presence)
Null 18,617 8,223.7
Age-class 5 230.3 18,612 7,993.4 2.80
Gear 2 766.0 18,610 7,227.4 9.58
Depth 6 229.1 18,604 6,998.3 3.17
Longitude 7 310.4 18,597 6,687.9 4.44
Month 6 59.3 18,591 6,628.6 0.89
Hour 3 14.3 18,588 6,614.3 0.22
Age-class ×
gear

10 193.7 18,578 6,420.6 2.93

Age-class ×
depth

30 117.3 18,548 6,303.3 1.83

Depth ×
longitude

42 235.5 18,506 6,067.8 3.74

Poisson model (abundance when present)
Null 1,082 1,469.8
Age-class 5 32.48 1,077 1,437.4 2.21
Gear 2 0.22 1,075 1,437.2 0.02
Depth 6 28.42 1,069 1,408.7 1.98
Longitude 7 35.61 1,062 1,373.1 2.53
Month 6 48.10 1,056 1,325 3.50
Hour 3 1.91 1,053 1,323.1 0.14
Age-class ×
gear

10 59.54 1,043 1,263.6 4.50

Age-class ×
depth

30 91.54 1,013 1,172 7.24

Depth ×
longitude

42 63.23 971 1,108.8 5.40

TABLE 2. Ratio of average catch rates of Red Snapper on petroleum platform
habitats or artificial reefs versus targeted natural habitats in the northern Gulf
of Mexico, presented for each age-class and depth bin.

Depth (m)

Age 0–40 40–50 50–60 60–70 70–80 80–90 >90

Platforms : natural habitats
1–2 18.72 16.41 21.56 23.99 24.81 25.12 26.11
3 3.66 3.48 4.04 4.14 4.28 4.42 4.51
4 0.43 0.43 0.43 0.43 0.43 0.43 0.43
5+ 0.18 0.18 0.19 0.19 0.20 0.20 0.19

Artificial reefs : natural habitats
1–2 20.07 19.50 19.83 20.62 19.10 19.82 20.45
3 8.93 8.87 9.05 9.11 8.87 8.90 8.96
4 16.38 17.18 17.16 16.29 16.26 17.30 17.69
5+ 18.40 18.04 18.67 17.46 17.58 19.59 17.65
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between the two time periods, as estimated from the most
recent stock assessment (Cass-Calay et al. 2015),

PLATFORM : NATURALage;depth

¼
�NVLplat 2007ð Þage;depth
�NVLind 2011ð Þage;depth

� 2011 Nage

2007 Nage
: (11)

Sampling on both artificial reefs and natural reefs was carried
out in 2011, and thus the calculation of the ratio was
straightforward:

ARTIFICIAL : NATURALage;depth

¼
�NVLart 2011ð Þage;depth
�NVLind 2011ð Þage;depth

: (12)

The average relative abundance indices and subsequent ratios
were not calculated over individual longitude bins because the
artificial structure data were available for only a small spatial
extent: mostly off the coast of Louisiana for platforms and
only the AARZ for artificial reefs (see Figure 1). Thus, the
predictions of the relative abundance differences between plat-
forms and natural habitats were extended beyond the area
upon which the predictions were based. The present results
regarding relative abundances on artificial structures should
therefore be treated with caution since they serve only as best
available estimates of artificial structures’ influence on distri-
butions in the absence of more extensive sampling at those
habitats.

The relative abundances of Red Snapper on platforms and
artificial structures in each grid cell i (PLATi and ARTi in
equation 1) were calculated as

PLATi ¼
P6
a¼1

VLinda;i � PLATFORM : NATURALa;i � Fa;r

(13)

and

ARTi ¼
P6
a¼1

VLinda;i � ARTIFICIAL : NATURALa;i � Fa;r;

(14)

where VLinda,i is as calculated in equation (7), PLATFORM :
NATURALa,i is the ratio of abundances between platform and
natural habitats as calculated in equation (11), ARTIFICIAL :
NATURALa,i is the ratio of abundances between artificial reef
and natural habitats as calculated in equation (12), and Fa,r is
the relative-abundance-at-age multiplicative factor as
described in equation (8). The quantities PLATi and ARTi

were then used in equation (1) for the final calculation of
Red Snapper relative abundance in each grid cell.

Calculation of variance estimates.—Variances for the
combined logistic presence–absence and Poisson counts were
calculated by using Goodman’s exact estimator, as
recommended by Lauretta et al. (2015),

var Ið Þ ¼ p2 � var NPð Þ� �þ NP2 � var pð Þ� �
� var NPð Þ � var pð Þ½ �: (15)

Variances of the combined prediction from the VLpair and
VLind gears over all natural habitat types were calculated
using the weighted variance formula,

var Na;i

� � ¼ %mudi þ%sandið Þ2var VLpaira;i
� �h i

þ %rocki þ%gravelið Þ2varðVLinda;iÞ
h i

þ 2 %mudi þ%sandið Þ %rocki þ%gravelið Þ
cor VLpaira;i;VLinda;i

� �
var VLpaira;i

� �0:5
var VLinda;i

� �0:5
:

(16)

Total variances were then scaled by the square of Fa,r and its
associated variance, var(Fa,r), as estimated from 500 bootstrap
estimates of the region-specific abundance-at-age matrix from
the stock assessment model. The variance was summed across
age-classes to calculate the total variance from the GLM for
each grid cell i,

var NATið Þ ¼
X6
a¼1

var Na;i

� �
F2
a;r � var Fa;r

� � 1P
1 iNa;i

� 	2

r

: (17)

We additionally employed a nonparametric bootstrapping
method to estimate variances of the GLMs, as those estimates
may differ from the analytical approximation when model fit
is poor or when overdispersion occurs. We calculated boot-
strapped variances by resampling the original data, refitting
the GLMs, and then calculating the SD of the bootstrapped
parameter estimates. We found that the nonparametric esti-
mates of variance were very similar to the derived estimates;
thus, we kept the analytical approximations for our
calculations.

Calculation of the biomass index and fecundity index.—
Relative biomass and relative fecundity were estimated
concurrently with relative abundance within the same
framework. Because all model calculations were performed
on an age-class-explicit basis, conversions to biomass and
batch fecundity were made simply by introducing a multi-
plicative weight-at-age or fecundity-at-age vector term.
Those terms were included in equations (2), (13), and
(14), where weight at age or fecundity at age was
multiplied by Fa,r to convert to biomass or egg numbers,
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respectively. Weight-at-age estimates were based on growth
equations reported in the most recent stock assessment
(Cass-Calay et al. 2015); the fecundity-at-age relationship
we used was from Porch et al. (2015).

Evaluation of spatial autocorrelation in residuals.—The
modeling approach presented in equations (2)–(8) represents
the expected relative abundance in each grid cell based on its
habitat composition, depth, and longitude (i.e., the quantity
NATi). The quantity does not account for habitat differences
that occur on scales finer than those at which the sampling
took place, and the predictions obtained from equations (4)
and (5) still have substantial unexplained deviance. To
evaluate the subsample-scale variation in abundance, we
carried out kriging of the spatially explicit model residuals.
The residual abundance at a data point d was calculated as a
percentage,

%εd ¼
P6

a¼1
Na;d;observed�

P6

a¼1
Na;d;expectedP6

a¼1
Na;d;expected

; (18)

where Na,d,observed is the raw observed abundance at each data
point; and Na,d,expected is the predicted abundance at age at each
data point. The expected values were calculated based on the
coefficients from the models fitted in equations (4) and (5),
which were used to predict back onto the original data points
based on their given gear, depth, longitude, month, and hour of
sampling. The quantity %εd thus represents the percent residual
abundance at the site that was not accounted for after standar-
dization across all factors. The small-scale residual variation in
abundance was interpolated across the study domain via kri-
ging. An empirical variogram was estimated for data pairs with
distances less than 50 km by using the classical method-of-
moments estimator. The variogram model was fitted by using
ordinary least squares, with no fixed nugget (Figure 4).

Variograms based on residuals from data points that were
sampled by VL gear showed poor fits; the sample sizes were
likely too low to permit detection of spatial autocorrelation.
However, we do present the residuals based on LL data points
because they produced a good fit to the variogram. Parameters
from the LL-only variogram model were then used to generate
predictions of residual abundance across the 10-km2 prediction
grid to represent unexplained patterns in relative abundance.

RESULTS

Catch
Overall, 2,485 Red Snapper were caught during the CSSP

survey: fish that were caught on LL gear ranged from 280 to
885 mm FL (n = 776), and those caught on the VLpair and
VLind gear ranged from 154 to 782 mm FL (n = 1,709). The
VLplat survey captured 289 Red Snapper ranging from 258 to
552 mm FL, while the VLart survey captured 519 individuals
ranging from 235 to 855 mm FL. Larger fish were captured on
the LL gear than on any of the VL combinations (VLpair,
VLind, VLplat, and VLart; Figure 2). Ages from the CSSP
survey ranged from 2 to 34 years on LL gear and from 1 to 22
years on VLpair and VLind. The VLplat survey captured Red
Snapper ranging in age from 1 to 7 years, while the VLart
survey captured fish of ages 1–12. The LL survey captured the
oldest Red Snapper, on average, whereas the VLplat survey
captured the youngest individuals. The VLpair, VLind, and
VLart surveys all captured similarly aged Red Snapper.

Statistical Modeling
For the estimates of Red Snapper relative abundance on

natural habitat by sample site, the best model based on cross
validation for both logistic presence–absence (equation 4) and
Poisson positive counts (equation 5) contained all factors,
including the age × gear type, age × depth, and depth ×
longitude interactions. The addition of other interaction factors
(age × month, age × hour, or both) led to slightly decreased
performance in the cross validation when included in either
the presence–absence model or the positive count model and
thus were excluded. Cross validation for the best-performing
pair of models showed an r of 0.36 for observed versus
predicted values. When the depth × longitude interaction
term was dropped, the r-value was reduced to 0.33; when
the age × depth term was dropped, the r-value was reduced
to 0.30; and when no interaction factors were included, the
r-value was 0.25. Poisson regression outperformed negative
binomial regression; furthermore, the full model with three
interaction terms would not converge for the negative bino-
mial formulation of the regression. For the logistic model,
26.2% of model deviance was explained, and the Poisson
model for positive counts explained 24.6% of the deviance
(Table 1). Variograms estimated at a maximum distance of 50
km (Figure 4) showed good fits for the subset of LL data only,
and high spatial autocorrelation was estimated for distances of

FIGURE 4. Variogram model fit used for kriging the residuals of bottom
longline data set predictions from the generalized linear model of Red
Snapper relative abundance.
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up to about 10 km (Figures 4, 5). Kriging error was relatively
high compared to the total regression model error, indicating
substantial residual variation.

Distribution Patterns
Spatial distribution patterns of Red Snapper were generally

estimated to be highest in the middepth ranges off the coast of
Texas and in shallow-water “hot spots” within the north-central
and northeastern GOM (Figure 6). In particular, high densities
were estimated for areas just off the coast of Alabama and the
Florida panhandle region. Similar patterns were estimated for
biomass and fecundity distributions across the domain; higher
numbers occurred in the northwestern GOM and off the coast of
Louisiana. Biomass and fecundity estimates were lower on the
west Florida shelf and off the coasts of Alabama and Florida,
indicating the presence of younger individuals that contributed
relatively less to biomass and fecundity (Figure 6). The fecund-
ity index was estimated to be highest off the coast of Texas,
particularly in middepth waters (50–90 m) and, to a lesser
extent, off the Louisiana coast (Figure 6).

FIGURE 5. Kriged predictions of the residual abundance and associated SEs
for Red Snapper in the northern Gulf of Mexico.

FIGURE 6. Maps of relative abundance, biomass, and fecundity (with associated SEs; see Methods) for Red Snapper in the northern Gulf of Mexico based on
the generalized linear model.
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Influence of Artificial Structures
Catch rates of Red Snapper on artificial structures were

much higher than those on natural reefs (Table 2). Platforms
had the highest catch rates for 1- and 2-year-old fish, particu-
larly in the over 50-m depth range, where the average catch
rate on platforms was estimated to be up to 26 times the catch
rate on natural reefs. This ratio decreased with age, and for 4-
and 5-year-old fish, the platform catch rates were actually less
than the natural reef catch rates. For artificial reefs, catch rates
of 1- and 2-year-old Red Snapper were estimated to be about
20 times the catch rates on natural reefs across all depth bins.
In contrast to the results for platforms, higher catch rates on
artificial reefs relative to natural reefs were maintained for the
older age-classes: age-5 and older individuals had artificial
reef catch rates that were around 18 times the natural reef
catch rates.

The inclusion of artificial structures had a notable effect on
the distribution, biomass, and fecundity maps due to the high
catch rates observed on those structures (Figure 7). We esti-
mated that 13.3% (by number) of the northern GOM popula-
tion of Red Snapper was present on artificial structures
(Table 3; Figure 8). Because artificial structures attracted

younger age-classes of Red Snapper, estimates of biomass
and fecundity on artificial structures were lower—about
7.8% and 6.4%, respectively (Table 3). Among 1–2-year-
olds, 15.9% of individuals were estimated to occur on artificial
structures, 3.3% were estimated to occur on platforms, and
12.6% were estimated to occur on artificial reefs (Table 4).
These percentages declined for older age-classes, and less than
5% of age-7 and older individuals occurred on artificial struc-
tures (Table 4). Estimated numerical, biomass, and fecundity
contributions were relatively robust to high uncertainty around
the actual number of artificial structures (Table 3).

In some locations, particularly off the coast of Louisiana
(where platform densities can be almost 1 platform/km2), plat-
forms harbored substantial numerical abundances of Red Snapper.
Because natural habitat is limited along the shallow Louisiana
coast, platforms can provide the majority of structure for age-1
and age-2 Red Snapper (Figure 9). The AARZ also contributed
substantially to the abundance of Red Snapper, attracting not only
young fish but also high numbers of 3-, 4-, and 5-year-olds. Note
that platform sampling was not carried out across the entire area
where platforms occurred, and artificial reef sampling was
restricted to the small area of the AARZ. Thus, areas outside the
sampling zone were extrapolated with the assumption that the
ratios of catch rates on platforms and artificial reefs relative to
natural reefs were the same as the ratios in the sampled areas.

DISCUSSION
Our modeling approach was able to predict Red Snapper

spatial distribution by age based on broad metrics, such as
longitude and depth, while accounting for differential catch-
ability with different gears. Gear type was one of the more
influential variables in the statistical model for the probability
of presence, reflecting the complexity of surveying reef-asso-
ciated fish with differential vulnerability based on gear type,
habitat, or ontogeny. Estimation of the gear effect by age
allowed for survey gears with differential selectivity to be
combined into a consistent estimator. Clearly for Red

FIGURE 7. Maps of predicted relative abundance, biomass, and fecundity
(see Methods) for Red Snapper in the northern Gulf of Mexico based on the
generalized linear model and abundance estimates for artificial structures.

TABLE 3. Total contribution of natural habitats and artificial structures to the
Gulf of Mexico Red Snapper population in terms of number, biomass, and
fecundity (see Methods). Values in parentheses are results from the sensitivity
analysis representing uncertainty in the number of artificial reefs.

Habitat type % Number % Biomass % Fecundity

Natural
All natural 86.72 (77.14) 92.22 (84.55) 93.65 (86.23)
Sand and mud 14.47 (12.87) 19.88 (18.22) 21.35 (19.66)
Rock and gravel 72.25 (64.27) 72.34 (66.33) 72.3 (66.57)

Artificial structures
All artificial 13.28 (22.86) 7.79 (15.46) 6.35 (13.78)
Platforms 2.31 (2.05) 0.44 (0.40) 0.11 (0.10)
Reefs 10.97 (20.80) 7.35 (15.06) 6.24 (13.68)
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Snapper and likely for other reef-associated species, maps of
relative abundance based upon a single gear type miss large
components of the stock and may not reflect the spatial dis-
tribution of the stock as a whole. Other important factors in
the model were longitude and depth, indicating a general
westward cline in relative abundance and differential depth
utilization over ontogeny. The age × depth interaction (i.e.,
older ages occurred more frequently in deeper waters)
reflected the ontogenetic shifts displayed by the species
(Gallaway et al. 2009; Ajemian et al. 2015). In general, the
model results highlighted the importance of accounting for age
and size selectivity when making population-level inferences.

Our modeling approach explicitly reveals the spatial preci-
sion of the maps—a measure that unfortunately is rarely
reported in spatial mapping studies based upon predictive
models. We feel that any spatial map should be accompanied

by estimates of precision, without which the reliability of the
model predictions cannot be evaluated. As model-based esti-
mates, variance estimates from the GLM derive their utility
and unbiasedness from the degree to which the underlying
models and assumptions thereof are correct (Cassel et al.
1977). Generalized linear models generally assume that the
data are representative of the population. Because there was
no existing comprehensive survey of platforms and artificial
reefs in the GOM, it was necessary for us to assume that the
sampled artificial structures were representative of the entire
population of artificial structures in the GOM—a caveat that
was noted above. Greater sampling of these structures outside
of the northern GOM could address this assumption.
Generalized linear models further assume that the data are
independent and identically distributed; in this case, given
the opportunistic sampling of the CSSP, true independence

FIGURE 8. Maps of the proportion of Red Snapper relative abundance, biomass, and fecundity occurring on artificial structures in the northern Gulf of Mexico.
Histograms show the distribution of the data points in each map.
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of the data was unlikely. The practical implications of a lack of
independence would be that the variances likely represent
underestimates of the true variance. Note that the results of
the logistic model indicated the presence of underdispersion,
which also suggests that variation in the data is less than
would be predicted under the model assumptions. Hence, the
spatial variances are likely to be underestimates of the true
variability one might find in repeated observations at the same
location; however, they are useful for providing an indication
of the model’s reliability over the prediction space. Overall,
the maps showed relatively high spatial precision except in
certain areas of the west Texas shelf, from which few samples
were available.

As an additional measure of the adequacy of our predictive
modeling, we calculated the spatial autocorrelation of the
residuals and plotted interpolated estimates of the residual

abundance. Autocorrelation was present only for the residuals
of the LL predictions, and evidence of residual hot spots
indicated that the models missed some spatial structure at
scales of 30 km or less. This indicates the occurrence of
spatial patchiness that was unaccounted for by the model at
scales slightly coarser than the 10-km2 resolution of the pre-
dictions. Such residual variation could be due to the fact that
(1) the samples used in modeling may not be entirely inde-
pendent or (2) Red Snapper respond to finer-resolution habitat
characteristics than are captured by the resolution of available
habitat data, a common issue in the marine realm (Lecours
et al. 2015). In a previous study of GOM snappers and group-
ers, Saul et al. (2013) reported that spatial autocorrelation of
species abundances occurred at scales less than 1 km and that
patches of habitat were autocorrelated at ranges between 1 and
6 km (Saul et al. 2013); those scales are much finer than the
resolution of our predictions. Furthermore, Saul et al. (2013)
could not detect spatial autocorrelation in Red Snapper, even
at the fine scales they examined. Residuals of the model
predictions from our full data set did not display spatial auto-
correlation, likely because the sampling was carried out at
scales larger than those relevant to the habitat.

One limitation of our predictions was the low amount of
overall variance explained by the GLMs, which begs the
question of whether habitat factors could have been better
incorporated into the model. First, habitat type was already
accounted for in the sampling design, as several of the surveys
occurred on known (and ground-truthed) hard substrate
(VLind), platform habitat (VLplat), or artificial habitat
(VLart); hence, they only had inference over those areas.
Second, although the resolution of interpolated sediment data-
bases (e.g., usSEABED; Buczkowski et al. 2006) is excellent
for defining broad habitat metrics and for survey design and

95°W 90°W 85°W

26
°N

28
°N

30
°N

200m
500m

Alabama Artificial Reef Zone
> 70% of 1− & 2−year−old population on artificial structures
> 80% of 1− & 2−year−old population on artificial structures

FIGURE 9. Influence of artificial structures on age-1 and age-2 Red Snapper abundance in the northern Gulf of Mexico. Grid cells highlight areas where at least
70% or 80% of the age-class is estimated to occur on artificial structures.

TABLE 4. Percentage of individuals from each Red Snapper age-class that
were estimated to occur on natural habitats or artificial structures, calculated
across the entire northern Gulf of Mexico.

Habitat type
Ages
1–2

Age
3

Age
4

Age
5

Age
6

Age
7+

Natural
All natural 84.10 92.71 89.53 91.27 93.79 95.23
Sand and mud 12.30 13.92 14.11 24.64 27.40 20.24
Rock and gravel 71.80 78.80 75.42 66.64 66.39 74.99

Artificial structures
All artificial 15.90 7.29 10.47 8.73 6.21 4.77
Platforms 3.31 0.56 0.06 0.02 0.02 0.03
Reefs 12.59 6.73 10.41 8.71 6.19 4.74
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stratification, it is of limited utility for identifying the exact
spatial locations of reef fish habitat. Because many hard-bot-
tom reefs can be quite small, there is a high potential for
mismatch between a fishing location and the habitat predicted
by the coarse usSEABED database. A coral reef situated in the
middle of a wide sandy area could harbor many reef fish but
could easily be classified as “sand” according to the
usSEABED database. Previous studies that have assigned
interpolated habitat type have had predictive success ranging
from “high” for a trawl survey (Drexler and Ainsworth 2013)
to “limited” for reef fish sampling (Farmer and Karnauskas
2013). This variable success was likely a function of the
relatively coarse resolution of the usSEABED database and
the differences in how a trawl survey integrates over a wide
spatial area, whereas a handline or trap samples a very specific
location. Identification of higher-resolution habitat features
(e.g., rugosity, slope, or benthic species composition) could
be derived from ongoing side-scan sonar or multiple-beam
sonar mapping efforts (e.g., Gledhill et al. 1996) and may
improve the capacity for predicting reef fish abundance.
However, multiple-beam sonar mapping surveys are relatively
costly and limited in spatial extent (Lecours et al. 2015), thus
preventing prediction across the entire GOM.

Despite the predictive capabilities of our combined approach,
several limitations remain. First, the approach can produce only
relative abundances that are scaled to the maximum catchability
for any gear type by age-class. Second, there are limitations
regarding the comparison of petroleum platforms to natural
habitats, particularly in relation to several critical assumptions
that rely upon published values in the literature. For example, we
used the platform area of influence as estimated by Reynolds
(2015) to define the spatial extent of a platform, but we note that
any increase or decrease in this estimate would change the
resulting percent contribution of platforms. Furthermore,
although survey methodologies were consistent between plat-
forms and natural habitats, the surveys were carried out in
different years. Adjusting for this difference necessitated the
use of age-specific abundances that were derived from the most
recent stock assessment as a “bridge” across years. Furthermore,
we had to assume that for a given gear type, (1) effort was
proportional to abundance and (2) catchability did not differ
between habitats. As experimental estimates of differential
catchability of the same gear in different habitat types become
available (Bacheler et al. 2014), they could be incorporated into
the modeling framework we have proposed, perhaps as Bayesian
priors. The addition of other paired gears to the survey design
(e.g., cameras) could provide further information on catchability
or detection rates for the different gears. Finally, the platform
sampling and artificial reef sampling were carried out only over a
limited spatial domain, and we had to extrapolate the abundance
ratios beyond the domain of sampling. We assumed that the
abundance ratios PLATFORM : NATURAL and ARTIFICIAL
: NATURAL differed based on Red Snapper age and depth but
necessarily remained constant across longitudes.

The numbers reported here represent our best estimates based
on the most updated literature and available data sets; however, the
spatial distribution of the Red Snapper stock will likely change as
the population ages and exhibits concomitant ontogenetic move-
ments, as natural mortality and spatial fishing mortality deplete the
population, and as other population processes take place.
Additionally, we note that presence of anthropogenic material in
the marine environment is a dynamic process, as material is
deposited by storms, from vessel debris, and via stakeholders’
attempts to improve fishing opportunities. Conversely, material is
removed by degradation and sedimentation. Our static sensitivity
analysis, in which the distribution with respect to depth and loca-
tion was kept constant, indicates a direct response to increasing the
number of artificial structures—that is, doubling the number of
artificial structures approximately doubles the number of fish that
inhabit artificial structures. However, the actual population-level
response is unknown and is unlikely to be linear, as destruction or
removal may take place across different depth strata or geographi-
cal locations over time. Furthermore, due to density-dependent
effects, the relationship between the number of artificial structures
in an area and the abundance of Red Snapper may also be non-
linear (Campbell et al. 2011). Note that with the appropriate survey
—for example, simultaneous sampling of natural habitats versus
artificial structures in areas of varying densities, across a range of
depths and longitudes, and with a comprehensive mapping of
habitats—our model could be updated, obviating some of the
strong assumptions that were necessary in this analysis.

Contribution of Artificial Structures
Previous estimates of platform contributions based on

observations of oil rig explosions have suggested that plat-
forms hold the majority (70–80%) of age-2 Red Snapper in the
GOM (Gallaway et al. 2009). In contrast, we estimated that
platforms currently hold substantially fewer (~3.3%) 1- and 2-
year-old Red Snapper. These discrepancies can be explained
largely by the fact that Gallaway et al. (2009) derived the
fraction of Red Snapper on oil rigs by dividing the assumed
population of Red Snapper at the time. Gallaway et al. (2009)
used population size estimates from an earlier stock assess-
ment (SEDAR 2005) that reported substantially lower natural
mortality rates for ages 1 and 2 (0.6 and 0.1 year–1, respec-
tively; SEDAR 2005) compared to values from the current
assessment (1.6 and 0.7 year–1, respectively; SEDAR 2013).
In subsequent years, estimates of natural mortality for young
Red Snapper were revised upward based on studies indicating
that natural mortality is likely higher than previously assumed
(Gazey et al. 2008). Consequently, the total number of age-1
and age-2 fish estimated to be present in the early 1990s at the
time Gallaway et al. (2009) made their calculations is now
estimated to be substantially higher to support the same num-
ber of removals. The most recent estimates of 1- and 2-year-
old Red Snapper abundance in only the western GOM at the
beginning of the year in 1992 are approximately 30.0 and 4.3
million fish, respectively (SEDAR 2013). Using the same
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logic as Gallaway et al. (2009) and based on the numbers from
Gitschlag et al. (2003), we would estimate a substantially
lower fraction (7–25%) of age-1 and age-2 Red Snapper on
platforms. We note that the number of platforms has declined
as older ones are removed or repurposed; the estimates are
approximately 2,000 platforms in 2011 versus 4,000 platforms
in 1992. If we apply our calculations to the number of extant
platforms in 1992 while assuming that all other factors were
relatively constant (e.g., depth, platform locations, and the
ratio of catch rates between the areas), the fraction of the
Red Snapper population occurring on platforms would double
to approximately 7%.

Our findings confirm other notions regarding habitat usage by
Red Snapper in the GOM. First, our statistical model estimated
that age-1 and age-2 Red Snapper preferentially inhabit high-relief
structures, both natural and artificial, and that the preference for
deeper, less-structured habitats increases with age, which is con-
sistent with the current body of knowledge (Gallaway et al. 2009).
Our calculations also show that in comparison with natural habi-
tats, artificial structures indeed harbor greater densities of Red
Snapper: in deeper waters, the abundance of 1–2-year-olds at
artificial structures was up to 26 times the abundance in natural
habitats. Other authors have highlighted that a large portion of Red
Snapper landings comes from artificial reefs in some parts of the
GOM (Gallaway et al. 2009; Shipp and Bortone 2009), and our
distribution maps would suggest that this is accurate for some
localized areas, particularly the AARZ, where artificial structures
are estimated to contain approximately 80% of the total Red
Snapper biomass. However, given the low fraction of the popula-
tion associated with artificial structures overall, the potential for
population-level impacts (either positive or negative) from artifi-
cial structures is relatively low. Recent studies have suggested that
Red Snapper living on platforms possess lower reproductive
potential than Red Snapper on natural habitats (Glenn 2014;
Schwartzkopf 2014), which could be linked to differential diet
characteristics (Simonsen et al. 2014). However, given the small
influence of platforms in supporting spawning biomass (a mere
0.11% of the total), it is unlikely that lowered reproductive poten-
tial on platform habitats would markedly alter population
dynamics.

Platform structures in particularmay harbor greater abundances
per unit of sea floor because they provide more three-dimensional
habitat space on a given footprint of the sea floor (Martin and
Lowe 2010). However, unlike the apparent situation in the study
by Claisse et al. (2014), wherein platforms appeared to increase the
actual level of fish production, the production versus attraction
debate is still unresolved for GOM Red Snapper. The analyses
presented here provide only static estimates of Red Snapper rela-
tive abundance on various natural habitats and artificial structures;
however, they do not lend insights into the relative productivity of
different sectors of the population, and we cannot speculate upon
the dynamic response of the population to increases or decreases in
artificial structures. We found that artificial structures harbored

substantial numbers of young Red Snapper, particularly in areas
with high densities of artificial structures and little natural reef
habitat. Indeed, in those areas, artificial structures harbored the
majority of the 1–2-year-old fish. However, when calculated
across the entire GOM—much of which is devoid of artificial
reefs and platforms—artificial structures make up only a small
proportion of the total available habitat. Additionally, although the
contribution of artificial structures was relatively large for young
Red Snapper, their importance decreased for older age-classes.
Therefore, in terms of biomass and fecundity, the influence of
artificial structures was minimal, as they harbored just over 6%
of the total spawning potential for the GOM Red Snapper
population.

Conclusions
One of the greatest challenges to assessment and manage-

ment of marine resources is the effective incorporation of
spatial processes. The current assessment of Red Snapper
(SEDAR 2013) uses a coarse, two-area model that divides
the population at the mouth of the Mississippi River.
However, stakeholders are increasingly calling for finer-scale
spatial management, and there is a growing recognition of the
importance of spatial and habitat type variability in key bio-
logical parameters (Glenn 2014; Schwartzkopf 2014;
Simonsen et al. 2014) and very likely in fishing mortality
and removals. Developing a spatial map of the population,
such as that presented here, represents a critical first step in
addressing these processes.

The spatial mapping of marine populations is a particularly
difficult task that is complicated by several factors—most notably
the substantial movement exhibited by fish and secondarily the
fact that obtaining a synoptic sampling of the population across the
spatial domain is rarely possible. Our statistical approach repre-
sents a novel contribution that allows for the generation of spatial
distribution maps across multiple habitats by combining multiple
gear types and surveys. Despite the extremely comprehensive
nature of the CSSP, it still did not deliver very precise estimates
of Red Snapper spatial distribution in the GOM. This may have
been due to the coarse nature of available habitat data, the data
collection by the CSSP, or (more likely) a mismatch between the
two. It would be easy to suggest that the answer to meeting the
needs of spatial management is to simply collect more samples;
however, the reality is that the CSSP represented the most com-
prehensive single-year survey of Red Snapper in the GOM to date,
yet our analysis was still subject to a number of limitations. The
realities of sampling resources, funding, and the logistics of con-
ducting synoptic GOM-wide surveys are unlikely to allow for the
substantially greater sampling effort that would be needed to fully
map many fish populations. Hybrid mapping approaches that
combine different gear types, as in the present study, likely repre-
sent the most practical means of providing information for spatial
management in a cost- and time-effective manner.
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